Use analytic methods to find A) the local extrema, B) the intervals on which the function is increasing, and C) the intervals on which the function is decreasing.

1) $f(x) = -2x^{2} + 4x + 3$ $f'(x) = -4x + 4$ $-4x + 4 = 0 \Longrightarrow x = 1$	$y' + 0 - \\ <+ + + + + + > \\ x 0 1 2$	Increasing $(-\infty, 1]$ Decreasing $[1,\infty)$ abs. max of 5 when $x = 1$
2) $f(x) = (x-1)^2 (x+2)$ $f'(x) = (x+2)[2(x-1)(1)] + (x-1)^2$ $= 3x^2 - 3$ $3x^2 - 3 = 0 \Rightarrow x = \pm 1$	(1) $y' + 0 - 0 + \\ \leftarrow + + + + + + \\ x - 2 - 1 0 1 2$	Increasing $(-\infty, -1]$ and $[1,\infty)$ Decreasing $[-1, 1]$ rel. max of 4 when $x = -1$ rel. min of 0 when $x = 1$
3) $f(x) = 2x^3 + 3x^2 - 12x$ $f'(x) = 6x^2 + 6x - 12$ $6x^2 + 6x - 12 = 0 \Rightarrow 6(x - 1)(x + 2) =$ $\Rightarrow x = 1, -2$	$y' + 0 - 0 + \\ < + + + + + + + \\ x - 3 - 2 - 1 0 + 2 \\ = 0$	Increasing $(-\infty, -2]$ and $[1,\infty)$ Decreasing $[-2, 1]$ rel. max of 20 when $x = -2$ rel. min of -7 when $x = 1$
4) $f(x) = (x-3)^3$ $f'(x) = 3(x-3)^2(1)$ $3(x-3)^2 = 0 \implies x = 3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Increasing (-∞,3] and [3,∞) Decreasing nowhere No extremes
5) $f(x) = \frac{x^5 - 5x}{5}$ $f'(x) = x^4 - 1$ $x^4 - 1 = 0 \Longrightarrow x = \pm 1$	$\begin{array}{c} y' + 0 - 0 + \\ \checkmark + + + + + + + \\ x - 2 - 1 0 + 2 \end{array}$	Increasing $(-\infty, -1]$ and $[1,\infty)$ Decreasing $[-1, 1]$ Rel max of 4/5 at $x = -1$ Rel min of -4/5 at $x = 1$

6)
$$f(x) = x^{1/3} + 1$$

Increasing
$$(-\infty, 0]$$
 and $[0,\infty)$
Decreasing nowhere
No extrema

$$f'(x) = \frac{1}{3}x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}}$$

f'(x) does not exist at x = 0

7) $f(x) = x^3 - 12x$	y' + 0 - 0 +	Increasing (- ∞ , -2] and [2, ∞)
	$\overset{\leftarrow}{+} \overset{+}{+} \overset{+}{+} \overset{+}{+} \overset{+}{+} \overset{\rightarrow}{\rightarrow}$	Decreasing [-2, 2]
$f'(x) = 3x^2 - 12$	x -3-2-10 1 2 3	Rel max of 16 at $x = -2$
$3x^2 - 12 = 0 \Rightarrow x = \pm 2$		Rel min of -16 at $x = 2$

		Increasing $[-2, 0]$ and $[2, \infty)$
		Decreasing $(-\infty, -2], [0, 2]$
1 - 4 - 2 - 2		Rel max of 0 at $x = 0$
8) $f(x) = \frac{-x^2 - 2x^2}{4}$	y'- 0 + 0 - 0 +	Rel min of -4 at $x = 2$
		Rel min of -4 at $x = -2$
$f'(x) = x^3 - 4x$	x -3-2-10123	

$$x^3 - 4x = 0 \Longrightarrow x = 0, \pm 2$$

Increasing $[-2,\infty)$ Decreasing [-3, -2]Rel min of -2 at x = -2This is also an absolute min

9) $f(x) = x\sqrt{x+3}$

Implied domain:
$$x \ge -3$$

 $f'(x) = x \left(\frac{1}{2} (x+3)^{-1/2} (1) \right) + 1\sqrt{x+3}$
 $= \frac{x}{2\sqrt{x+3}} + \sqrt{x+3} = \frac{3x+6}{2\sqrt{x+3}}$
 $3x+6=0 \Rightarrow x=-2$

$$y' - 0 + \\ \leftarrow + + + + + \\ x - 2.5 - 2 - 0$$

10)

$$f'(x) = \frac{1}{2}\cos\frac{x}{2}$$

$$\frac{1}{2}\cos\frac{x}{2} = 0 \Rightarrow \frac{x}{2} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \dots$$

$$x = \pi, 3\pi, 5\pi$$

$$y' + 0 - 0 + 0$$

$$x = \pi, 3\pi, 5\pi$$

π 2π 3π 4π 5π

≯

Increasing $[0, \pi]$ and $[3\pi, 4\pi]$ Decreasing $[\pi, 3\pi]$ Rel max of 1 at $x = \pi$ (also abs) Rel min of -1 at $x = 3\pi$ (also abs)

11)
$$f(x) = \sqrt{x^2 + 1}$$

 $f'(x) = \frac{1}{2} (x^2 + 1)^{-1/2} (2x) = \frac{x}{\sqrt{x^2 + 1}}$
 $\frac{x}{\sqrt{x^2 + 1}} = 0 \Rightarrow x = 0$
 $y' = 0 +$
Increasing
 $x = -1 = 0 = 1$
 $x = -1 = 0 = 1$
Increasing
 $x = -1 = 0 = 1$
Increasing
 $x = -1 = 0 = 1$
Increasing
 $x = -1 = 0 = 1$

Increasing $[0,\infty)$ Decreasing $(-\infty, 0]$ Rel min of 1 at x = 0(*This is also an abs min*)

12)
$$f(x) = x + \frac{4}{x}$$
$$f'(x) = 1 - \frac{4}{x^2}$$
$$1 - \frac{4}{x^2} = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$$

Increasing $(-\infty, -2]$, $[2,\infty)$ Decreasing [-2, 0], [0, 2]Rel max of -4 at x = -2Rel min of 4 at x = 2

f'(x) does not exist at x = 0