
Chapter7 Applications of
Definite Integrals

The art of pottery developed independently 

in many ancient civilizations and still exists in

modern times. The desired shape of the side 

of a pottery vase can be described by:

y � 5.0 � 2 sin (x/4) (0 � x � 8p)

where x is the height and y is the radius at 

height x (in inches).

A base for the vase is preformed and placed on a

potter’s wheel. How much clay should be added to

the base to form this vase if the inside radius is al-

ways 1 inch less than the outside radius? Section 7.3

contains the needed mathematics.

378
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Section 7.1 Integral as Net Change 379

Chapter 7 Overview

By this point it should be apparent that finding the limits of Riemann sums is not just an
intellectual exercise; it is a natural way to calculate mathematical or physical quantities
that appear to be irregular when viewed as a whole, but which can be fragmented into reg-
ular pieces. We calculate values for the regular pieces using known formulas, then sum
them to find a value for the irregular whole. This approach to problem solving was around
for thousands of years before calculus came along, but it was tedious work and the more
accurate you wanted to be the more tedious it became.

With calculus it became possible to get exact answers for these problems with almost
no effort, because in the limit these sums became definite integrals and definite integrals
could be evaluated with antiderivatives. With calculus, the challenge became one of fitting
an integrable function to the situation at hand (the “modeling” step) and then finding an
antiderivative for it.

Today we can finesse the antidifferentiation step (occasionally an insurmountable hur-
dle for our predecessors) with programs like NINT, but the modeling step is no less cru-
cial. Ironically, it is the modeling step that is thousands of years old. Before either calculus
or technology can be of assistance, we must still break down the irregular whole into regu-
lar parts and set up a function to be integrated. We have already seen how the process
works with area, volume, and average value, for example. Now we will focus more closely
on the underlying modeling step: how to set up the function to be integrated.

Integral As Net Change

Linear Motion Revisited
In many applications, the integral is viewed as net change over time. The classic example
of this kind is distance traveled, a problem we discussed in Chapter 5.

EXAMPLE 1 Interpreting a Velocity Function

Figure 7.1 shows the velocity 

�
d
d
s
t
� � v(t) � t2 � �

�t �

8
1�2� �

s

c

e

m

c
�

of a particle moving along a horizontal s-axis for  0 � t � 5.  Describe the motion.

SOLUTION

Solve Graphically The graph of v (Figure 7.1) starts with  v�0� � �8, which we in-
terpret as saying that the particle has an initial velocity of 8 cm �sec to the left. It slows to a
halt at about t � 1.25 sec, after which it moves to the right �v � 0� with increasing speed,
reaching a velocity of v�5� � 24.8 cm �sec  at the end. Now try Exercise 1(a).

EXAMPLE 2 Finding Position from Displacement

Suppose the initial position of the particle in Example 1 is s�0� � 9. What is the parti-
cle’s position at (a) t � 1 sec? (b) t � 5 sec?

SOLUTION

Solve Analytically

(a) The position at t � 1 is the initial position s�0� plus the displacement (the
amount, Δs, that the position changed from t � 0 to t � 1). When velocity is 

7.1

What you’ll learn about

• Linear Motion Revisited

• General Strategy

• Consumption Over Time

• Net Change from Data

• Work

. . . and why 

The integral is a tool that can be
used to calculate net change and
total accumulation.

continued

[0, 5] by [–10, 30]

Figure 7.1 The velocity function in
Example 1.
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380 Chapter 7 Applications of Definite Integrals

constant during a motion, we can find the displacement (change in position) with the
formula

Displacement � rate of change 	 time.

But in our case the velocity varies, so we resort instead to partitioning the time interval
�0, 1� into subintervals of length Δt so short that the velocity is effectively constant on
each subinterval. If tk is any time in the k th subinterval, the particle’s velocity throughout
that interval will be close to v�tk�. The change in the particle’s position during the brief
time this constant velocity applies is

v�tk� Δt. rate of change 	 time

If v�tk� is negative, the displacement is negative and the particle will move left. If v�tk�
is positive, the particle will move right. The sum 

� v�tk� Δt

of all these small position changes approximates the displacement for the time interval
�0, 1�.
The sum  � v�tk� Δt is a Riemann sum for the continuous function v�t� over �0, 1�. As
the norms of the partitions go to zero, the approximations improve and the sums con-
verge to the integral of v over �0, 1�, giving 

Displacement � �1

0

v�t� dt

� �1

0
( t2 � �

�t �

8
1�2�) dt

� [ �
t
3

3

� � �
t �

8
1

�] 1

0

� �
1
3

� � �
8
2

� � 8 � ��
1
3
1
� .

During the first second of motion, the particle moves 11�3 cm to the left. It starts at 
s�0� � 9, so its position at t � 1 is

New position � initial position � displacement � 9 � �
1
3
1
� � �

1
3
6
� .

(b) If we model the displacement from t � 0 to t � 5 in the same way, we arrive at

Displacement � �5

0

v�t� dt � [ �
t
3

3

� � �
t �

8
1

�] 5

0

� 35.

The motion has the net effect of displacing the particle 35 cm to the right of its starting
point. The particle’s final position is

Final position � initial position � displacement 

� s�0� � 35 � 9 � 35 � 44.

Support Graphically The position of the particle at any time t is given by

s�t� � � t

0
[u2 � �

�u �

8
1�2�] du � 9,

because  s
�t� � v�t� and  s�0� � 9.  Figure 7.2 shows the graph of s�t� given by the
parametrization

x�t� � NINT �v�u�, u, 0, t� � 9, y�t� � t, 0 � t � 5.

Reminder from Section 3.4

A change in position is a displacement.

If s (t) is a body’s position at time t, the

displacement over the time interval

from t to t � Δt is s (t � Δt) � s (t). The

displacement may be positive, negative,

or zero, depending on the motion.

continued
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Section 7.1 Integral as Net Change 381

(a) Figure 7.2a supports that the position of the particle at  t � 1  is 16�3.

(b) Figure 7.2b shows the position of the particle is 44 at  t � 5.  Therefore, the dis-
placement is 44 � 9 � 35. Now try Exercise 1(b).

The reason for our method in Example 2 was to illustrate the modeling step that will
be used throughout this chapter. We can also solve Example 2 using the techniques of
Chapter 6 as shown in Exploration 1.

Revisiting Example 2

The velocity of a particle moving along a horizontal s-axis for 0 � t � 5 is

�
d
d
s
t
� � t2 � �

�t �

8
1�2� .

1. Use the indefinite integral of ds�dt to find the solution of the initial value 
problem

�
d
d
s
t
� � t2 � �

�t �

8
1�2� , s�0� � 9.

2. Determine the position of the particle at  t � 1.  Compare your answer with the
answer to Example 2a.

3. Determine the position of the particle at  t � 5.  Compare your answer with the
answer to Example 2b.

EXPLORATION 1

We know now that the particle in Example 1 was at s�0� � 9 at the beginning of the
motion and at s�5� � 44 at the end. But it did not travel from 9 to 44 directly—it began its
trip by moving to the left (Figure 7.2). How much distance did the particle actually travel?
We find out in Example 3.

EXAMPLE 3 Calculating Total Distance Traveled

Find the total distance traveled by the particle in Example 1.

SOLUTION

Solve Analytically We partition the time interval as in Example 2 but record every
position shift as positive by taking absolute values. The Riemann sum approximating
total distance traveled is

� �v�tk�� Δt,

and we are led to the integral

Total distance traveled � �5

0

�v�t�� dt � �5

0
� t2 � �

�t �

8
1�2� � dt.

Evaluate Numerically We have

NINT ( � t2 � �
�t �

8
1�2� �, t, 0, 5) � 42.59.

Now try Exercise 1(c).

[–10, 50] by [–2, 6]

(a)

T = 1
X = 5.3333333   Y = 1

[–10, 50] by [–2, 6]

(b)

T = 5
X = 44                 Y = 5

Figure 7.2 Using TRACE and the
parametrization in Example 2 you can
“see” the left and right motion of the
particle.
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382 Chapter 7 Applications of Definite Integrals

What we learn from Examples 2 and 3 is this: Integrating velocity gives displacement
(net area between the velocity curve and the time axis).  Integrating the absolute value of
velocity gives total distance traveled (total area between the velocity curve and the time
axis).

General Strategy
The idea of fragmenting net effects into finite sums of easily estimated small changes is
not new. We used it in Section 5.1 to estimate cardiac output, volume, and air pollution.
What is new is that we can now identify many of these sums as Riemann sums and express
their limits as integrals. The advantages of doing so are twofold. First, we can evaluate one
of these integrals to get an accurate result in less time than it takes to crank out even the
crudest estimate from a finite sum. Second, the integral itself becomes a formula that en-
ables us to solve similar problems without having to repeat the modeling step.

The strategy that we began in Section 5.1 and have continued here is the following:

Strategy for Modeling with Integrals 

1. Approximate what you want to find as a Riemann sum of values of a continuous
function multiplied by interval lengths. If f �x� is the function and �a, b� the inter-
val, and you partition the interval into subintervals of length Δx, the approximat-
ing sums will have the form � f �ck� Δx with ck a point in the k th subinterval.

2. Write a definite integral, here �b
a

f �x� dx, to express the limit of these sums as
the norms of the partitions go to zero.

3. Evaluate the integral numerically or with an antiderivative.

EXAMPLE 4 Modeling the Effects of Acceleration

A car moving with initial velocity of 5 mph accelerates at the rate of a�t� � 2.4t
mph per second for 8 seconds.

(a) How fast is the car going when the 8 seconds are up?

(b) How far did the car travel during those 8 seconds?

SOLUTION

(a) We first model the effect of the acceleration on the car’s velocity.

Step 1: Approximate the net change in velocity as a Riemann sum. When acceleration
is constant,

velocity change � acceleration 	 time applied. rate of change 	 time

To apply this formula, we partition �0, 8� into short subintervals of length Δt. On
each subinterval the acceleration is nearly constant, so if tk is any point in the k th
subinterval, the change in velocity imparted by the acceleration in the subinterval is
approximately

a�tk� Δt mph. �
m

se

p

c

h
� 	 sec

The net change in velocity for  0 � t � 8  is approximately  

� a�tk� Δt mph.

Step 2: Write a definite integral. The limit of these sums as the norms of the partitions
go to zero is

�8

0

a�t� dt.
continued
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Section 7.1 Integral as Net Change 383

Step 3: Evaluate the integral. Using an antiderivative, we have

Net velocity change � �8

0

2.4t dt � 1.2t2 ] 8

0

� 76.8 mph.

So, how fast is the car going when the 8 seconds are up? Its initial velocity is 5 mph and
the acceleration adds another 76.8 mph for a total of 81.8 mph.

(b) There is nothing special about the upper limit 8 in the preceding calculation. Apply-
ing the acceleration for any length of time t adds

� t

0

2.4u du mph u is just a dummy variable here.

(b) to the car’s velocity, giving 

v�t� � 5 � � t

0

2.4u du � 5 � 1.2t2 mph.

The distance traveled from t � 0 to t � 8 sec is

�8

0

�v�t�� dt � �8

0

�5 � 1.2t2� dt Extension of Example 3

� [5t � 0.4t3 ] 8

0

� 244.8 mph 	 seconds.

Miles-per-hour second is not a distance unit that we normally work with! To convert to
miles we multiply by hours�second � 1�3600, obtaining

244.8 	 �
36

1
00
� � 0.068 mile. �

m

h

i
� 	 sec 	 �

se

h

c
� � mi

The car traveled 0.068 mi during the 8 seconds of acceleration. Now try Exercise 9.

Consumption Over Time
The integral is a natural tool to calculate net change and total accumulation of more quan-
tities than just distance and velocity. Integrals can be used to calculate growth, decay, and,
as in the next example, consumption. Whenever you want to find the cumulative effect of a
varying rate of change, integrate it.

EXAMPLE 5 Potato Consumption

From 1970 to 1980, the rate of potato consumption in a particular country was C�t� �
2.2 � 1.1t millions of bushels per year, with t being years since the beginning of 1970.
How many bushels were consumed from the beginning of 1972 to the end of 1973?

SOLUTION

We seek the cumulative effect of the consumption rate for 2 � t � 4.

Step 1: Riemann sum. We partition �2, 4� into subintervals of length Δt and let tk be a time
in the k th subinterval. The amount consumed during this interval is approximately 

C�tk� Δt  million bushels.

The consumption for  2 � t � 4  is approximately

� C�tk � Δt  million bushels.

continued
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384 Chapter 7 Applications of Definite Integrals

Step 2: Definite integral. The amount consumed from  t � 2 to  t � 4  is the limit of
these sums as the norms of the partitions go to zero.

�4

2

C�t� dt � �4

2

�2.2 � 1.1t � dt million bushels

Step 3: Evaluate. Evaluating numerically, we obtain

NINT �2.2 � 1.1t, t, 2, 4� � 7.066  million bushels.

Now try Exercise 21.

Net Change from Data
Many real applications begin with data, not a fully modeled function. In the next example,
we are given data on the rate at which a pump operates in consecutive 5-minute intervals
and asked to find the total amount pumped.

EXAMPLE 6 Finding Gallons Pumped from Rate Data

A pump connected to a generator operates at a varying rate, depending on how much
power is being drawn from the generator to operate other machinery. The rate (gallons
per minute) at which the pump operates is recorded at 5-minute intervals for one hour
as shown in Table 7.1. How many gallons were pumped during that hour?

SOLUTION

Let R�t�, 0 � t � 60, be the pumping rate as a continuous function of time for the hour.
We can partition the hour into short subintervals of length Δt on which the rate is nearly
constant and form the sum  � R�tk� Δt as an approximation to the amount pumped dur-
ing the hour. This reveals the integral formula for the number of gallons pumped to be

Gallons pumped � �60

0

R�t� dt.

We have no formula for R in this instance, but the 13 equally spaced values in Table 7.1
enable us to estimate the integral with the Trapezoidal Rule:

�60

0

R�t� dt � �
2

6
•

0
12
� [ 58 � 2�60� � 2�65� � … � 2�63� � 63]

� 3582.5.

The total amount pumped during the hour is about 3580 gal. Now try Exercise 27.

Work
In everyday life, work means an activity that requires muscular or mental effort. In science,
the term refers specifically to a force acting on a body and the body’s subsequent displace-
ment. When a body moves a distance d along a straight line as a result of the action of a
force of constant magnitude F in the direction of motion, the work done by the force is

W � Fd.

The equation W � Fd is the constant-force formula for work.
The units of work are force 	 distance. In the metric system, the unit is the newton-

meter, which, for historical reasons, is called a joule (see margin note). In the U.S. cus-
tomary system, the most common unit of work is the foot-pound.

Table 7.1 Pumping Rates

Time (min) Rate (gal �min)

0 58

5 60

10 65

15 64

20 58

25 57

30 55

35 55

40 59

45 60

50 60

55 63
60 63

Joules

The joule, abbreviated J and pro-

nounced “jewel,” is named after the

English physicist James Prescott Joule

(1818–1889). The defining equation is

1 joule � (1 newton)(1 meter).

In symbols, 1 J � 1 N • m.

It takes a force of about 1 N to lift an

apple from a table. If you lift it 1 m you

have done about 1 J of work on the

apple. If you eat the apple, you will have

consumed about 80 food calories, the

heat equivalent of nearly 335,000

joules. If this energy were directly useful

for mechanical work (it’s not), it would

enable you to lift 335,000 more apples

up 1 m.
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Section 7.1 Integral as Net Change 385

Hooke’s Law for springs says that the force it takes to stretch or compress a spring x
units from its natural (unstressed) length is a constant times x. In symbols,

F � kx,

where k, measured in force units per unit length, is a characteristic of the spring called the
force constant.

EXAMPLE 7 A Bit of Work

It takes a force of 10 N to stretch a spring 2 m beyond its natural length. How much work
is done in stretching the spring 4 m from its natural length?

SOLUTION

We let F�x� represent the force in newtons required to stretch the spring x meters from
its natural length. By Hooke’s Law, F�x� � kx for some constant k. We are told that 

F�2� � 10 � k • 2,

so  k � 5 N�m  and  F�x� � 5x for this particular spring.

We construct an integral for the work done in applying F over the interval from  x � 0
to  x � 4.

Step 1: Riemann sum. We partition the interval into subintervals on each of which F is
so nearly constant that we can apply the constant-force formula for work. If xk
is any point in the k th subinterval, the value of F throughout the interval is 
approximately F�xk� � 5xk . The work done by F across the interval is 
approximately 5xk Δx, where Δx is the length of the interval. The sum

� F�xk� Δx � � 5xk Δx

approximates the work done by F from x � 0 to  x � 4.

Steps 2 and 3: Integrate. The limit of these sums as the norms of the partitions go to
zero is

� 4

0

F�x� dx � � 4

0

5x dx � 5�
x
2

2

� ] 4

0

� 40 N • m.

Now try Exercise 29.

We will revisit work in Section 7.5.

The force required to stretch the
spring 2 m is 10 newtons.

Numerically, work is the area under the

force graph.

Quick Review 7.1 (For help, go to Section 1.2.)

In Exercises 1–10, find all values of x (if any) at which the function
changes sign on the given interval. Sketch a number line graph of the
interval, and indicate the sign of the function on each subinterval.

Example: f �x� � x2 � 1 on ��2, 3�

Changes sign at x � �1.

1. sin 2x on ��3, 2� Changes sign at ��
p

2
�, 0, �

p

2
�

2. x2 � 3x � 2 on ��2, 4� Changes sign at 1, 2

–2 –1

+ +–

1 3

f (x)

x

3. x2 � 2x � 3 on ��4, 2� Always positive

4. 2x3 � 3x2 � 1 on ��2, 2� Changes sign at ��
1
2

�

5. x cos 2x on �0, 4� Changes sign at �
p

4
�, �

3
4
p
�, �

5
4
p
�

6. xe�x on �0, ∞� Always positive

7. �
x2 �

x
1

� on ��5, 30� Changes sign at 0

8. �
x
x

2

2
�

�

2
4

� on ��3, 3� Changes sign at �2, �	2
, 	2
, 2

9. sec �1 � 	1
 �
 s
in
2
x
� on ��∞, ∞�

10. sin �1�x� on �0.1, 0.2� Changes sign at �
3
1
p
�, �

2
1
p
�

9. Changes sign at 0.9633 � kp, 2.1783 � kp, where k is an integer
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386 Chapter 7 Applications of Definite Integrals

In Exercises 1–8, the function v(t) is the velocity in m�sec of a
particle moving along the x-axis. Use analytic methods to do each of
the following:

(a) Determine when the particle is moving to the right, to the
left, and stopped.

(b) Find the particle’s displacement for the given time interval. If
s(0) � 3, what is the particle’s final position?

(c) Find the total distance traveled by the particle.

1. v�t� � 5 cos t, 0 � t � 2p See page 389.

2. v�t� � 6 sin 3t, 0 � t � p�2 See page 389.

3. v�t� � 49 � 9.8t, 0 � t � 10 See page 389.

4. v�t� � 6t2 � 18t � 12, 0 � t � 2 See page 389.

5. v�t� � 5 sin2 t cos t, 0 � t � 2p See page 389.

6. v�t� � 	4
 �
 t
, 0 � t � 4 See page 389.

7. v�t� � esin t cos t, 0 � t � 2p See page 389.

8. v�t� � �
1 �

t
t2� , 0 � t � 3 See page 389.

9. An automobile accelerates from rest at 1 � 3	t
 mph�sec for 
9 seconds.

(a) What is its velocity after 9 seconds? 63 mph

(b) How far does it travel in those 9 seconds? 344.52 feet

10. A particle travels with velocity

v�t� � �t � 2� sin t m�sec

for  0 � t � 4 sec.

(a) What is the particle’s displacement? ��1.44952 meters

(b) What is the total distance traveled? �1.91411 meters

11. Projectile Recall that the acceleration due to Earth’s gravity is
32 ft �sec2. From ground level, a projectile is fired straight
upward with velocity 90 feet per second.

(a) What is its velocity after 3 seconds? �6 ft/sec

(b) When does it hit the ground? 5.625 sec

(c) When it hits the ground, what is the net distance it has
traveled? 0

(d) When it hits the ground, what is the total distance it has
traveled? 253.125 feet

In Exercises 12–16, a particle moves along the x-axis (units in cm).
Its initial position at t � 0 sec is  x�0� � 15.  The figure shows the
graph of the particle’s velocity v�t�. The numbers are the areas of
the enclosed regions.

4
5

a b c

24

12. What is the particle’s displacement between t � 0 and t � c?

13. What is the total distance traveled by the particle in the same
time period? 33 cm

14. Give the positions of the particle at times a, b, and c.

15. Approximately where does the particle achieve its greatest
positive acceleration on the interval �0, b�? t � a

16. Approximately where does the particle achieve its greatest
positive acceleration on the interval �0, c�? t � c

In Exercises 17–20, the graph of the velocity of a particle moving on
the x-axis is given. The particle starts at x � 2 when t � 0.

(a) Find where the particle is at the end of the trip.

(b) Find the total distance traveled by the particle.

17.

18.

19.

20.

21. U.S. Oil Consumption The rate of consumption of oil in the
United States during the 1980s (in billions of barrels per year)
is modeled by the function  C � 27.08 • et �25, where t is the
number of years after January 1, 1980. Find the total consumption
of oil in the United States from January 1, 1980 to January 1,
1990. �332.965 billion barrels

22. Home Electricity Use The rate at which your home consumes
electricity is measured in kilowatts. If your home consumes
electricity at the rate of 1 kilowatt for 1 hour, you will be charged

t (sec)

v (m/sec)

0 1

3

2 3 4 5 6 7

–3

8 9 10

t (sec)

v (m/sec)

0 1

2

2 3 4 5 6 7

–2

1

0
1 2 3 4

–1

v (m/sec)

t (sec)

v (m/sec)

t (sec)

2

1 2 3 40

Section 7.1 Exercises

�23 cm

a: 11 b: 16 c: �8

(a) 6 (b) 4 meters

(a) 2 (b) 4 meters

(a) 5 (b) 7 meters

(a) �2.5 (b) 19.5 meters
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Section 7.1 Integral as Net Change 387

for 1 “kilowatt-hour” of electricity. Suppose that the average
consumption rate for a certain home is modeled by the function
C�t� � 3.9 � 2.4 sin �pt�12�, where C�t� is measured in
kilowatts and t is the number of hours past midnight. Find the
average daily consumption for this home, measured in kilowatt-
hours. 93.6 kilowatt-hours

23. Population Density Population density measures the number
of people per square mile inhabiting a given living area.
Washerton’s population density, which decreases as you move
away from the city center, can be approximated by the function
10,000�2 � r� at a distance r miles from the city center. 

(a) If the population density approaches zero at the edge of the
city, what is the city’s radius? 2 miles

(b) A thin ring around the center of the city has thickness Δr and
radius r. If you straighten it out, it suggests a rectangular strip.
Approximately what is its area? 2pr�r

(c) Writing to Learn Explain why the population of the ring
in part (b) is approximately

10,000�2 � r��2pr� Δr.

(d) Estimate the total population of Washerton by setting up 
and evaluating a definite integral. �83,776

24. Oil Flow Oil flows through a cylindrical pipe of radius 
3 inches, but friction from the pipe slows the flow toward the
outer edge. The speed at which the oil flows at a distance r
inches from the center is  8�10 � r2� inches per second. 

(a) In a plane cross section of the pipe, a thin ring with thickness
Δr at a distance r inches from the center approximates a
rectangular strip when you straighten it out. What is the area 
of the strip (and hence the approximate area of the ring)?

(b) Explain why we know that oil passes through this ring at
approximately 8�10 � r2��2pr� Δr cubic inches per second.

(c) Set up and evaluate a definite integral that will give the rate
(in cubic inches per second) at which oil is flowing through the
pipe. 396p in3/sec or � 1244.07 in3/sec

25. Group Activity Bagel Sales From 1995 to 2005, the
Konigsberg Bakery noticed a consistent increase in annual sales
of its bagels. The annual sales (in thousands of bagels) are
shown below.

Sales
Year (thousands)

1995 5
1996 8.9
1997 16
1998 26.3
1999 39.8
2000 56.5
2001 76.4
2002 99.5
2003 125.8
2004 155.3
2005 188

(a) What was the total number of bagels sold over the 11-year
period? (This is not a calculus question!) 797.5 thousand

(b) Use quadratic regression to model the annual bagel sales (in
thousands) as a function B�x�, where x is the number of years
after 1995. B(x) � 1.6x2 � 2.3x � 5.0

(c) Integrate B�x� over the interval �0, 11� to find total bagel
sales for the 11-year period. �904.02

(d) Explain graphically why the answer in part (a) is smaller
than the answer in part (c). See page 389.

26. Group Activity (Continuation of Exercise 25)

(a) Integrate B�x� over the interval ��0.5, 10.5� to find total
bagel sales for the 11-year period. �798.97 thousand

(b) Explain graphically why the answer in part (a) is better than
the answer in 25(c).

27. Filling Milk Cartons A machine fills milk cartons with milk
at an approximately constant rate, but backups along the assem-
bly line cause some variation. The rates (in cases per hour) are
recorded at hourly intervals during a 10-hour period, from 
8:00 A.M. to 6:00 P.M.

Use the Trapezoidal Rule with n � 10 to determine approx-
imately how many cases of milk were filled by the machine over
the 10-hour period. 1156.5

28. Writing to Learn As a school project, Anna accompanies her
mother on a trip to the grocery store and keeps a log of the car’s
speed at 10-second intervals. Explain how she can use the data
to estimate the distance from her home to the store. What is the
connection between this process and the definite integral?

29. Hooke’s Law A certain spring requires a force of 6 N to
stretch it 3 cm beyond its natural length.

(a) What force would be required to stretch the string 9 cm
beyond its natural length? 18 N

(b) What would be the work done in stretching the string 9 cm
beyond its natural length? 81 N 
 cm

30. Hooke’s Law Hooke’s Law also applies to compressing springs;
that is, it requires a force of kx to compress a spring a distance x
from its natural length. Suppose a 10,000-lb force compressed a
spring from its natural length of 12 inches to a length of 11 inches.
How much work was done in compressing the spring

(a) the first half-inch? (b) the second half-inch?

Rate
Time (cases�h)

8 120
9 110

10 115
11 115
12 119
1 120
2 120
3 115
4 112
5 110
6 121

2pr�r

Population � Population density 	 Area

24. (b) 8(10 � r2) in/sec 
 (2pr)�r in2 � flow in in3/sec

26. (b) The answer in (a) corresponds to the area of midpoint rectangles. Part
of each rectangle is above the curve and part is below.

See page 389.

1250 inch-pounds 3750 inch-pounds
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388 Chapter 7 Applications of Definite Integrals

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

31. True or False The figure below shows the velocity for a parti-
cle moving along the x-axis. The displacement for this particle is
negative. Justify your answer. False. The displacement is the 

32. True or False If the velocity of a particle moving along the 
x-axis is always positive, then the displacement is equal to the
total distance traveled. Justify your answer.

33. Multiple Choice The graph below shows the rate at which
water is pumped from a storage tank. Approximate the total 
gallons of water pumped from the tank in 24 hours. C

(A) 600 (B) 2400 (C) 3600 (D) 4200 (E) 4800

34. Multiple Choice The data for the acceleration a(t) of a car
from 0 to 15 seconds are given in the table below. If the velocity
at t � 0 is 5 ft/sec, which of the following gives the approximate
velocity at t � 15 using the Trapezoidal Rule? D

(A) 47 ft/sec (B) 52 ft/sec (C) 120 ft/sec 

(D) 125 ft/sec (E) 141 ft/sec

35. Multiple Choice The rate at which customers arrive at a
counter to be served is modeled by the function F defined by

F(t) � 12 � 6 cos��
p

t
�� for 0 � t � 60, where F(t) is measured in

customers per minute and t is measured in minutes. To the near-
est whole number, how many customers arrive at the counter
over the 60-minute period? B

(A) 720 (B) 725 (C) 732 (D) 744 (E) 756

 r (gal/hr)

 t (hr)

50

100

150

200

250

60 2412 18

t (sec)

v (m/sec)

0 1

2

1

2 3 4 5

–2

–1
6

36. Multiple Choice Pollution is being removed from a lake at a
rate modeled by the function y � 20e�0.5t tons/yr, where t is the
number of years since 1995. Estimate the amount of pollution re-
moved from the lake between 1995 and 2005. Round your an-
swer to the nearest ton. A

(A) 40 (B) 47 (C) 56 (D) 61 (E) 71

Extending the Ideas
37. Inflation Although the economy is continuously changing,

we analyze it with discrete measurements. The following table
records the annual inflation rate as measured each month for 
13 consecutive months. Use the Trapezoidal Rule with n � 12 
to find the overall inflation rate for the year. 0.04875

38. Inflation Rate The table below shows the monthly inflation
rate (in thousandths) for energy prices for thirteen consecutive
months. Use the Trapezoidal Rule with n � 12 to approximate
the annual inflation rate for the 12-month period running
from the middle of the first month to the middle of the last
month. 40 thousandths or 0.040

Monthly Rate
Month (in thousandths)

January 3.6
February 4.0
March 3.1
April 2.8
May 2.8
June 3.2
July 3.3
August 3.1
September 3.2
October 3.4
November 3.4
December 3.9
January 4.0

Month Annual Rate

January 0.04
February 0.04
March 0.05
April 0.06
May 0.05
June 0.04
July 0.04
August 0.05
September 0.04
October 0.06
November 0.06
December 0.05
January 0.05

t (sec) 0 3 6 9 12 15

a(t) (ft�sec2) 4 8 6 9 10 10

integral of the velocity from t � 0 to t � 5 and is positive.

32. True. Since the velocity is positive, the integral of the velocity is equal to
the integral of its absolute value, which is the total distance traveled.
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39. Center of Mass Suppose we have a finite collection of masses
in the coordinate plane, the mass mk located at the point �xk , yk�
as shown in the figure.

Each mass mk has moment mk yk with respect to the x-axis and
moment mk xk about the y-axis. The moments of the 
entire system with respect to the two axes are

Moment about x-axis: Mx � � mkyk ,

Moment about y-axis: My � � mk xk .

The center of mass is � xJ, yJ� where

xJ � �
M

M
y

� � and yJ � �
M

M
x

� � .
� mkyk�
� mk

� mk xk�
� mk

x

y

O

xk

xk

yk

yk

mk
(xk, yk)

Suppose we have a thin, flat plate occupying a region in 
the plane.

(a) Imagine the region cut into thin strips parallel to the 
y-axis. Show that 

xJ � �
�
�
x

d

d

m

m
� ,

where dm � d dA, d � density (mass per unit area), and 
A � area of the region.

(b) Imagine the region cut into thin strips parallel to the 
x-axis. Show that 

yJ � �
�
�
y

d

d

m

m
� ,

where dm � d dA, d� density, and A � area of the region.

In Exercises 40 and 41, use Exercise 39 to find the center of mass 
of the region with given density.

40. the region bounded by the parabola y � x2 and the line y � 4
with constant density d x
 � 0, y
 � 12/5

41. the region bounded by the lines y � x, y � �x, x � 2 with
constant density d x
 � 4/3, y
 � 0

1. (a) Right: 0 � t � p/2, 3p/2 � t � 2p
Left: p/2 � t � 3p/2
Stopped: t � p/2, 3p/2

(b) 0; 3 (c) 20

2. (a) Right: 0 � t � p/3
Left: p/3 � t � p/2
Stopped: t � 0, p/3
(b) 2; 5 (c) 6

3. (a) Right: 0 � t � 5
Left: 5 � t � 10
Stopped: t � 5

(b) 0; 3 (c) 245
4. (a) Right: 0 � t � 1

Left: 1 � t � 2
Stopped: t � 1, 2

(b) 4; 7 (c) 6

5. (a) Right: 0 � t � p/2, 3p/2 � t � 2p
Left: p/2 � t � p, p � t � 3p/2
Stopped: t � 0, p/2, p, 3p/2, 2p

(b) 0 ; 3 (c) 20/3

6. (a) Right: 0 � t � 4
Left: never
Stopped: t � 4

(b) 16/3; 25/3 (c) 16/3

7. (a) Right: 0 � t � p/2, 3p/2 � t � 2p
Left: p/2 � t � 3p/2
Stopped: t � p/2, 3p/2

(b) 0; 3 (c) 2e � (2/e) � 4.7

8. (a) Right: 0 � t � 3
Left: never
Stopped: t � 0

(b) (ln 10)/2 � 1.15; 4.15 (c) (ln 10)/2 � 1.15

25. (d) The answer in (a) corresponds to the area of left hand rectangles.
These rectangles lie under the curve B(x). The answer in (c) corre-
sponds to the area under the curve. This area is greater than the area of
the rectangles.

28. One possible answer:
Plot the speeds vs. time. Connect the points and find the area under the
line graph. The definite integral also gives the area under the curve.

39. (a, b) Take dm � d dA as mk and letting dA → 0, k → ∞ in the center of
mass equations.
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390 Chapter 7 Applications of Definite Integrals

Areas in the Plane

Area Between Curves
We know how to find the area of a region between a curve and the x-axis but many times
we want to know the area of a region that is bounded above by one curve, y � f �x�, and
below by another, y � g�x� (Figure 7.3). 

We find the area as an integral by applying the first two steps of the modeling strategy
developed in Section 7.1.

1. We partition the region into vertical strips of equal width Δx and approximate each
strip with a rectangle with base parallel to �a, b� (Figure 7.4). Each rectangle has area

� f �ck� � g�ck�� Δx

for some ck in its respective subinterval (Figure 7.5). This expression will be nonnega-
tive even if the region lies below the x-axis. We approximate the area of the region
with the Riemann sum

� � f �ck � � g�ck�� Δx. 

7.2

What you’ll learn about

• Area Between Curves

• Area Enclosed by Intersecting
Curves

• Boundaries with Changing 
Functions

• Integrating with Respect to y

• Saving Time with Geometric For-
mulas

. . . and why  

The techniques of this section
allow us to compute areas of
complex regions of the plane.

Upper curve 

Lower curve 

x

y

y � f(x)

a

b

y � g(x)

a  
x

y

y � f(x)

b
 

y � g(x)

x

y

a

b

(ck, g(ck))

(ck, f (ck))

ck

�x

f (ck) � g(ck)

Figure 7.3 The region between y � f (x)
and y � g(x) and the lines x � a and 
x � b.

Figure 7.4 We approximate the region
with rectangles perpendicular to the x-axis.

Figure 7.5 The area of a typical rectan-
gle is � f (ck) � g(ck)� Δx.

2. The limit of these sums as Δx→0 is

�b

a

� f �x� � g�x�� dx.

This approach to finding area captures the properties of area, so it can serve as a 
definition.

DEFINITION Area Between Curves

If f and g are continuous with f �x� � g�x� throughout �a, b�, then the area between
the curves y � f (x) and y � g(x) from a to b is the integral of � f � g� from a to b,

A � �b

a

� f �x� � g�x�� dx.
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EXAMPLE 1 Applying the Definition

Find the area of the region between y � sec2 x and y � sin x from x � 0 to  x � p�4.

SOLUTION

We graph the curves (Figure 7.6) to find their relative positions in the plane, and see that
y � sec2 x lies above y � sin x on �0, p�4�. The area is therefore

A � �p�4

0

�sec2 x � sin x� dx

� [ tan x � cos x ] p�4

0

� �
	

2
2

� units squared.

Now try Exercise 1.

y

x
0

y � sin  x

�–
4

y � sec 2 x

2

1

Figure 7.6 The region in Example 1.

A Family of Butterflies

For each positive integer k, let Ak denote the area of the butterfly-shaped region en-
closed between the graphs of y � k sin kx and y � 2k � k sin kx on the interval
�0, p�k�. The regions for k � 1 and k � 2 are shown in Figure 7.7.

1. Find the areas of the two regions in Figure 7.7.

2. Make a conjecture about the areas Ak for k � 3.

3. Set up a definite integral that gives the area Ak. Can you make a simple 
u-substitution that will transform this integral into the definite integral that 
gives the area A1?

4. What is  lim k→∞ Ak?

5. If Pk denotes the perimeter of the k th butterfly-shaped region, what is
lim k→∞ Pk? (You can answer this question without an explicit formula for Pk.)

EXPLORATION 1

[0, �] by [0, 4]

k = 2

y1 = 2k – k sin kx
y2 = k sin kx 

k = 1

Figure 7.7 Two members of the family
of butterfly-shaped regions described in
Exploration 1.

Area Enclosed by Intersecting Curves
When a region is enclosed by intersecting curves, the intersection points give the limits of
integration.

EXAMPLE 2 Area of an Enclosed Region

Find the area of the region enclosed by the parabola  y � 2 � x2 and the line y � �x.

SOLUTION

We graph the curves to view the region (Figure 7.8).

The limits of integration are found by solving the equation

2 � x2 � �x

either algebraically or by calculator. The solutions are x � �1 and x � 2.
continued

[–6, 6] by [–4, 4]

y1 = 2 – x2

y2
 = – x

Figure 7.8 The region in Example 2.
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392 Chapter 7 Applications of Definite Integrals

Since the parabola lies above the line on ��1, 2�, the area integrand is 2 � x2 � ��x�.

A � �2

�1

�2 � x2 ���x�� dx

� [2x � �
x
3

3

� � �
x
2

2

� ]
2

�1

� �
9
2

� units squared

Now try Exercise 5.

EXAMPLE 3 Using a Calculator

Find the area of the region enclosed by the graphs of y � 2 cos x and y � x2 � 1.

SOLUTION

The region is shown in Figure 7.9.

Using a calculator, we solve the equation

2 cos x � x2 � 1

to find the x-coordinates of the points where the curves intersect. These are the limits of
integration. The solutions are x � �1.265423706. We store the negative value as A and
the positive value as B. The area is 

NINT �2 cos x � �x2 � 1�, x, A, B� � 4.994907788.

This is the final calculation, so we are now free to round. The area is about 4.99.

Now try Exercise 7.

Boundaries with Changing Functions
If a boundary of a region is defined by more than one function, we can partition the region
into subregions that correspond to the function changes and proceed as usual.

EXAMPLE 4 Finding Area Using Subregions

Find the area of the region R in the first quadrant that is bounded above by y � 	x
 and
below by the x-axis and the line  y � x � 2.

SOLUTION

The region is shown in Figure 7.10.

[–3, 3] by [–2, 3]

y1 = 2 cos x
y2 = x2 – 1

x

y

0

2

2

(4, 2)

y � x � 2

y � 0 4

1

y � ⎯√⎯x
2

B

A

Area �      √⎯⎯x � x � 2 dx
⌠
⎮
⌡

4
⎡
⎣ ⎡

⎣

Area �    √⎯⎯x dx
⌠
⎮
⌡

2

0

Figure 7.9 The region in Example 3.

Finding Intersections by 
Calculator

The coordinates of the points of inter-

section of two curves are sometimes

needed for other calculations. To take

advantage of the accuracy provided by

calculators, use them to solve for the

values and store the ones you want.

Figure 7.10 Region R split into subregions A and B. (Example 4) continued
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While it appears that no single integral can give the area of R (the bottom boundary is
defined by two different curves), we can split the region at x � 2 into two regions A and
B. The area of R can be found as the sum of the areas of A and B.

Area of R � �2

0

	x
 dx � �4

2

�	x
 � �x � 2�� dx

area of A area of B

� �
2
3

� x3�2] 2

0

� [ �
2
3

� x3�2 � �
x
2

2

� � 2x] 4

2

� �
1
3
0
� units squared

Now try Exercise 9.

Integrating with Respect to y
Sometimes the boundaries of a region are more easily described by functions of y than by
functions of x. We can use approximating rectangles that are horizontal rather than vertical
and the resulting basic formula has y in place of x.

x

A = ∫ [f (y) – g(y)]dy.
d

c

y

c

0

For regions like these

use this formula

x � f(y)

d

x

y

c

0

d

x

y

c

0

d

x � g(y)

x � f (y)

x � g(y)

x � f (y)x � g(y)

EXAMPLE 5 Integrating with Respect to y

Find the area of the region in Example 4 by integrating with respect to y.

SOLUTION

We remarked in solving Example 4 that “it appears that no single integral can give the
area of R,” but notice how appearances change when we think of our rectangles being
summed over y. The interval of integration is �0, 2�, and the rectangles run between 
the same two curves on the entire interval. There is no need to split the region 
(Figure 7.11).

We need to solve for x in terms of y in both equations:

y � x � 2 becomes x � y � 2,

y � 	x
 becomes x � y2, y � 0.

continued

x

y

0

1

2 4

2

y � 0

x � y � 2

x � y 2
(4, 2)

�y

(g(y), y)

( f (y), y)

f (y) � g(y)

Figure 7.11 It takes two integrations to
find the area of this region if we integrate
with respect to x. It takes only one if we
integrate with respect to y. (Example 5)
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We must still be careful to subtract the lower number from the higher number when form-
ing the integrand. In this case, the higher numbers are the higher x-values, which are on
the line  x � y � 2 because the line lies to the right of the parabola. So,

Area of R � �2

0

�y � 2 � y2� dy � [�
y
2

2

� � 2y � �
y
3

3

�] 2

0

� �
1
3
0
� units squared.

Now try Exercise 11.

EXAMPLE 6 Making the Choice

Find the area of the region enclosed by the graphs of y � x3 and x � y2 � 2.

SOLUTION

We can produce a graph of the region on a calculator by graphing the three curves
y � x3, y � 	x
�
 2
, and y � �	x
�
 2
 (Figure 7.12). 

This conveniently gives us all of our bounding curves as functions of x. If we integrate
in terms of x, however, we need to split the region at x � a (Figure 7.13).

On the other hand, we can integrate from y � b to  y � d and handle the entire region
at once. We solve the cubic for x in terms of y:

y � x3 becomes x � y1�3.

To find the limits of integration, we solve y1�3 � y2 � 2. It is easy to see that the 
lower limit is b � �1, but a calculator is needed to find that the upper limit
d � 1.793003715. We store this value as D.

The cubic lies to the right of the parabola, so

Area � NINT �y1�3 � �y2 � 2�, y, �1, D� � 4.214939673.

The area is about 4.21. Now try Exercise 27.

Saving Time with Geometry Formulas
Here is yet another way to handle Example 4.

EXAMPLE 7 Using Geometry

Find the area of the region in Example 4 by subtracting the area of the triangular region
from the area under the square root curve.

SOLUTION

Figure 7.14 illustrates the strategy, which enables us to integrate with respect to x with-
out splitting the region.

Area � �4

0

	x
 dx � �
1
2

� �2��2� � �
2
3

� x3�2 ] 4

0

� 2 � �
1
3
0
� units squared

Now try Exercise 35.

The moral behind Examples 4, 5, and 7 is that you often have options for finding the
area of a region, some of which may be easier than others. You can integrate with respect to
x or with respect to y, you can partition the region into subregions, and sometimes you can
even use traditional geometry formulas. Sketch the region first and take a moment to deter-
mine the best way to proceed.

[–3, 3] by [–3, 3]

y1 = x3, y2 = √x + 2, y3 = – √x + 2

(a, b)

(c, d)

Figure 7.12 The region in Example 6.

Figure 7.13 If we integrate with 
respect to x in Example 6, we must split
the region at x � a.

[–3, 3] by [–3, 3]

(c, d)

(a, b)

x

y

0

1

2
2

4

2

y � 0

y � x � 2 2

Area �2

(4, 2)

y � √⎯x

Figure 7.14 The area of the blue region
is the area under the parabola y � 	x

minus the area of the triangle. (Example 7)
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Quick Review 7.2 (For help, go to Sections 1.2 and 5.1.)

In Exercises 1–5, find the area between the x-axis and the graph of
the given function over the given interval.

1. y � sin x over �0, p� 2

2. y � e2x over �0, 1� �
1
2

�(e2 � 1) � 3.195

3. y � sec2 x over ��p�4, p�4� 2

4. y � 4x � x3 over �0, 2� 4

5. y � 	9
 �
 x
2
 over ��3, 3� 9p/2

In Exercises 6–10, find the x- and y-coordinates of all points where
the graphs of the given functions intersect. If the curves never
intersect, write “NI.”

6. y � x2 � 4x and y � x � 6 (6, 12); (�1, 5)

7. y � ex and y � x � 1 (0, 1)

8. y � x2 � px and y � sin x (0, 0); (p, 0)

9. y � �
x2

2
�

x
1

� and y � x3 (�1, �1); (0, 0); (1, 1)

10. y � sin x and y � x3

Section 7.2 Exercises

In Exercises 1–6, find the area of the shaded region analytically.

1. p/2

2. 4p/3

3. 1/12

x

y

1

0 1

(1, 1)x � y3

x � y2

t

y

�–
3

1

–4

0

2

y �     sec2 t1–
2

�–
3

–

y � �4 sin2 t

�–
2

x

y

y � 1

0 �

y � cos2x 

1

4. 4/3

5. 128/15

6. 22/15y

x
0

y � x2

1

1

–2

–1

y � –2x4

x

y

y � 2x2

2

(2, 8)
8

1–2

(–2, 8)

y � x4 � 2x2

–1

NOT TO SCALE

–1

1
x

y

0

1 x � 12y2 � 12y3

x � 2y2 � 2y

(–0.9286, –0.8008); (0, 0); (0.9286, 0.8008)
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396 Chapter 7 Applications of Definite Integrals

In Exercises 7 and 8, use a calculator to find the area of the region 
enclosed by the graphs of the two functions.

7. y � sin x, y � 1 � x2 �1.670 8. y � cos(2x), y � x2 � 2

In Exercises 9 and 10, find the area of the shaded region analytically.

9. 5/6

10. 5/6

In Exercises 11 and 12, find the area enclosed by the graphs of the
two curves by integrating with respect to y.

11. y2 � x � 1, y2 � 3 � x 12. y2 � x � 3, y � 2x

In Exercises 13 and 14, find the total shaded area.

13. 16

14. 8�
1
6

�

In Exercises 15–34, find the area of the regions enclosed by the lines
and curves.

15. y � x2 � 2 and y � 2 10�
2
3

�

16. y � 2x � x2 and y � �3 10�
2
3

�

17. y � 7 � 2x2 and y � x2 � 4 4

x

y

1–1

y � 4 � x 2

2

4

y � �x � 2

(–2, 4)

(3, –5)–5

3–2 2

x

y

2

1–1

(2, 2)
y � �x2 � 3x

–10

2–2

(–2, –10)

y � 2x3 � x2 � 5x

x

y

0 1

1
x � y � 2

y � x 2

2

1
x

y

0

1

y � x

x2
—
4

y �

y � 1

2

18. y � x4 � 4x2 � 4 and y � x2 8

19. y � x 	a
2
�
 x
2
, a � 0, and y � 0 �
2
3

�a3

20. y � 	�x
�
 and 5y � x � 6 1�
2
3

� (3 points of intersection)
(How many intersection points are there?)

21. y � �x2 � 4 � and y � �x2�2� � 4 21�
1
3

�

22. x � y2 and x � y � 2 4�
1
2

�

23. y2 � 4x � 4 and 4x � y � 16 30�
3
8

�

24. x � y2 � 0 and x � 2y2 � 3 4

25. x � y2 � 0 and x � 3y2 � 2 8/3

26. 4x2 � y � 4 and x4 � y � 1 6�
1
1
4
5
�

27. x � y2 � 3 and 4x � y2 � 0 8

28. y � 2 sin x and y � sin 2x, 0 � x � p 4

29. y � 8 cos x and y � sec2 x, �p�3 � x � p�3 6	3


30. y � cos �px�2� and y � 1 � x2 �
4
3

� � �
p

4
� � 0.0601

31. y � sin �px�2� and y � x �
4 �

p

p
� � 0.273

32. y � sec2 x, y � tan2 x, x � �p�4, x � p�4 �
p

2
�

33. x � tan2 y and x � �tan2 y, �p�4 � y � p�4

34. x � 3 sin y 	co
s
y
 and x � 0, 0 � y � p�2 2

In Exercises 35 and 36, find the area of the region by subtracting the
area of a triangular region from the area of a larger region.

35. The region on or above the x-axis bounded by the curves 
y2 � x � 3 and y � 2x. �4.333

36. The region on or above the x-axis bounded by the curves 
y � 4 � x2 and y � 3x. 15�2

37. Find the area of the propeller-shaped region enclosed by 
the curve  x � y3 � 0 and the line  x � y � 0. 1/2

38. Find the area of the region in the first quadrant bounded 
by the line y � x, the line  x � 2, the curve y � 1�x2, and the 
x-axis. 1

39. Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves
y � sin x and  y � cos x. 	2
 � 1 � 0.414

40. Find the area of the region between the curve  y � 3 � x2 and
the line  y � �1 by integrating with respect to (a) x, (b) y. 32/3

41. The region bounded below by the parabola  y � x2 and above by
the line  y � 4 is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line  y � c.

(a) Sketch the region and draw a line  y � c across it that 
looks about right. In terms of c, what are the coordinates of 
the points where the line and parabola intersect? Add them to
your figure. (–	c
, c); (	c
, c)

(b) Find c by integrating with respect to y. (This puts c in the
limits of integration.) �c

0
	y
 dy � �4

c
	y
 dy ⇒ c � 24�3

(c) Find c by integrating with respect to x. (This puts c into the
integrand as well.)

42. Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line  y � x�4, above left by the
curve  y � 1 � 	x
, and above right by the curve y � 2�	x
.

�4.332

�7.542 �7.146

4 � p � 0.858

41. (c) �	c


0
(c � x2) dx � (4 � c)	c
 � �2

	c

(4 � x2) dx ⇒ c � 24�3

11/3
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Section 7.2 Areas in the Plane 397

43. The figure here shows triangle AOC inscribed in the region cut
from the parabola  y � x2 by the line  y � a2.  Find the limit of
the ratio of the area of the triangle to the area of the parabolic
region as a approaches zero. 3/4

44. Suppose the area of the region between the graph of a positive
continuous function f and the x-axis from x � a to x � b is 
4 square units. Find the area between the curves  y � f �x� and
y � 2 f �x� from x � a to x � b. 4

45. Writing to Learn Which of the following integrals, if either,
calculates the area of the shaded region shown here? Give
reasons for your answer. Neither; both are zero

i. �1

�1

�x � ��x�� dx � �1

�1

2x dx

ii. �1

�1

��x � �x�� dx � �1

�1

�2x dx

46. Writing to Learn Is the following statement true, sometimes
true, or never true? The area of the region between the graphs 
of the continuous functions y � f �x� and y � g�x� and the
vertical lines x � a and x � b (a � b) is

�b

a

� f �x� � g�x�� dx.

Give reasons for your answer.

47. Find the area of the propeller-shaped region enclosed between
the graphs of ln 4 � (1/2) � 0.886

y � �
x2

2
�

x
1

� and y � x3.

48. Find the area of the propeller-shaped region enclosed between
the graphs of y � sin x and y � x3. � 0.4303

49. Find the positive value of k such that the area of the region
enclosed between the graph of y � k cos x and the graph of 
y � kx2 is 2. k � 1.8269

x

y

1

1
y � xy � – x

–1

–1

x

y
y � x2

O a

A

–a

C y � a2

(a, a2)(–a, a2)

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

50. True or False The area of the region enclosed by the graph of
y � x2 � 1 and the line y � 10 is 36. Justify your answer.

51. True or False The area of the region in the first quadrant
enclosed by the graphs of y � cos x, y � x, and the y-axis is

given by the definite integral �
0.739

0
(x � cos x) dx. Justify your

answer. False. It is �0.739

0
(cos x � x) dx.

52. Multiple Choice Let R be the region in the first quadrant
bounded by the x-axis, the graph of x � y2 � 2, and the line 
x � 4. Which of the following integrals gives the area of R? A

(A) �	2


0

[4 � (y2 � 2)]dy (B) �	2


0

[(y2 � 2) � 4]dy

(C) �	2


�	2

[4 � (y2 � 2)]dy (D) �	2


�	2

[(y2 � 2) � 4]dy

(E) �4

2

[4 � (y2 � 2)]dy

53. Multiple Choice Which of the following gives the area of the
region between the graphs of y � x2 and y � �x from x � 0 to
x � 3? E

(A) 2 (B) 9/2 (C) 13/2 (D) 13 (E) 27/2

54. Multiple Choice Let R be the shaded region enclosed by the
graphs of y � e�x2

, y � �sin(3x), and the y-axis as shown in the
figure below. Which of the following gives the approximate area
of the region R? B

(A) 1.139 (B) 1.445 (C) 1.869 (D) 2.114 (E) 2.340

55. Multiple Choice Let f and g be the functions given by 
f (x) � ex and g(x) � 1/x. Which of the following gives the area
of the region enclosed by the graphs of f and g between x � 1
and x � 2? A

(A) e2 � e � ln2

(B) ln 2 � e2 � e

(C) e2 � �
1
2

�

(D) e2 � e � �
1
2

�

(E) �
1
e

� � ln2

x

y

2

2

0

– 2

Sometimes; If f (x) � g(x) on (a, b),
then true.

True. 36 is the value of the appropriate integral.
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398 Chapter 7 Applications of Definite Integrals

Exploration
56. Group Activity Area of Ellipse

An ellipse with major axis of length 2a and minor axis of 
length 2b can be coordinatized with its center at the origin and
its major axis horizontal, in which case it is defined by the
equation

�
a
x2

2� � �
b
y2

2� � 1.

(a) Find the equations that define the upper and lower
semiellipses as functions of x.

(b) Write an integral expression that gives the area of the ellipse. 

(c) With your group, use NINT to find the areas of ellipses for
various lengths of a and b.

(d) There is a simple formula for the area of an ellipse with
major axis of length 2a and minor axis of length 2b. Can you
tell what it is from the areas you and your group have found?

(e) Work with your group to write a proof of this area formula
by showing that it is the exact value of the integral expression 
in part (b). 

Extending the Ideas
57. Cavalieri’s Theorem Bonaventura Cavalieri (1598–1647)

discovered that if two plane regions can be arranged to lie over
the same interval of the x-axis in such a way that they have
identical vertical cross sections at every point (see figure), then
the regions have the same area. Show that this theorem is true.

58. Find the area of the region enclosed by the curves

y � �
x2 �

x
1

� and y � mx, 0 � m � 1.

Cross sections have
the same length at
every point in [a, b].

a x b

56. (a) y � �b
1 � �
a
x2

2��
(b) 2�a

�a
b
1 � �

a
x2

2�� dx

(c) Answers may vary.
(d, e) abp

57. Since f (x) � g(x) is the same for each region where f (x) and g(x) represent 
the upper and lower edges, area � �

b

a
[ f (x) � g(x)] dx will be the same for

each.

m � ln (m) � 1
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Volumes

Volume As an Integral
In Section 5.1, Example 3, we estimated the volume of a sphere by partitioning it into thin
slices that were nearly cylindrical and summing the cylinders’ volumes using MRAM.
MRAM sums are Riemann sums, and had we known how at the time, we could have con-
tinued on to express the volume of the sphere as a definite integral. 

Starting the same way, we can now find the volumes of a great many solids by integra-
tion. Suppose we want to find the volume of a solid like the one in Figure 7.15. The cross
section of the solid at each point x in the interval �a, b� is a region R�x� of area A�x�. If A is a
continuous function of x, we can use it to define and calculate the volume of the solid as an
integral in the following way.

We partition �a, b� into subintervals of length Δx and slice the solid, as we would a loaf
of bread, by planes perpendicular to the x-axis at the partition points. The k th slice, the
one between the planes at xk�1 and xk , has approximately the same volume as the cylinder
between the two planes based on the region R�xk � (Figure 7.16).

7.3

What you’ll learn about

• Volume As an Integral

• Square Cross Sections

• Circular Cross Sections

• Cylindrical Shells

• Other Cross Sections

. . . and why 

The techniques of this section
allow us to compute volumes of
certain solids in three dimensions.

Cross-section R(x)
with area A(x)

a

b

x

S

0

Px

x

y

Figure 7.15 The cross section of an 
arbitrary solid at point x.

The volume of the cylinder is

Vk � base area 	 height � A�xk� 	 Δx.

The sum

� Vk � � A�xk� 	 Δx

approximates the volume of the solid.
This is a Riemann sum for A�x� on �a, b�. We expect the approximations to improve as

the norms of the partitions go to zero, so we define their limiting integral to be the volume
of the solid.

0

y

x

Approximating
cylinder based
on R(xk ) has height
Δxk � xk � xk�1

The cylinder’s base
is the region R(xk )
with area A(xk)

Plane at xk

Plane at xk�1

xk�1

xk

NOT TO SCALE

Figure 7.16 Enlarged view of the slice of the solid between the planes at xk�1 and xk.

DEFINITION Volume of a Solid

The volume of a solid of known integrable cross section area A�x� from  x � a to
x � b is the integral of A from a to b,

V � �b

a

A�x� dx.
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400 Chapter 7 Applications of Definite Integrals

To apply the formula in the previous definition, we proceed as follows.

How to Find Volume by the Method of Slicing

1. Sketch the solid and a typical cross section.

2. Find a formula for A�x�.

3. Find the limits of integration.

4. Integrate A�x� to find the volume.

Square Cross Sections
Let us apply the volume formula to a solid with square cross sections.

EXAMPLE 1 A Square-Based Pyramid

A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each
side. Each cross section of the pyramid parallel to the base is a square. Find the volume
of the pyramid.

SOLUTION

We follow the steps for the method of slicing.

1. Sketch. We draw the pyramid with its vertex at the origin and its altitude along the
interval  0 � x � 3. We sketch a typical cross section at a point x between 0 and 3
(Figure 7.17).

2. Find a formula for A�x�. The cross section at x is a square x meters on a side, so

A�x� � x2.

3. Find the limits of integration. The squares go from x � 0 to x � 3.

4. Integrate to find the volume.

V � �3

0

A�x� dx � �3

0

x2 � �
x
3

3

� ]
3

0

� 9 m3

Now try Exercise 3.

Circular Cross Sections
The only thing that changes when the cross sections of a solid are circular is the formula
for A�x�. Many such solids are solids of revolution, as in the next example.

EXAMPLE 2 A Solid of Revolution

The region between the graph of f �x� � 2 � x cos x and the x-axis over the interval
��2, 2� is revolved about the x-axis to generate a solid. Find the volume of the solid.

SOLUTION

Revolving the region (Figure 7.18) about the x-axis generates the vase-shaped solid in
Figure 7.19. The cross section at a typical point x is circular, with radius equal to f �x�. 
Its area is

A�x� � p� f �x��2.
continued

0

y

x (m)

Typical cross-section

3

3

3
x

x

x

[–3, 3] by [–4, 4]

f(x)

x

y

Figure 7.17 A cross section of the pyra-
mid in Example 1.

Figure 7.18 The region in Example 2.

Figure 7.19 The region in Figure 7.18 
is revolved about the x-axis to generate a
solid. A typical cross section is circular,
with radius f (x) � 2 � x cos x. 
(Example 2)
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The volume of the solid is

V � �2

�2

A�x� dx

� NINT �p�2 � x cos x�2, x, �2, 2� � 52.43 units cubed.
Now try Exercise 7.

EXAMPLE 3 Washer Cross Sections

The region in the first quadrant enclosed by the y-axis and the graphs of y � cos x and
y � sin x is revolved about the x-axis to form a solid. Find its volume. 

SOLUTION

The region is shown in Figure 7.20.

We revolve it about the x-axis to generate a solid with a cone-shaped cavity in its center
(Figure 7.21).

[–�/4, �/2] by [–1.5, 1.5]

Figure 7.20 The region in Example 3.

Figure 7.21 The solid generated by revolving the region 
in Figure 7.20 about the x-axis. A typical cross section is 
a washer: a circular region with a circular region cut out of 
its center. (Example 3)

CAUTION!

The area of a washer is pR2 � pr2,

which you can simplify to p(R2 � r2),

but not to p(R � r)2. No matter how

tempting it is to make the latter simplifi-

cation, it’s wrong. Don’t do it.

r

R

Figure 7.22 The area of a washer is 
pR2 � pr2. (Example 3)

This time each cross section perpendicular to the axis of revolution is a washer, a circu-
lar region with a circular region cut from its center. The area of a washer can be found
by subtracting the inner area from the outer area (Figure 7.22).

In our region the cosine curve defines the outer radius, and the curves intersect at 
x � p�4. The volume is

V � �p�4

0

p �cos2 x � sin2 x� dx

� p�p�4

0

cos 2x dx identity: cos2 x � sin2 x � cos 2x

� p[�sin
2
2x
� ] p�4

0

� �
p

2
� units cubed.

Now try Exercise 17.

We could have done the integration in Example 3 with NINT, but we wanted to demon-
strate how a trigonometric identity can be useful under unexpected circumstances in calcu-
lus. The double-angle identity turned a difficult integrand into an easy one and enabled us to
get an exact answer by antidifferentiation.

Cylindrical Shells
There is another way to find volumes of solids of rotation that can be useful when the axis
of revolution is perpendicular to the axis containing the natural interval of integration. In-
stead of summing volumes of thin slices, we sum volumes of thin cylindrical shells that
grow outward from the axis of revolution like tree rings.
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402 Chapter 7 Applications of Definite Integrals

Volume by Cylindrical Shells

The region enclosed by the x-axis and the parabola  y � f �x� � 3x � x2 is revolved
about the line x � �1 to generate the shape of a cake (Figures 7.23, 7.24). (Such a
cake is often called a bundt cake.) What is the volume of the cake?

Integrating with respect to y would be awkward here, as it is not easy to get the
original parabola in terms of y. (Try finding the volume by washers and you will
soon see what we mean.) To integrate with respect to x, you can do the problem by
cylindrical shells, which requires that you cut the cake in a rather unusual way.

1. Instead of cutting the usual wedge shape, cut a cylindrical slice by cutting
straight down all the way around close to the inside hole. Then cut another
cylindrical slice around the enlarged hole, then another, and so on. The radii of
the cylinders gradually increase, and the heights of the cylinders follow the
contour of the parabola: smaller to larger, then back to smaller (Figure 7.25).
Each slice is sitting over a subinterval of the x-axis of length Δx. Its radius is
approximately �1 � xk �. What is its height?

2. If you unroll the cylinder at xk and flatten it out, it becomes (essentially) a rectan-
gular slab with thickness Δx. Show that the volume of the slab is approximately
2p�xk � 1��3xk � xk

2�Δx.

3. � 2p�xk � 1��3xk � xk
2�Δx is a Riemann sum. What is the limit of these Rie-

mann sums as Δx→0?

4. Evaluate the integral you found in step 3 to find the volume of the cake!

EXPLORATION 1

[–6, 4] by [–3, 3]

y

x
3

Axis of
revolution

 x � –1

0

3

y

x
0 xk

yk

Figure 7.23 The graph of the region in
Exploration 1, before revolution.

Figure 7.24 The region in Figure 7.23 is
revolved about the line x � �1 to form a
solid cake. The natural interval of integra-
tion is along the x-axis, perpendicular to
the axis of revolution. (Exploration 1)

Figure 7.25 Cutting the cake into 
thin cylindrical slices, working from the
inside out. Each slice occurs at some xk

between 0 and 3 and has thickness Δx.
(Exploration 1)

EXAMPLE 4 Finding Volumes Using Cylindrical Shells

The region bounded by the curve y � 	x
, the x-axis, and the line x � 4 is revolved
about the x-axis to generate a solid. Find the volume of the solid.

SOLUTION

1. Sketch the region and draw a line segment across it parallel to the axis of revolution
(Figure 7.26). Label the segment’s length (shell height) and distance from the axis of
revolution (shell radius). The width of the segment is the shell thickness dy. (We
drew the shell in Figure 7.27, but you need not do that.)

x

y

0 4

x � y22

y

(4, 2)

4 � y2

Shell height

Shell radiusy

Shell
thickness � dy

In
te

rv
al

 o
f

in
te

gr
at

io
n ⎧

⎪
⎨
⎪
⎩

Shell height
y

y (4, 2)

2

0

ShellS
radius

y � 	x		

x

	

4 � y22

yy

Figure 7.26 The region, shell dimensions, and 
interval of integration in Example 4.

Figure 7.27 The shell swept out by the
line segment in Figure 7.26.
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2. Identify the limits of integration: y runs from 0 to 2.

3. Integrate to find the volume.

V � �2

0

2p( shell
radius)( shell

height) dy

� �2

0

2p�y��4 � y2� dy � 8p

Now try Exercise 33(a).

EXAMPLE 5 Finding Volumes Using Cylindrical Shells

The region bounded by the curves y � 4 � x2, y � x, and x � 0 is revolved about the 
y-axis to form a solid. Use cylindrical shells to find the volume of the solid.

SOLUTION 

1. Sketch the region and draw a line segment across it parallel to the y-axis 
(Figure 7.28). The segment’s length (shell height) is 4 � x2 � x. The distance of the
segment from the axis of revolution (shell radius) is x.

2. Identify the limits of integration: The x-coordinate of the point of intersection of the
curves y � 4 � x2 and y � x in the first quadrant is about 1.562. So x runs from 0 to
1.562.

3. Integrate to find the volume.

V � �1.562

0

2p ( shell
radius)( shell

height) dx

� �1.562

0

2p(x)(4 � x2 � x) dx

� 13.327

Now try Exercise 35.

Other Cross Sections
The method of cross-section slicing can be used to find volumes of a wide variety of un-
usually shaped solids, so long as the cross sections have areas that we can describe with
some formula. Admittedly, it does take a special artistic talent to draw some of these
solids, but a crude picture is usually enough to suggest how to set up the integral.

EXAMPLE 6 A Mathematician’s Paperweight

A mathematician has a paperweight made so that its base is the shape of the region be-
tween the x-axis and one arch of the curve  y � 2 sin x (linear units in inches). Each cross
section cut perpendicular to the x-axis (and hence to the xy-plane) is a semicircle whose
diameter runs from the x-axis to the curve. (Think of the cross section as a semicircular
fin sticking up out of the plane.) Find the volume of the paperweight.

SOLUTION

The paperweight is not easily drawn, but we know what it looks like. Its base is the region
in Figure 7.29, and the cross sections perpendicular to the base are semicircular fins like
those in Figure 7.30.

The semicircle at each point x has

radius � �
2 s

2
in x
� � sin x and area A�x� � �

1
2

�p�sin x�2.
continued

x

y

0 2

4

2

Figure 7.28 The region and the height
of a typical shell in Example 5.

[–1, 3.5] by [–0.8, 2.2]

o πxk

Figure 7.29 The base of the paper-
weight in Example 6. The segment perpen-
dicular to the x-axis at xk is the diameter of
a semicircle that is perpendicular to the
base.

x

0

2
y

y = 2 sin x

�

Figure 7.30 Cross sections perpendicular
to the region in Figure 7.29 are semicircular.
(Example 6)
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404 Chapter 7 Applications of Definite Integrals

The volume of the paperweight is

V � �p
0

A�x� dx

� �
p

2
��p

0

�sin x�2 dx

� �
p

2
� NINT ��sin x�2, x, 0, p�

� �
p

2
� �1.570796327�.

The number in parentheses looks like half of p, an observation that can be confirmed
analytically, and which we support numerically by dividing by p to get 0.5. The vol-
ume of the paperweight is

�
p

2
� • �
p

2
� � �
p

4

2

� � 2.47 in3.
Now try Exercise 39(a).

EXAMPLE 7 Cavalieri’s Volume Theorem

Cavalieri’s volume theorem says that solids with equal altitudes and identical cross section
areas at each height have the same volume (Figure 7.31). This follows immediately from
the definition of volume, because the cross section area function A�x� and the interval 
�a, b� are the same for both solids.

a

b Same volume

Same cross-section
area at every level

Figure 7.31 Cavalieri’s volume theorem: These solids have the same volume. You can illustrate
this yourself with stacks of coins. (Example 7)

Now try Exercise 43.

Bonaventura Cavalieri
(1598—1647)

Cavalieri, a student of

Galileo, discovered that

if two plane regions

can be arranged to lie

over the same interval

of the x-axis in such a

way that they have

identical vertical cross

sections at every point, then the regions

have the same area. This theorem and a

letter of recommendation from Galileo

were enough to win Cavalieri a chair at

the University of Bologna in 1629. The

solid geometry version in Example 7,

which Cavalieri never proved, was

named after him by later geometers.

Cross sections have
the same length at
every point in [a, b].

a x b
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In Exercises 1–10, give a formula for the area of the plane region in
terms of the single variable x.

1. a square with sides of length x x2

2. a square with diagonals of length x x2/2

3. a semicircle of radius x px2/2

4. a semicircle of diameter x px2/8

5. an equilateral triangle with sides of length x (	3
/4)x2

Surface Area

We know how to find the volume of a solid of revolution, but how would we find
the surface area? As before, we partition the solid into thin slices, but now we wish
to form a Riemann sum of approximations to surface areas of slices (rather than of
volumes of slices).

A typical slice has a surface area that can be approximated by 2p • f �x� • Δs,
where Δs is the tiny slant height of the slice. We will see in Section 7.4, when 
we study arc length, that Δs � 	Δx2 �
 Δy2
, and that this can be written as 
Δs � 	1
 �
 �
f 

�x
k�
�2
 Δx.

Thus, the surface area is approximated by the Riemann sum

�
n

k�1

2p f �xk� 	1
 �
 �
f 

�x
k�
�2
 Δx.

1. Write the limit of the Riemann sums as a definite integral from a to b. When
will the limit exist?

2. Use the formula from part 1 to find the surface area of the solid generated by 
revolving a single arch of the curve y � sin x about the x-axis.

3. The region enclosed by the graphs of  y2 � x and x � 4 is revolved about the 
x-axis to form a solid. Find the surface area of the solid.

y = f(x)

ba

y

x

EXPLORATION 2

Quick Review 7.3 (For help, go to Section 1.2.)

6. an isosceles right triangle with legs of length x x2/2

7. an isosceles right triangle with hypotenuse x x2/4

8. an isosceles triangle with two sides of length 2x
and one side of length x (	15
/4)x2

9. a triangle with sides 3x, 4x, and 5x 6x2

10. a regular hexagon with sides of length x (3	3
/2)x2
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In Exercises 1 and 2, find a formula for the area A(x) of the cross
sections of the solid that are perpendicular to the x-axis.

1. The solid lies between planes perpendicular to the x-axis at 
x � �1  and  x � 1. The cross sections perpendicular to 
the x-axis between these planes run from the semicircle  
y � �	1
 �
 x
2
 to the semicircle  y � 	1
 �
 x
2
.

(a) The cross sections are circular disks with diameters in the
xy-plane. p(1 � x2)

(b) The cross sections are squares with bases in the xy-plane.

(c) The cross sections are squares with diagonals in the 
xy-plane. (The length of a square’s diagonal is 	2
 times 
the length of its sides.) 2(1 – x2)

(d) The cross sections are equilateral triangles with bases in the
xy-plane. 	3
(1 � x2)

x

0

x2 � y2 � 1

y

1–1

x

0

x2 � y2 � 1 y

1
–1

x

y

0
1

x2 � y2 � 1
–1

x

0

x2 � y2 � 1
y

1–1

Section 7.3 Exercises

2. The solid lies between planes perpendicular to the x-axis at 
x � 0 and x � 4. The cross sections perpendicular to the x-axis
between these planes run from y � �	x
 to y � 	x
.

(a) The cross sections are circular disks with diameters in the
xy-plane. px

(b) The cross sections are squares with bases in the xy-plane. 4x

(c) The cross sections are squares with diagonals in the 
xy-plane. 2x

(d) The cross sections are equilateral triangles with bases 
in the xy-plane. 	3
x

In Exercises 3–6, find the volume of the solid analytically.

3. The solid lies between planes perpendicular to the x-axis 
at  x � 0  and  x � 4. The cross sections perpendicular to the
axis on the interval 0 � x � 4 are squares whose diagonals run
from y � �	x
 to  y � 	x
. 16

4. The solid lies between planes perpendicular to the x-axis 
at  x � �1  and  x � 1.  The cross sections perpendicular to the
x-axis are circular disks whose diameters run from the parabola
y � x2 to the parabola  y � 2 � x2. 16p/15

5. The solid lies between planes perpendicular to the x-axis at 
x � �1  and  x � 1.  The cross sections perpendicular to the 
x-axis between these planes are squares whose bases run from
the semicircle  y � �	1
 �
 x
2
 to the semicircle y � 	1
 �
 x
2
.

x

0

y � 2 � x2

y

y � x2

2

x

x � y2

y

4

x

x � y2

y

4

4(1 � x2)

16/3

5128_Ch07_pp378-433.qxd  1/13/06  1:14 PM  Page 406



Section 7.3 Volumes 407

6. The solid lies between planes perpendicular to the x-axis 
at  x � �1  and  x � 1.  The cross sections perpendicular 
to the x-axis between these planes are squares whose diagonals
run from the semicircle  y � �	1
 �
 x
2
 to the semicircle 
y � 	1
 �
 x
2
. 8/3

In Exercises 7–10, find the volume of the solid generated by
revolving the shaded region about the given axis.

7. about the x-axis 2p/3 8. about the y-axis 6p

9. about the y-axis 4 � p 10. about the x-axis p2/16

In Exercises 11–20, find the volume of the solid generated by
revolving the region bounded by the lines and curves about the 
x-axis.

11. y � x2, y � 0, x � 2 12. y � x3, y � 0, x � 2

13. y � 	9
 �
 x
2
, y � 0 14. y � x � x2, y � 0 p/30

15. y � x, y � 1, x � 0 2p/3 16. y � 2x, y � x, x � 1 p

17. y � x2 � 1, y � x � 3 18. y � 4 � x2, y � 2 � x

19. y � sec x, y � 	2
, �p�4 � x � p�4 p2 � 2p

20. y � �	x
, y � �2, x � 0 8p

In Exercises 21 and 22, find the volume of the solid generated by
revolving the region about the given line.

21. the region in the first quadrant bounded above by the line 
y � 	2
, below by the curve y � sec x tan x, and on the left by
the y-axis, about the line y � 	2
 2.301

22. the region in the first quadrant bounded above by the line y � 2,
below by the curve y � 2 sin x, 0 � x � p�2, and on the left by
the y-axis, about the line y � 2 p(3p � 8)

In Exercises 23–28, find the volume of the solid generated by
revolving the region about the y-axis.

23. the region enclosed by  x � 	5
y2, x � 0, y � �1, y � 1 2p

24. the region enclosed by  x � y3�2, x � 0, y � 2 4p

25. the region enclosed by the triangle with vertices �1, 0�, �2, 1�,
and �1, 1� 4p/3

26. the region enclosed by the triangle with vertices �0, 1�, �1, 0�,
and �1, 1� 2p/3

x

y

0

y � sin x cos x

x

y

0

1
x � tan �–

4
y⎛

⎝
⎛
⎝

x

y

0 3

2
x �3y/2

x

y

0 2

1

x � 2y � 2

27. the region in the first quadrant bounded above by the parabola
y � x2, below by the x-axis, and on the right by the line x � 2

28. the region bounded above by the curve y � 	x
 and below by
the line y � x 2p/15

Group Activity In Exercises 29–32, find the volume of the solid
described.

29. Find the volume of the solid generated by revolving the region
bounded by y � 	x
 and the lines y � 2 and x � 0 about

(a) the x-axis. 8p (b) the y-axis. 32p/5

(c) the line y � 2. 8p/3 (d) the line x � 4. 224p/15

30. Find the volume of the solid generated by revolving the
triangular region bounded by the lines y � 2x, y � 0, and 
x � 1 about

(a) the line  x � 1. 2p/3 (b) the line  x � 2. 8p/3

31. Find the volume of the solid generated by revolving the region
bounded by the parabola  y � x2 and the line y � 1 about

(a) the line  y � 1. 16p/15 (b) the line  y � 2. 56p/15

(c) the line  y � �1. 64p/15

32. By integration, find the volume of the solid generated by
revolving the triangular region with vertices �0, 0�, �b, 0�,
�0, h� about

(a) the x-axis. (p/3)bh2 (b) the y-axis. (p/3)b2h

In Exercises 33 and 34, use the cylindrical shell method to find the
volume of the solid generated by revolving the shaded region about
the indicated axis.

33. (a) the x-axis 6p/5 (b) the line  y � 1 4p/5

(c) the line  y � 8�5 2p (d) the line  y � �2�5 2p

34. (a) the x-axis 8p/3 (b) the line  y � 2 8p/5

(c) the line y � 5 8p (d) the line  y � �5�8 4p

x

y

x �

2

(2, 2)

10

y2
—
2

2
x �

y4
—
4

y2
—
2

�

x

y

0

1 x � 12(y2 � y3)

1

32p/5
128p/7

36p

117p/5
108p/5

8p
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408 Chapter 7 Applications of Definite Integrals

In Exercises 35–38, use the cylindrical shell method to find the
volume of the solid generated by revolving the region bounded by
the curves about the y-axis.

35. y � x, y � �x�2, x � 2 8p

36. y � x2, y � 2 � x, x � 0, for  x � 0 5p/6

37. y � 	x
, y � 0, x � 4 128p/5

38. y � 2x � 1, y � 	x
, x � 0 7p/15

In Exercises 39–42, find the volume of the solid analytically.

39. The base of a solid is the region between the curve 
y � 2 	si
n
 x
 and the interval �0, p� on the x-axis. The 
cross sections perpendicular to the x-axis are

(a) equilateral triangles with bases running from the x-axis to
the curve as shown in the figure. 2	3


(b) squares with bases running from the x-axis to the curve. 8

40. The solid lies between planes perpendicular to the x-axis at
x � �p�3 and x � p�3. The cross sections perpendicular 
to the x-axis are

(a) circular disks with diameters running from the curve 
y � tan x to the curve  y � sec x. p	3
 � (p2/6)

(b) squares whose bases run from the curve  y � tan x to the
curve  y � sec x. 4	3
 � (2p/3)

41. The solid lies between planes perpendicular to the y-axis 
at  y � 0  and  y � 2.  The cross sections perpendicular to the 
y-axis are circular disks with diameters running from the 
y-axis to the parabola  x � 	5
y2. 8p

42. The base of the solid is the disk  x2 � y2 � 1.  The cross
sections by planes perpendicular to the y-axis between 
y � �1  and  y � 1  are isosceles right triangles with one 
leg in the disk. 8/3

x

y

0
1

x2 � y2 � 1

x

y

0

y � 2

 2

√⎯⎯⎯⎯sin x �

43. Writing to Learn A solid lies between planes perpendicular
to the x-axis at  x � 0  and  x � 12. The cross sections 
by planes perpendicular to the x-axis are circular disks whose
diameters run from the line  y � x �2 to the line y � x as
shown in the figure. Explain why the solid has the same volume
as a right circular cone with base radius 3 and height 12.

44. A Twisted Solid A square of side length s lies in a plane
perpendicular to a line L. One vertex of the square lies on L.
As this square moves a distance h along L, the square turns one
revolution about L to generate a corkscrew-like column with
square cross sections.

(a) Find the volume of the column. s2h

(b) Writing to Learn What will the volume be if the square
turns twice instead of once? Give reasons for your answer. s2h

45. Find the volume of the solid generated by revolving the region
in the first quadrant bounded by  y � x3 and y � 4x about

(a) the x-axis, 512p/21
(b) the line y � 8. 832p/21

46. Find the volume of the solid generated by revolving the region
bounded by y � 2x � x2 and  y � x about 

(a) the y-axis, p/6
(b) the line  x � 1. p/6

47. The region in the first quadrant that is bounded above by the
curve y � 1�	x
, on the left by the line x � 1�4, and below 
by the line y � 1 is revolved about the y-axis to generate a
solid. Find the volume of the solid by (a) the washer method and
(b) the cylindrical shell method. (a) 11p/48 (b) 11p/48

48.
�sin x��x, 0 � x � p

Let f �x� � {1, x � 0.

(a) Show that  x f �x� � sin x, 0 � x � p.

(b) Find the volume of the solid generated by revolving the
shaded region about the y-axis. 4p

x

y

0 �

1

y �
⎧
⎨
⎩

sin x——x , 0 	 x     � ≤

1, x � 0

x12

y

0

y � x

y �
2
x

The volumes are
equal by Cavalieri’s
Theorem.
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49. Designing a Plumb Bob Having been asked to design 
a brass plumb bob that will weigh in the neighborhood of 190 g,
you decide to shape it like the solid of revolution shown here.

59. y � x2, 0 � x � 2; x-axis �53.226

60. y � 3x � x2, 0 � x � 3; x-axis �44.877

61. y � 	2
x
�
 x
2
, 0.5 � x � 1.5; x-axis �6.283

62. y � 	x
�
 1
, 1 � x � 5; x-axis �51.313

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

63. True or False The volume of a solid of a known integrable 

cross section area A(x) from x � a to x � b is �
b

a
A(x) dx. Justify

your answer. True, by definition.

64. True or False If the region enclosed by the y-axis, the line
y � 2, and the curve y � 	x
 is revolved about the y-axis, the 

volume of the solid is given by the definite integral �
2

0
py2 dy.

Justify your answer. False. The volume is given by �2

0
py4 dy.

65. Multiple Choice The base of a solid S is the region enclosed
by the graph of y � ln x, the line x � e, and the x-axis. If the
cross sections of S perpendicular to the x-axis are squares,
which of the following gives the best approximation of the 
volume of S? A

(A) 0.718 (B) 1.718 (C) 2.718 (D) 3.171 (E) 7.388

66. Multiple Choice Let R be the region in the first quadrant
bounded by the graph of y � 8 � x3/2, the x-axis, and the y-axis.
Which of the following gives the best approximation of the 
volume of the solid generated when R is revolved about the 
x-axis? E

(A) 60.3 (B) 115.2 (C) 225.4 (D) 319.7 (E) 361.9

67. Multiple Choice Let R be the region enclosed by the graph of
y � x2, the line x � 4, and the x-axis. Which of the following
gives the best approximation of the volume of the solid generated
when R is revolved about the y-axis? B

(A) 64p (B) 128p (C) 256p (D) 360 (E) 512

68. Multiple Choice Let R be the region enclosed by the graphs
of y � e�x, y � ex, and x � 1. Which of the following gives the
volume of the solid generated when R is revolved about the 
x-axis? D

(A) �1

0

(ex � e�x) dx

(B) �1

0

(e2x � e�2x) dx

(C) �1

0

(ex � e�x)2 dx

(D) p�1

0

(e2x � e�2x) dx

(E) p�1

0

(ex � e�x)2 dx

(a) Find the plumb bob’s volume. 36p/5 cm3

(b) If you specify a brass that weighs 8.5 g�cm3, how much will
the plumb bob weigh to the nearest gram? 192.3 g

50. Volume of a Bowl A bowl has a shape that can be generated
by revolving the graph of  y � x2�2 between y � 0  and  y � 5
about the y-axis.

(a) Find the volume of the bowl. 25p

(b) If we fill the bowl with water at a constant rate of 
3 cubic units per second, how fast will the water level in 
the bowl be rising when the water is 4 units deep? 3/(8p)

51. The Classical Bead Problem A round hole is drilled
through the center of a spherical solid of radius r. The resulting
cylindrical hole has height 4 cm.

(a) What is the volume of the solid that remains? 32p/3

(b) What is unusual about the answer?

52. Writing to Learn Explain how you could estimate the 
volume of a solid of revolution by measuring the shadow cast on 
a table parallel to its axis of revolution by a light shining directly
above it. See page 410.

53. Same Volume about Each Axis The region in the first
quadrant enclosed between the graph of y � ax � x2 and the 
x-axis generates the same volume whether it is revolved about
the x-axis or the y-axis. Find the value of a. 5

54. (Continuation of Exploration 2) Let  x � g�y� � 0 have a
continuous first derivative on �c, d �. Show that the area of the
surface generated by revolving the curve  x � g�y� about the 
y-axis is See page 410.

S � �d

c

2p g�y� 	1
 �
 �
g

�
y�
�2
 dy.

In Exercises 55–62, find the area of the surface generated by
revolving the curve about the indicated axis.

55. x � 	y
, 0 � y � 2; y-axis �13.614

56. x � y3�3, 0 � y � 1; y-axis �0.638

57. x � y1�2 � �1�3�3�2, 1 � y � 3; y-axis �16.110

58. x � 	2
y
�
 1
, �5�8� � y � 1; y-axis �2.999

0
6

x (cm

y (cm)
y � �36 � x2x

12

The answer is independent of r.
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Explorations
69. Max-Min The arch y � sin x, 0 � x � p, is revolved about the

line y � c, 0 � c � 1, to generate the solid in the figure.

(a) Find the value of c that minimizes the volume of the solid.
What is the minimum volume? �p

2
�, �

p2

2
� 8
�

(b) What value of c in �0, 1� maximizes the volume of 
the solid? 0

(c) Writing to Learn Graph the solid’s volume as a function
of c, first for  0 � c � 1 and then on a larger domain. What
happens to the volume of the solid as c moves away from �0, 1�?
Does this make sense physically? Give reasons for your answers.

70. A Vase We wish to estimate the volume of a flower vase using
only a calculator, a string, and a ruler. We measure the height of the
vase to be 6 inches. We then use the string and the ruler to find
circumferences of the vase (in inches) at half-inch intervals. (We list
them from the top down to correspond with the picture of the vase.)

(a) Find the areas of the cross sections that correspond to the
given circumferences. 2.3, 1.6, 1.5, 2.1, 3.2, 4.8, 7.0, 9.3, 10.7,

(b) Express the volume of the vase as an integral with respect to
y over the interval �0, 6�. �

4
1
p
��6

0
C(y)2 dy

(c) Approximate the integral using the Trapezoidal Rule with 
n � 12. �34.7 in3

Circumferences

5.4 10.8
4.5 11.6
4.4 11.6
5.1 10.8
6.3 9.0
7.8 6.3
9.4

6

0

y

c

0

x

y � sin x

y � c

�

Extending the Ideas
71. Volume of a Hemisphere Derive the formula V � �2 �3� pR3

for the volume of a hemisphere of radius R by comparing its cross
sections with the cross sections of a solid right circular cylinder of
radius R and height R from which a solid right circular cone of base
radius R and height R has been removed as suggested by the figure.

72. Volume of a Torus The disk  x2 � y2 � a2 is revolved about
the line x � b �b � a� to generate a solid shaped like a doughnut,
called a torus. Find its volume. (Hint: �a

�a �a�2��� y�2� dy � pa2�2,
since it is the area of a semicircle of radius a.) 2a2bp2

73. Filling a Bowl

(a) Volume A hemispherical bowl of radius a contains water to
a depth h. Find the volume of water in the bowl. ph2(3a � h)/3

(b) Related Rates Water runs into a sunken concrete
hemispherical bowl of radius 5 m at a rate of 0.2 m3�sec. How
fast is the water level in the bowl rising when the water is 4 m
deep? 1/(120p) m/sec

74. Consistency of Volume Definitions The volume formulas
in calculus are consistent with the standard formulas from
geometry in the sense that they agree on objects to which both
apply.

(a) As a case in point, show that if you revolve the region
enclosed by the semicircle  y � �a�2��� x�2� and the x-axis about
the x-axis to generate a solid sphere, the calculus formula for
volume at the beginning of the section will give  �4�3�pa3 for
the volume just as it should.

(b) Use calculus to find the volume of a right circular cone of
height h and base radius r.

R

√R2   h2

Rh

h

h
–

52. Partition the appropriate interval on the axis of revolution and measure the
radius r(x) of the shadow region at these points. Then use an approxima-

tion such as the trapezoidal rule to estimate the integral �
b

a
pr2(x) dx.

54. For a tiny horizontal slice,
slant height � �s � �(�x)2 �� (�y)2� � �1 � (g�	(y))2� �y. So the 
surface area is approximated by the Riemann sum 

�
n

k�1
2p g(yk)�1 � (g�	(y))2� �y. 

The limit of that is the integral.

V ��
p(2c2p �

2
8c � p)
�

Volume → ∞

10.7, 9.3, 6.4, 3.2

71. Hemisphere cross sectional area:
p(�R2 � h�2�)2 � A1

Right circular cylinder with cone removed cross sectional area:
pR2 � ph2 � A2 

Since A1 � A2, the two volumes are equal by Cavalieri’s theorem. 
Thus,
volume of hemisphere � volume of cylinder � volume of cone

� pR3 � �
1
3

�pR3 � �
2
3

�pR3.

74. (a) A cross section has radius r � �a2 � x�2� and 
area A(x) � pr2 � p(a2 � x2).

V � �a

�a
p(a2 � x2) � �

4
3

�pa3

(b) A cross section has radius x � r	1 � �
h
y

�
 and

area A(y) � px2 � pr2	1 � �
2
h
y
� � �

y
h2

2

�
.

V � �h

0
pr2	1 � �

2
h
y
� � �

y
h

2

�
dy � �
1
3

�pr2h
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Section 7.3 Volumes 411

Quick Quiz for AP* Preparation: Sections 7.1–7.3

You may use a graphing calculator to solve the following 
problems.

1. Multiple Choice The base of a solid is the region in the first
quadrant bounded by the x-axis, the graph of y � sin�1 x, and the
vertical line x � 1. For this solid, each cross section perpendicu-
lar to the x-axis is a square. What is the volume? C

(A) 0.117 (B) 0.285 (C) 0.467 (D) 0.571 (E) 1.571

2. Multiple Choice Let R be the region in the first quadrant
bounded by the graph of y � 3x � x2 and the x-axis. A solid is
generated when R is revolved about the vertical line x � �1. 
Set up, but do not evaluate, the definite integral that gives the
volume of this solid. A

(A) �3

0

2p(x � 1)(3x � x2) dx

(B) �3

�1

2p(x � 1)(3x � x2) dx

(C) �3

0

2p(x)(3x � x2) dx

(D) �3

0

2p(3x � x2)2 dx

(E) �3

0

(3x � x2) dx

3. Multiple Choice A developing country consumes oil at a rate
given by r(t) � 20e0.2t million barrels per year, where t is time
measured in years, for 0 � t � 10. Which of the following 
expressions gives the amount of oil consumed by the country
during the time interval 0 � t � 10? D

(A) r(10)

(B) r(10) � r(0)

(C) �10

0

r
(t) dt

(D) �10

0

r(t) dt

(E) 10 
 r(10)

4. Free Response Let R be the region bounded by the graphs of
y � 	x
, y � e�x, and the y-axis.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved
about the horizontal line y � �1.

(c) The region R is the base of a solid. For this solid, each cross
section perpendicular to the x-axis is a semicircle whose diame-
ter runs from the graph of y � 	x
 to the graph of y � e�x. Find
the volume of this solid.

4. (a) The two graphs intersect where 	x
 � e–x, which a calculator shows to
be x � 0.42630275. Store this value as A.

The area of R is �A

0
(e–x � 	x
) dx � 0.162.

(b) Volume � �A

0
p((e–x � 1)2 � (	x
 � 1)2) dx � 1.631.

(c) Volume � �A

0
�
1
2

�p��e
�x �

2
	x


��
2

dx � 0.035.
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412 Chapter 7 Applications of Definite Integrals

Lengths of Curves

A Sine Wave
How long is a sine wave (Figure 7.32)?

The usual meaning of wavelength refers to the fundamental period, which for  y � sin x
is 2p. But how long is the curve itself? If you straightened it out like a piece of string
along the positive x-axis with one end at 0, where would the other end be?

EXAMPLE 1 The Length of a Sine Wave

What is the length of the curve  y � sin x from  x � 0  to  x � 2p?

SOLUTION

We answer this question with integration, following our usual plan of breaking the whole
into measurable parts. We partition �0, 2p� into intervals so short that the pieces of curve
(call them “arcs”) lying directly above the intervals are nearly straight. That way, each
arc is nearly the same as the line segment joining its two ends and we can take the length
of the segment as an approximation to the length of the arc.

Figure 7.33 shows the segment approximating the arc above the subinterval �xk�1, xk�.
The length of the segment is 	Δxk

2 �
 Δyk
2
. The sum

�	Δxk
2 �
 Δyk

2


over the entire partition approximates the length of the curve. All we need now is to find
the limit of this sum as the norms of the partitions go to zero. That’s the usual plan, but
this time there is a problem. Do you see it?

The problem is that the sums as written are not Riemann sums. They do not have the
form  � f �ck� Δx. We can rewrite them as Riemann sums if we multiply and divide each
square root by Δxk .

�	�
xk
2
�
 �
yk
2
 � ��
	��
xk
�

�

2

x
�

k

�
�
yk
�2

� �xk

� �
�1 � (�
�
�y

x
k

k
�)2

�xk

This is better, but we still need to write the last square root as a function evaluated at
some ck in the k th subinterval. For this, we call on the Mean Value Theorem for differ-
entiable functions (Section 4.2), which says that since sin x is continuous on �xk�1, xk�
and is differentiable on �xk�1, xk� there is a point ck in �xk�1, xk� at which  Δyk �Δxk �
sin
 ck (Figure 7.34). That gives us

�	1
 �
 �
si
n


c
k �
2
 Δxk ,

which is a Riemann sum.

Now we take the limit as the norms of the subdivisions go to zero and find that the
length of one wave of the sine function is

�2p

0

	1
 �
 �
si
n


x�
2
 dx � �2p

0

	1
 �
 c
o
s2
 x
 dx � 7.64. Using NINT

How close was your estimate? Now try Exercise 9.

7.4

What you’ll learn about

• A Sine Wave

• Length of a Smooth Curve

• Vertical Tangents, Corners, and
Cusps

. . . and why 

The length of a smooth curve can
be found using a definite integral.

Group Exploration

Later in this section we will use an inte-

gral to find the length of the sine wave

with great precision. But there are ways

to get good approximations without 

integrating. Take five minutes to come

up with a written estimate of the curve’s

length. No fair looking ahead.

[0, 2�] by [–2, 2]

P

xk–1O xk

�xk

�xk �yk

�yk

Q
+

x

y

y = sin x
√ 2 2

Figure 7.32 One wave of a sine curve
has to be longer than 2p.

Figure 7.33 The line segment approxi-
mating the arc PQ of the sine curve above
the subinterval �xk�1, xk�. (Example 1)
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Section 7.4 Lengths of Curves 413

Length of a Smooth Curve
We are almost ready to define the length of a curve as a definite integral, using the proce-
dure of Example 1. We first call attention to two properties of the sine function that came
into play along the way.

We obviously used differentiability when we invoked the Mean Value Theorem to re-
place Δyk �Δxk by sin
�ck� for some ck in the interval �xk�1, xk�. Less obviously, we used  

the continuity of the derivative of sine in passing from � 	1
 �
 �
si
n


�c
k �
�2
 Δxk to the 
Riemann integral. The requirement for finding the length of a curve by this method, then, is
that the function have a continuous first derivative. We call this property smoothness. A
function with a continuous first derivative is smooth and its graph is a smooth curve.

Let us review the process, this time with a general smooth function f �x�. Suppose the
graph of f begins at the point �a, c� and ends at �b, d�, as shown in Figure 7.35. We partition
the interval a � x � b into subintervals so short that the arcs of the curve above them are
nearly straight. The length of the segment approximating the arc above the subinterval 

�xk�1, xk� is 	Δxk
2 �
 Δyk

2
. The sum � 	Δxk
2 �
 Δyk

2
 approximates the length of the curve. We
apply the Mean Value Theorem to f on each subinterval to rewrite the sum as a Riemann sum,

�	�
xk
2
�
 �
yk
2
 � �
�1 � (�
�
�y

x
k

k
�)2

�xk

� �	1
 �
 �
f 

�c
k �
�2
 �xk.    

Passing to the limit as the norms of the subdivisions go to zero gives the length of the curve as

L � �b

a

	1
 �
 �
f 

�x
�
�2
 dx � �b

a

�1 � ( �

d
d

y
x
�)2

dx.

We could as easily have transformed � 	Δxk
2 �
 Δyk

2
 into a Riemann sum by dividing
and multiplying by Δyk , giving a formula that involves x as a function of y �say, x � g�y��
on the interval �c, d �:

L � � �
	��
xk
�

�

2

y
�

k

�
�
yk
�2

� �yk � �
�1 � (�

�
�

y
x

k

k� )2

�yk

� � 	1
 �
 �
g

�
ck
��
2
 �yk .

The limit of these sums, as the norms of the subdivisions go to zero, gives another reason-
able way to calculate the curve’s length,

L � �d

c

	1
 �
 �
g

�
y�
�2
 dy � �d

c

�1 � ( �

d
d

x
y
�)2

dy.

Putting these two formulas together, we have the following definition for the length of a
smooth curve.

For some ck

in (yk�1, yk)

For some point
ck in (xk�1

, xk)

P

xk–1 ck xk

�xk

�yk

Q

Slope  sin' (ck)

Figure 7.34 The portion of the sine
curve above �xk�1, xk�. At some ck in the
interval, sin
 �ck� � �yk ��xk , the slope of
segment PQ. (Example 1)

x

y

y � f(x)

0

(a, c)

(b, d)

c

d

a

√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(�xk)2 � (�yk)2

bxkxk – 1

�xk

�yk

Q

P

Figure 7.35 The graph of f, approximated
by line segments.

DEFINITION Arc Length: Length of a Smooth Curve

If a smooth curve begins at �a, c� and ends at �b, d �, a � b, c � d, then the length
(arc length) of the curve is 

L � �b

a

�1 � ( �

d
d

y
x
�)2

dx if y is a smooth function of x on �a, b�;

L � �d

c

�1 � ( �

d
d

x
y
� )2

dy if x is a smooth function of y on �c, d �.
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414 Chapter 7 Applications of Definite Integrals

EXAMPLE 2 Applying the Definition

Find the exact length of the curve

y � �
4	

3
2


�x3�2 � 1 for 0 � x � 1.

SOLUTION

�
d
d

y
x
� � �

4	
3

2

� • �

3
2

� x1�2 � 2	2
 x1�2,

which is continuous on �0, 1�. Therefore,

L � �1

0

�1 � ( �

d
d

y
x
�)2

dx

� �1

0

�1 � (2	2
x1�2 )2

dx

� �1

0

	1
 �
 8
x
 dx

� �
2
3

� • �
1
8

� �1 � 8x�3�2] 1

0

� �
1
6
3
� .

Now try Exercise 11.

We asked for an exact length in Example 2 to take advantage of the rare opportunity it
afforded of taking the antiderivative of an arc length integrand. When you add 1 to the
square of the derivative of an arbitrary smooth function and then take the square root of that
sum, the result is rarely antidifferentiable by reasonable methods. We know a few more
functions that give “nice” integrands, but we are saving those for the exercises.

Vertical Tangents, Corners, and Cusps
Sometimes a curve has a vertical tangent, corner, or cusp where the derivative we need to
work with is undefined. We can sometimes get around such a difficulty in ways illustrated by
the following examples.

EXAMPLE 3 A Vertical Tangent

Find the length of the curve  y � x1�3 between ��8, �2� and �8, 2�.

SOLUTION

The derivative

�
d
d

y
x
� � �

1
3

� x�2�3 � �
3x

1
2�3�

is not defined at  x � 0.  Graphically, there is a vertical tangent at  x � 0 where the de-
rivative becomes infinite (Figure 7.36). If we change to x as a function of y, the tangent
at the origin will be horizontal (Figure 7.37) and the derivative will be zero instead of
undefined. Solving  y � x1�3 for x gives  x � y3, and we have

L � �2

�2

�1 � ( �

d
d

x
y
� )2

dy � �2

�2

	1
 �
 �
3
y
2�
2
 dy � 17.26. Using NINT

Now try Exercise 25.

(–8, –2)

(8, 2)

x

y

(2, 8)

y

x

(–2, –8)

Figure 7.36 The graph of y � x1�3 has 
a vertical tangent line at the origin where
dy�dx does not exist. (Example 3)

Figure 7.37 The curve in Figure 7.36 
plotted with x as a function of y. The 
tangent at the origin is now horizontal.
(Example 3)
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Section 7.4 Lengths of Curves 415

What happens if you fail to notice that dy�dx is undefined at x � 0 and ask your calcu-
lator to compute

NINT (
�1 � ( �1�3� x�2�3 )2

, x, �8, 8)?

This actually depends on your calculator. If, in the process of its calculations, it tries to
evaluate the function at x � 0, then some sort of domain error will result. If it tries to find
convergent Riemann sums near x � 0, it might get into a long, futile loop of computa-
tions that you will have to interrupt. Or it might actually produce an answer—in which
case you hope it would be sufficiently bizarre for you to realize that it should not be
trusted.

EXAMPLE 4 Getting Around a Corner

Find the length of the curve  y � x2 � 4�x� � x from  x � �4  to  x � 4.

SOLUTION

We should always be alert for abrupt slope changes when absolute value is involved. We
graph the function to check (Figure 7.38).

There is clearly a corner at  x � 0  where neither dy�dx nor dx�dy can exist. To find the
length, we split the curve at  x � 0  to write the function without absolute values:

x2 � 3x if x � 0,
x2 � 4�x� � x � {x2 � 5x if x � 0.

Then,

L � �0

�4

	1
 �
 �
2
x
�
 3
�2
 dx � �4

0

	1
 �
 �
2
x
�
 5
�2
 dx

� 19.56. By NINT

Now try Exercise 27.

Finally, cusps are handled the same way corners are: split the curve into smooth pieces
and add the lengths of those pieces.

Quick Review 7.4 (For help, go to Sections 1.3 and 3.2.)

In Exercises 1–5, simplify the function.

1. 	1
 �
 2
x
�
 x
2
 on �1, 5� x � 1

2. 
1� �� x� �� �
x�4

2

�� on ��3, �1� �
2 �

2
x

�

3. 	1
 �
 �
ta
n
 x
�2
 on �0, p�3� sec x

4. 	1
 �
 �
x
�4
 �
 1
�x
�2
 on �4, 12� �
x2

4
�

x
4

�

5. 	1
 �
 c
o
s
2
x
 on �0, p�2� 	2
 cos x

In Exercises 6–10, identify all values of x for which the function fails
to be differentiable.

6. f �x� � �x � 4 � 4

7. f �x� � 5x2�3 0

8. f �x� � 	5 x
�
 3
 �3

9. f �x� � 	x
2
�
 4
x
�
 4
 2

10. f �x� � 1 � 	3 si
n
 x
 kp, k any integer

[–5, 5] by [–7, 5]

Figure 7.38 The graph of 

y � x2 � 4�x � � x, �4 � x � 4,

has a corner at x � 0 where neither dy/dx
nor dx/dy exists. We find the lengths of the
two smooth pieces and add them together.
(Example 4)
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416 Chapter 7 Applications of Definite Integrals

Section 7.4 Exercises

In Exercises 1–10,

(a) set up an integral for the length of the curve;

(b) graph the curve to see what it looks like;

(c) use NINT to find the length of the curve.

1. y � x2, �1 � x � 2

2. y � tan x, �p�3 � x � 0

3. x � sin y, 0 � y � p

4. x � 	1
 �
 y
2
, �1�2 � y � 1�2

5. y2 � 2y � 2x � 1, from  ��1, �1� to  �7, 3�

6. y � sin x � x cos x, 0 � x � p

7. y � �
0

x
tan t dt, 0 � x � p�6

8. x � �
0

y 	se
c2
 t
 �
 1
 dt, �p�3 � y � p�4

9. y � sec x, �p�3 � x � p�3

10. y � �ex � e�x��2, �3 � x � 3

In Exercises 11–18, find the exact length of the curve analytically by
antidifferentiation. You will need to simplify the integrand
algebraically before finding an antiderivative. 

11. y � �1�3��x2 � 2�3�2 from  x � 0  to  x � 3 12

12. y � x3�2 from  x � 0  to  x � 4 (80	10
 � 8)/27

13. x � �y3�3� � 1��4y� from  y � 1  to  y � 3
[Hint: 1 � �dx�dy�2 is a perfect square.] 53/6

14. x � �y4�4� � 1��8y2� from  y � 1  to  y � 2
[Hint: 1 � �dx�dy�2 is a perfect square.] 123/32

15. x � �y3�6� � 1��2y� from  y � 1  to  y � 2
[Hint: 1 � �dx�dy�2 is a perfect square.] 17/12

16. y � �x3�3� � x2 � x � 1��4x � 4�, 0 � x � 2 53/6

17. x � �
0

y 	se
c4
 t
 �
 1
 dt, �p�4 � y � p�4 2

18. y � �x

�2
	3
t 4
 �
 1
 dt, �2 � x � �1 7	3
/3

19. (a) Group Activity Find a curve through the point �1, 1�
whose length integral is y � 	x


L � � 4

1

1� �� �

4�1
x
�� dx.

(b) Writing to Learn How many such curves are there? Give
reasons for your answer.

20. (a) Group Activity Find a curve through the point �0, 1�
whose length integral is y � 1/(1 � x)

L � �2

1

1� �� �

y�1
4�� dy.

(b) Writing to Learn How many such curves are there? Give
reasons for your answer.

21. Find the length of the curve

y � �x

0

	co
s
2
t
 dt

from  x � 0  to  x � p�4. 1

22. The Length of an Astroid The graph of the equation 
x2�3 � y2�3 � 1 is one of the family of curves called astroids
(not “asteroids”) because of their starlike appearance (see figure).
Find the length of this particular astroid by finding the length of
half the first quadrant portion, y � �1 � x2�3�3�2, 	2
�4 � x � 1,
and multiplying by 8. 6

23. Fabricating Metal Sheets Your metal fabrication company is
bidding for a contract to make sheets of corrugated steel roofing
like the one shown here. The cross sections of the corrugated
sheets are to conform to the curve

y � sin (�
3
2
p

0
�x), 0 � x � 20 in.

If the roofing is to be stamped from flat sheets by a process that
does not stretch the material, how wide should the original
material be? Give your answer to two decimal places.

24. Tunnel Construction Your engineering firm is bidding for
the contract to construct the tunnel shown on the next page. The
tunnel is 300 ft long and 50 ft wide at the base. The cross
section is shaped like one arch of the curve y � 25 cos �px �50�.
Upon completion, the tunnel’s inside surface (excluding the
roadway) will be treated with a waterproof sealer that costs
$1.75 per square foot to apply. How much will it cost to apply
the sealer? $38,422

Original sheet Corrugated sheet

20 in.

20 (in.)

O

x

y

y � sin       x

Original sheet Corrugated sheet

20 in.

20

O

x

y

3�—–
20

x

y

0

1

1

x2/3 � y2/3 � 1

–1

–1

19. (b) Only one. We know the derivative of the function and the value of the
function at one value of x.

20. (b) Only one. We know the derivative of the function and the value of the
function at one value of x.

�21.07 inches
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Section 7.4 Lengths of Curves 417

In Exercises 25 and 26, find the length of the curve.

25. f �x� � x1�3 � x2�3, 0 � x � 2 �3.6142

26. f �x� � �
4
x
x2

�

�

1
1

�, � �
1
2

� � x � 1 �2.1089

In Exercises 27–29, find the length of the nonsmooth curve.

27. y � x3 � 5�x � from  x � �2  to  x � 1 �13.132

28. �x� � �y� � 1 �1.623

29. y � �4 x� from  x � 0  to  x � 16 �16.647

30. Writing to Learn Explain geometrically why it does not work
to use short horizontal line segments to approximate the lengths
of small arcs when we search for a Riemann sum that leads to the
formula for arc length. 

31. Writing to Learn A curve is totally contained inside the
square with vertices �0, 0�, �1, 0�, �1, 1�, and �0, 1�. Is there any
limit to the possible length of the curve? Explain.

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

32. True or False If a function y � f (x) is continuous on an 
interval [a, b], then the length of its curve is given by

�b

a
�1 � 	�

d
d
y
x
��

2
dx. Justify your answer.

33. True or False If a function y � f (x) is differentiable on an 
interval [a, b], then the length of its curve is given by

�b

a
�1 � 	�

d
d
y
x
��

2
dx. Justify your answer.

x (ft)

y

0
–25

y � 25 cos (�x/50)

NOT TO SCALE

300 ft
25

34. Multiple Choice Which of the following gives the best 
approximation of the length of the arc of y � cos(2x) from x � 0
to x � p/4? D

(A) 0.785 (B) 0.955 (C) 1.0 (D) 1.318 (E) 1.977

35. Multiple Choice Which of the following expressions gives
the length of the graph of x � y3 from y � �2 to y � 2? C

(A) �2

�2

(1 � y6) dy (B) �2

�2

�1 � y6� dy

(C) �2

�2

�1 � 9y�4� dy (D) �2

�2

�1 � x2� dx

(E) �2

�2

�1 � x4� dx

36. Multiple Choice Find the length of the curve described by

y � �
2
3

� x3/2 from x � 0 to x � 8. B

(A) �
2
3
6
� (B) �

5
3
2
� (C) �

512
1
�
5

2�
�

(D) �
512

1
�
5

2�
� � 8 (E) 96

37. Multiple Choice Which of the following expressions should
be used to find the length of the curve y � x2/3 from x � �1 
to x � 1? A

(A) 2�1

0
�1 � �

9
4

�
y
 dy (B) �1

�1
�1 � �

9
4

�
y
 dy

(C) �1

0

�1 � y3� dy (D) �1

0

�1 � y6� dy

(E) �1

0

�1 � y9�/4� dy

Exploration
38. Modeling Running Tracks Two lanes of a running track 

are modeled by the semiellipses as shown. The equation for 
lane 1 is  y � �10�0��� 0�.2�x�2�, and the equation for lane 2 
is  y � �15�0��� 0�.2�x�2�.  The starting point for lane 1 is at the
negative x-intercept ���50�0�, 0�. The finish points for both lanes
are the positive x-intercepts. Where should the starting point be
placed on lane 2 so that the two lane lengths will be equal
(running clockwise)? �(–19.909, 8.410)

y

x

Start lane 2

Start lane 1

1

10

30. Because the limit of the sum ��xk as the norm of the partition goes to
zero will always be the length (b � a) of the interval (a, b).

31. No. Consider the curve y � �
1
3

� sin 	�
1
x

�� � 0.5 for 0 � x � 1.

False. The function must be differentiable.

True, by definition.
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418 Chapter 7 Applications of Definite Integrals

Extending the Ideas
39. Using Tangent Fins to Find Arc Length Assume f is

smooth on �a, b� and partition the interval �a, b� in the usual
way. In each subinterval  �xk�1, xk� construct the tangent fin at
the point  �xk�1, f �xk�1�� as shown in the figure.

xk – 1
x

Tangent fin
with slope 
f '(xk – 1)

y � f (x)

�xk

xk

(xk – 1, f (xk – 1))

(a) Show that the length of the k th tangent fin over the interval
�xk�1, xk� equals

	��
xk
�2
 �
 �
f 

�x
k�
1�
�
xk
�2
.

(b) Show that 

lim
n→∞ �

n

k�1

(length of k th tangent fin) � �b

a

	1
 �
 �
f 

�x
��
2
 dx,

which is the length L of the curve  y � f �x� from  x � a
to  x � b.

40. Is there a smooth curve  y � f �x� whose length over 
the interval  0 � x � a is always a	2
? Give reasons 
for your answer. Yes. Any curve of the form y � �x � c, c a 

39. (a) The fin is the hypotenuse of a right triangle with leg lengths �xk and

�
d
d
x
f
��

x�xk�1

� xk � f
(xk–1) �xk.

(b) lim
n→∞  �

n

k�1
	(� xk)

2
 � ( f

(xk�1)�
xk)
2


� lim
n→∞  �

n

k�1
�xk 	1 � ( f

(xk�1)
)2


� �b

a
	1 � ( f

(x))2
 dx

constant.
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Section 7.5 Applications from Science and Statistics 419

Applications from Science and Statistics

Our goal in this section is to hint at the diversity of ways in which the definite integral can
be used. The contexts may be new to you, but we will explain what you need to know as we
go along. 

Work Revisited
Recall from Section 7.1 that work is defined as force (in the direction of motion) times dis-
placement. A familiar example is to move against the force of gravity to lift an object. The
object has to move, incidentally, before “work” is done, no matter how tired you get trying.

If the force F(x) is not constant, then the work done in moving an object from x � a to 

x � b is the definite integral W � �
b

a
F(x)dx.

EXAMPLE 1 Finding the Work Done by a Force

Find the work done by the force F(x) � cos(px) newtons along the x-axis from x � 0
meters to x � 1�2 meter.

SOLUTION

W � �1�2

0

cos(px) dx

� �
p

1
� sin(px)�

0

1/2

� �
p

1
� �sin ��

p

2
�� � sin(0)�

� �
p

1
� � 0.318

Now try Exercise 1.

EXAMPLE 2 Work Done Lifting

A leaky bucket weighs 22 newtons (N) empty. It is lifted from the ground at a constant
rate to a point 20 m above the ground by a rope weighing 0.4 N/m. The bucket starts
with 70 N (approximately 7.1 liters) of water, but it leaks at a constant rate and just
finishes draining as the bucket reaches the top. Find the amount of work done

(a) lifting the bucket alone;

(b) lifting the water alone;

(c) lifting the rope alone;

(d) lifting the bucket, water, and rope together.

SOLUTION

(a) The bucket alone. This is easy because the bucket’s weight is constant. To lift it, you
must exert a force of 22 N through the entire 20-meter interval.

Work � �22 N� 	 �20 m� � 440 N • m � 440 J

Figure 7.39 shows the graph of force vs. distance applied. The work corresponds to the
area under the force graph.

7.5

What you’ll learn about

• Work Revisited

• Fluid Force and Fluid Pressure

• Normal Probabilities

. . . and why 

It is important to see applications
of integrals as various accumula-
tion functions.

4.4 newtons � 1 lb

(1 newton)(1 meter) � 1 N • m � 1 Joule

continued

22
(N)

Work
440

N.m

(m) 20

Figure 7.39 The work done by a 
constant 22-N force lifting a bucket 20 m 
is 440 N • m. (Example 2)
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420 Chapter 7 Applications of Definite Integrals

(b) The water alone. The force needed to lift the water is equal to the water’s weight,
which decreases steadily from 70 N to 0 N over the 20-m lift. When the bucket is x m off
the ground, the water weighs

F�x� � 70 (�20
2
�

0
x

� ) � 70 (1 � �
2
x
0
� ) � 70 � 3.5x N.

The work done is (Figure 7.40)

W � �b

a

F�x� dx

� �20

0

�70 � 3.5x� dx � [70x � 1.75x2 ] 20

0

� 1400 � 700 � 700 J.

(c) The rope alone. The force needed to lift the rope is also variable, starting at
�0.4��20� � 8 N when the bucket is on the ground and ending at 0 N when the bucket
and rope are all at the top. As with the leaky bucket, the rate of decrease is constant. 
At elevation x meters, the �20 � x� meters of rope still there to lift weigh F�x� � �0.4�
�20 � x� N. Figure 7.41 shows the graph of F. The work done lifting the rope is

�20

0

F�x� dx � �20

0

�0.4��20 � x� dx

� [8x � 0.2x2 ] 20

0

� 160 � 80 � 80 N • m � 80 J.

(d) The bucket, water, and rope together. The total work is

440 � 700 � 80 � 1220 J. Now try Exercise 5.

EXAMPLE 3 Work Done Pumping

The conical tank in Figure 7.42 is filled to within 2 ft of the top with olive oil weighing
57 lb�ft3. How much work does it take to pump the oil to the rim of the tank?

SOLUTION

We imagine the oil partitioned into thin slabs by planes perpendicular to the y-axis 
at the points of a partition of the interval �0, 8�. (The 8 represents the top of the oil,
not the top of the tank.)

The typical slab between the planes at y and  y � Δy  has a volume of about

ΔV � p (radius)2(thickness) � p ( �
1
2

� y )2

Δy � �
p

4
� y2 Δy ft3.

The force F�y� required to lift this slab is equal to its weight,

F�y� � 57 ΔV � �
57

4
p
�y2 Δy  lb.

The distance through which F�y� must act to lift this slab to the level of the rim of the
cone is about �10 � y� ft, so the work done lifting the slab is about

ΔW � �
57

4
p
� �10 � y�y2 Δy  ft • lb.

The work done lifting all the slabs from y � 0 to y � 8 to the rim is approximately

W � � �
57

4
p
� �10 � y� y2 Δy  ft • lb.

weight per
Weight � (unit volume) 	 volume

original weight

of water

proportion left 

at elevation x

70
(N)

(m) 20

F(x) = 70 – 3.5x

x

y

8
(N)

(m)

Work

20

x

y

10

8
10 � y

0

5

y1
2

y � 2x or x �    y1
2

(5, 10)

Δy

y

Figure 7.40 The force required to lift
the water varies with distance but the work
still corresponds to the area under the force
graph. (Example 2)

Figure 7.41 The work done lifting the
rope to the top corresponds to the area of
another triangle. (Example 2)

Figure 7.42 The conical tank in 
Example 3.

continued
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Section 7.5 Applications from Science and Statistics 421

This is a Riemann sum for the function  �57p�4��10 � y�y2 on the interval from  y � 0
to  y � 8.  The work of pumping the oil to the rim is the limit of these sums as the
norms of the partitions go to zero.

W � �8

0

�
57

4
p
� �10 � y�y2 dy � �

57
4
p
��8

0

�10y2 � y3� dy

� �
57

4
p
� [�

10
3
y3

� � �
y
4

4

� ] 8

0

� 30,561 ft • lb

Now try Exercise 17.

Fluid Force and Fluid Pressure
We make dams thicker at the bottom than at the top (Figure 7.43) because the pressure
against them increases with depth. It is a remarkable fact that the pressure at any point on
a dam depends only on how far below the surface the point lies and not on how much
water the dam is holding back. In any liquid, the fluid pressure p (force per unit area) at
depth h is

p � wh,

where w is the weight-density (weight per unit volume) of the liquid.

EXAMPLE 4 The Great Molasses Flood of 1919

At 1:00 P.M. on January 15, 1919 (an unseasonably warm day), a 90-ft-high, 90-foot-
diameter cylindrical metal tank in which the Puritan Distilling Company stored molasses at
the corner of Foster and Commercial streets in Boston’s North End exploded. Molasses
flooded the streets 30 feet deep, trapping pedestrians and horses, knocking down build-
ings, and oozing into homes. It was eventually tracked all over town and even made its
way into the suburbs via trolley cars and people’s shoes. It took weeks to clean up.

(a) Given that the tank was full of molasses weighing 100 lb�ft3, what was the total
force exerted by the molasses on the bottom of the tank at the time it ruptured?

(b) What was the total force against the bottom foot-wide band of the tank wall 
(Figure 7.44)?

Dimensions check: �
f

l

t

b
2� � �

f

l

t

b
3� 	 ft, for example

Figure 7.43 To withstand the increasing
pressure, dams are built thicker toward the
bottom.

continued

SHADED BAND NOT TO SCALE

1 ft

90 ft

90 ft

Figure 7.44 The molasses tank of 
Example 4.

Typical Weight-densities (lb/ft3)

Gasoline 42

Mercury 849

Milk 64.5

Molasses 100

Seawater 64

Water 62.4
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422 Chapter 7 Applications of Definite Integrals

SOLUTION

(a) At the bottom of the tank, the molasses exerted a constant pressure of

p � wh � (100 �
f
l
t
b
3�)(90 ft) � 9000 �

f
l
t
b
2� .

Since the area of the base was p�45�2, the total force on the base was

(9000 �
f
l
t
b
2�)(2025 p ft2) � 57,225,526 lb.

(b) We partition the band from depth 89 ft to depth 90 ft into narrower bands of width
Δy and choose a depth yk in each one. The pressure at this depth yk is  p � wh � 100 yk
lb�ft2 (Figure 7.45). The force against each narrow band is approximately

pressure 	 area � �100yk��90p Δy� � 9000p yk Δy lb.

Adding the forces against all the bands in the partition and passing to the limit as the
norms go to zero, we arrive at 

F � �90

89

9000py dy � 9000p�90

89

y dy � 2,530,553 lb

for the force against the bottom foot of tank wall. Now try Exercise 25.

Normal Probabilities
Suppose you find an old clock in the attic. What is the probability that it has stopped
somewhere between 2:00 and 5:00? 

If you imagine time being measured continuously over a 12-hour interval, it is easy to
conclude that the answer is 1�4 (since the interval from 2:00 to 5:00 contains one-fourth of
the time), and that is correct. Mathematically, however, the situation is not quite that clear
because both the 12-hour interval and the 3-hour interval contain an infinite number of
times. In what sense does the ratio of one infinity to another infinity equal 1�4? 

The easiest way to resolve that question is to look at area. We represent the total probabil-
ity of the 12-hour interval as a rectangle of area 1 sitting above the interval (Figure 7.46). 

Not only does it make perfect sense to say that the rectangle over the time interval �2, 5�
has an area that is one-fourth the area of the total rectangle, the area actually equals 1�4,
since the total rectangle has area 1. That is why mathematicians represent probabilities as
areas, and that is where definite integrals enter the picture. 

90 yk

45

Figure 7.45 The 1-ft band at the bottom 
of the tank wall can be partitioned into thin
strips on which the pressure is approxi-
mately constant. (Example 4)

Area
= 1

4

1252

1
12

y

x

Figure 7.46 The probability that the
clock has stopped between 2:00 and 5:00
can be represented as an area of 1�4. 
The rectangle over the entire interval has
area 1.

Probabilities of events, such as the clock stopping between 2:00 and 5:00, are integrals
of an appropriate pdf.

Improper Integrals

More information about improper 

integrals like �
�

��
f�x� dx can be found in 

Section 8.3. (You will not need that 

information here.)

DEFINITION Probability Density Function (pdf)

A probability density function is a function f �x� with domain all reals such that

f �x� � 0  for all x and �
��

�

f �x� dx � 1.

Then the probability associated with an interval �a, b� is 

�b

a

f �x� dx.
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Section 7.5 Applications from Science and Statistics 423

EXAMPLE 5 Probability of the Clock Stopping

Find the probability that the clock stopped between 2:00 and 5:00.

SOLUTION

The pdf of the clock is 

1�12, 0 � t � 12
f �t� � {0, otherwise.

The probability that the clock stopped at some time t with  2 � t � 5  is

�5

2

f �t� dt � �
1
4

� .

Now try Exercise 27.

By far the most useful kind of pdf is the normal kind. (“Normal” here is a technical
term, referring to a curve with the shape in Figure 7.47.) The normal curve, often called
the “bell curve,” is one of the most significant curves in applied mathematics because it
enables us to describe entire populations based on the statistical measurements taken from a
reasonably-sized sample. The measurements needed are the mean �m� and the standard
deviation �s�, which your calculators will approximate for you from the data. The symbols
on the calculator will probably be Jx and s (see your Owner’s Manual), but go ahead and use
them as m and s, respectively. Once you have the numbers, you can find the curve by using
the following remarkable formula discovered by Karl Friedrich Gauss.

The 68-95-99.7 Rule for Normal Distributions

Given a normal curve,

• 68% of the area will lie within s of the mean m,

• 95% of the area will lie within 2s of the mean m,

• 99.7% of the area will lie within 3s of the mean m.

∫f(x)dx = .17287148

a b

Figure 7.47 A normal probability density
function. The probability associated with
the interval �a, b� is the area under the
curve, as shown.

The mean m represents the average value of the variable x. The standard deviation s
measures the “scatter” around the mean. For a normal curve, the mean and standard devia-
tion tell you where most of the probability lies. The rule of thumb, illustrated in Figure 7.48,
is this:

Even with the 68-95-99.7 rule, the area under the curve can spread quite a bit, depend-
ing on the size of s. Figure 7.49 shows three normal pdfs with mean m� 2 and standard
deviations equal to 0.5, 1, and 2.

–3�

68% of area

–2� –1� 0 1� 2� 3�

95% of the area

99.7% of the area

x

y

0 �

� = 1

� = 2

� = 0.5

Figure 7.48 The 68-95-99.7 rule for 
normal distributions.

Figure 7.49 Normal pdf curves with
mean m� 2 and s � 0.5, 1, and 2.

DEFINITION Normal Probability Density Function (pdf)

The normal probability density function (Gaussian curve) for a population with
mean m and standard deviation s is

f �x� � �
s	

1

2
p

� e��x�m�2��2s 2�.
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424 Chapter 7 Applications of Definite Integrals

EXAMPLE 6 A Telephone Help Line

Suppose a telephone help line takes a mean of 2 minutes to answer calls. If the standard
deviation is s� 0.5, then 68% of the calls are answered in the range of 1.5 to 2.5 minutes
and 99.7% of the calls are answered in the range of 0.5 to 3.5 minutes.

Now try Exercise 29.

EXAMPLE 7 Weights of Spinach Boxes

Suppose that frozen spinach boxes marked as “10 ounces” of spinach have a mean
weight of 10.3 ounces and a standard deviation of 0.2 ounce. 

(a) What percentage of all such spinach boxes can be expected to weigh between 10 and
11 ounces? 

(b) What percentage would we expect to weigh less than 10 ounces?

(c) What is the probability that a box weighs exactly 10 ounces?

SOLUTION

Assuming that some person or machine is trying to pack 10 ounces of spinach into these
boxes, we expect that most of the weights will be around 10, with probabilities tailing
off for boxes being heavier or lighter. We expect, in other words, that a normal pdf will
model these probabilities. First, we define f �x� using the formula:

f �x� � �
0.2	

1

2
p

� e��x�10.3�2��0.08�.

The graph (Figure 7.50) has the look we are expecting.

(a) For an arbitrary box of this spinach, the probability that it weighs between 10 and 11
ounces is the area under the curve from 10 to 11, which is

NINT � f �x�, x, 10, 11� � 0.933.

So without doing any more measuring, we can predict that about 93.3% of all such
spinach boxes will weigh between 10 and 11 ounces. 

(b) For the probability that a box weighs less than 10 ounces, we use the entire area
under the curve to the left of x � 10. The curve actually approaches the x-axis as an 
asymptote, but you can see from the graph (Figure 7.50) that f �x� approaches zero quite
quickly. Indeed, f �9� is only slightly larger than a billionth. So getting the area from 9 to
10 should do it:

NINT � f �x�, x, 9, 10� � 0.067.

We would expect only about 6.7% of the boxes to weigh less than 10 ounces.

(c) This would be the integral from 10 to 10, which is zero. This zero probability might
seem strange at first, but remember that we are assuming a continuous, unbroken interval
of possible spinach weights, and 10 is but one of an infinite number of them.

Now try Exercise 31.

10.3 11

[9, 11.5] by [–1, 2.5]

Figure 7.50 The normal pdf for the
spinach weights in Example 7. The mean 
is at the center.

Quick Review 7.5 (For help, go to Section 5.2.)

In Exercises 1–5, find the definite integral by (a) antiderivatives and
(b) using NINT.

1. �1

0

e�x dx 2. �1

0

ex dx a. e � 1 b. �1.718

3. �p�2

p�4

sin x dx 4. �3

0

�x2 � 2� dx 15

5. �2

1

�
x3

x
�

2

1
� dx a. (1/3) ln (9/2) b. �0.501

a. 1 � (1/e) b. �0.632

a. 	2
/2 b. �0.707
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In Exercises 6–10 find, but do not evaluate, the definite integral that
is the limit as the norms of the partitions go to zero of the Riemann
sums on the closed interval �0, 7�.

6. �2p�xk � 2��sin xk� Δ x �7

0
2p(x � 2) sin x dx

7. � �1 � xk
2��2p xk�Δx �7

0
(1 � x2)(2px) dx

8. �p�cos xk�2Δx �7

0
p cos2 x dx

9. �p( �
y
2
k� )2

�10 � yk� Δy �7

0
p(y/2)

2
(10 � y) dy

10. � �sin2 xk � Δ x �7

0
(	3
/4) sin2 x dx

	3

�

4

In Exercises 1–4, find the work done by the force of F(x) newtons
along the x-axis from x � a meters to x � b meters.

1. F�x� � xe�x�3, a � 0, b � 5 �4.4670 J

2. F�x� � x sin �px�4�, a � 0, b � 3 �3.8473 J

3. F�x� � x	9
 �
 x
2
, a � 0, b � 3 9 J

4. F�x� � esin x cos x � 2, a � 0, b � 10 �19.5804 J

5. Leaky Bucket The workers in Example 2 changed to a larger
bucket that held 50 L (490 N) of water, but the new bucket had
an even larger leak so that it too was empty by the time it
reached the top. Assuming the water leaked out at a steady rate,
how much work was done lifting the water to a point 20 meters
above the ground? (Do not include the rope and bucket.)

6. Leaky Bucket The bucket in Exercise 5 is hauled up more
quickly so that there is still 10 L (98 N) of water left when the
bucket reaches the top. How much work is done lifting the water
this time? (Do not include the rope and bucket.) 5880 J

7. Leaky Sand Bag A bag of sand originally weighing 144 lb
was lifted at a constant rate. As it rose, sand leaked out at a
constant rate. The sand was half gone by the time the bag had
been lifted 18 ft. How much work was done lifting the sand this
far? (Neglect the weights of the bag and lifting equipment.)

8. Stretching a Spring A spring has a natural length of 10 in.
An 800-lb force stretches the spring to 14 in.

(a) Find the force constant. 200 lb/in.

(b) How much work is done in stretching the spring from 10 in.
to 12 in.? 400 in.-lb

(c) How far beyond its natural length will a 1600-lb force
stretch the spring? 8 in.

9. Subway Car Springs It takes a force of 21,714 lb to com-
press a coil spring assembly on a New York City Transit
Authority subway car from its free height of 8 in. to its fully
compressed height of 5 in.

(a) What is the assembly’s force constant? 7238 lb/in.

(b) How much work does it take to compress the assembly the
first half inch? the second half inch? Answer to the nearest inch-
pound. �905 in.-lb and �2714 in.-lb

(Source: Data courtesy of Bombardier, Inc., Mass Transit
Division, for spring assemblies in subway cars delivered to the
New York City Transit Authority from 1985 to 1987.)

10. Bathroom Scale A bathroom scale is compressed 1�16 in.
when a 150-lb person stands on it. Assuming the scale behaves
like a spring that obeys Hooke’s Law,

(a) how much does someone who compresses the scale 
1�8 in. weigh? 300 lb

(b) how much work is done in compressing the scale 1�8 in.?

11. Hauling a Rope A mountain climber is about to haul up a 
50-m length of hanging rope. How much work will it take if the
rope weighs 0.624 N�m? 780 J

12. Compressing Gas Suppose that gas in a circular cylinder 
of cross section area A is being compressed by a piston 
(see figure).

(a) If p is the pressure of the gas in pounds per square inch and
V is the volume in cubic inches, show that the work done in
compressing the gas from state � p1, V1� to state � p2, V2� is 
given by the equation

Work � �
� p1, V1�

� p2, V2�

p dV in. • lb,

where the force against the piston is pA.

(b) Find the work done in compressing the gas from 
V1 � 243 in3 to  V2 � 32 in3 if p1 � 50 lb� in3 and
p and V obey the gas law  pV 1.4 � constant (for adiabatic
processes). –37,968.75 in.-lb

x

y

Section 7.5 Exercises

4900 J

1944 ft-lb

18.75 in.-lb
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Group Activity In Exercises 13–16, the vertical end of a tank
containing water (blue shading) weighing 62.4 lb�ft3 has the given
shape. 

(a) Writing to Learn Explain how to approximate the force
against the end of the tank by a Riemann sum.

(b) Find the force as an integral and evaluate it.

13. semicircle (b) 1123.2 lb 14. semiellipse (b) 7987.2 lb

15. triangle (b) 3705 lb 16. parabola (b) �1506.1 lb

17. Pumping Water The rectangular tank shown here, with its top
at ground level, is used to catch runoff water. Assume that the
water weighs 62.4 lb�ft3.

6 ft

4 ft 4.5 ft
3

6 ft

8 ft

8 ft

6 ft

3 ft

(d) The Weight of Water Because of differences in the
strength of Earth’s gravitational field, the weight of a cubic foot
of water at sea level can vary from as little as 62.26 lb at the
equator to as much as 62.59 lb near the poles, a variation of
about 0.5%. A cubic foot of water that weighs 62.4 lb in
Melbourne or New York City will weigh 62.5 lb in Juneau or
Stockholm. What are the answers to parts (a) and (b) in a
location where water weighs 62.26 lb�ft3? 62.5 lb�ft3?

18. Emptying a Tank A vertical right cylindrical tank measures
30 ft high and 20 ft in diameter. It is full of kerosene weighing
51.2 lb�ft3. How much work does it take to pump the kerosene
to the level of the top of the tank? �7,238,229 ft-lb

19. Writing to Learn The cylindrical tank shown here is to be
filled by pumping water from a lake 15 ft below the bottom 
of the tank. There are two ways to go about this. One is to pump
the water through a hose attached to a valve in the bottom of the
tank. The other is to attach the hose to the rim of the tank and let
the water pour in. Which way will require less work? Give
reasons for your answer.

20. Drinking a Milkshake The truncated conical container shown
here is full of strawberry milkshake that weighs �4�9� oz� in3. 
As you can see, the container is 7 in. deep, 2.5 in. across at the
base, and 3.5 in. across at the top (a standard size at Brigham’s
in Boston). The straw sticks up an inch above the top. About
how much work does it take to drink the milkshake through the
straw (neglecting friction)? Answer in inch-ounces.

21. Revisiting Example 3 How much work will it take to pump
the oil in Example 3 to a level 3 ft above the cone’s rim?

x

y

1.25

0

7

y

8

8 � y

y � 17.5
14

Δy

(1.75, 7)

y � 14x � 17.5

Dimensions in inches

Open top

2 ft

6 ft

Valve at base

(a) How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?

(b) If the water is pumped to ground level with a 
�5�11�-horsepower motor (work output 250 ft • lb�sec),
how long will it take to empty the full tank (to the nearest
minute)? �100 min

(c) Show that the pump in part (b) will lower the water level 
10 ft (halfway) during the first 25 min of pumping.

y

20

Ground     level

y

10 ft

0 12 ft

�y

1,497,600 ft-lb

17. (d) 1,494,240 ft-lb, �100 min; 1,500,000 ft-lb, 100 min

Through valve:
�84,687.3 ft-lb
Over the rim:
�98,801.8 ft-lb
Through a hose attached
to a valve in the bottom is
faster, because it takes
more time to do more
work.

�91.3244 in.-oz

�53,482.5 ft-lb
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22. Pumping Milk Suppose the conical tank in Example 3
contains milk weighing 64.5 lb�ft3 instead of olive oil. How
much work will it take to pump the contents to the rim?

23. Writing to Learn You are in charge of the evacuation and
repair of the storage tank shown here. The tank is a hemisphere
of radius 10 ft and is full of benzene weighing 56 lb�ft3. 

26. Milk Carton A rectangular milk carton measures 3.75 in. 
by 3.75 in. at the base and is 7.75 in. tall. Find the force 
of the milk �weighing 64.5 lb�ft3� on one side when the 
carton is full. �4.2 lb

27. Find the probability that a clock stopped between 1:00 and 5:00.

28. Find the probability that a clock stopped between 3:00 and 6:00.

29. Suppose a telephone help line takes a mean of 2 minutes to 
answer calls. If the standard deviation is s� 2, what percentage
of the calls are answered in the range of 0 to 4 minutes? 68%

30. Test Scores The mean score on a national aptitude test is 498
with a standard deviation of 100 points.

(a) What percentage of the population has scores between 400
and 500? �0.34 (34%)

(b) If we sample 300 test - takers at random, about how many
should have scores above 700? 6.5

31. Heights of Females The mean height of an adult female in
New York City is estimated to be 63.4 inches with a standard
deviation of 3.2 inches. What proportion of the adult females in
New York City are

(a) less than 63.4 inches tall? 0.5 (50%)

(b) between 63 and 65 inches tall? �0.24 (24%)

(c) taller than 6 feet? �0.0036 (0.36%)

(d) exactly 5 feet tall? 0 if we assume a continuous distribution;

32. Writing to Learn Exercises 30 and 31 are subtly different, in
that the heights in Exercise 31 are measured continuously and
the scores in Exercise 30 are measured discretely. The discrete
probabilities determine rectangles above the individual test
scores, so that there actually is a nonzero probability of scoring,
say, 560. The rectangles would look like the figure below, and
would have total area 1.

Explain why integration gives a good estimate for the
probability, even in the discrete case. Integration is a good

33. Writing to Learn Suppose that f �t� is the probability density
function for the lifetime of a certain type of lightbulb where t is
in hours. What is the meaning of the integral

�800

100

f �t� dt?

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

34. True or False A force is applied to compress a spring several
inches. Assume the spring obeys Hooke’s Law.  Twice as much
work is required to compress the spring the second inch than is
required to compress the spring the first inch. Justify your 
answer. False. Three times as much work is required.

x

z

10

y

10 2 ft

Outlet pipe
x2 � y2 � 100

0

A firm you contacted says it can empty the tank for 1�2 cent 
per foot-pound of work. Find the work required to empty the
tank by pumping the benzene to an outlet 2 ft above the tank. 
If you have budgeted $5000 for the job, can you afford to hire 
the firm? �967,611 ft-lb, yes

24. Water Tower Your town has decided to drill a well to increase
its water supply. As the town engineer, you have determined that
a water tower will be necessary to provide the pressure needed
for distribution, and you have designed the system shown here.
The water is to be pumped from a 300-ft well through a vertical
4-in. pipe into the base of a cylindrical tank 20 ft in diameter
and 25 ft high. The base of the tank will be 60 ft above ground.
The pump is a 3-hp pump, rated at 1650 ft • lb�sec. To the
nearest hour, how long will it take to fill the tank the first time?
(Include the time it takes to fill the pipe.) Assume water weighs
62.4 lb�ft3. �31 hr

25. Fish Tank A rectangular freshwater fish tank with base 
2 	 4 ft and height 2 ft (interior dimensions) is filled to within 
2 in. of the top.

(a) Find the fluid force against each end of the tank. �209.73 lb

(b) Suppose the tank is sealed and stood on end (without
spilling) so that one of the square ends is the base. What does
that do to the fluid forces on the rectangular sides?

Submersible pump

Water surface

300 ft

NOT TO SCALE

4 in.

Ground

25 ft

10 ft

60 ft

�34,582.65 ft-lb

�838.93 lb; the fluid force doubles

1/3

1/4

�0.071; 7.1% between 59.5 in. and 60.5 in.

approximation to the area.

The proportion of lightbulbs
that last between 100 and 800
hours.
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428 Chapter 7 Applications of Definite Integrals

35. True or False An aquarium contains water weighing 62.4 lb/ft3.
The aquarium is in the shape of a cube where the length of 
each edge is 3 ft.  Each side of the aquarium is engineered to
withstand 1000 pounds of force. This should be sufficient to
withstand the force from water pressure. Justify your answer.

36. Multiple Choice A force of F(x) � 350x newtons moves a
particle along a line from x � 0 m to x � 5 m. Which of the fol-
lowing gives the best approximation of the work done by the
force? E

(A) 1750 J (B) 2187.5 J (C) 2916.67 J

(D) 3281.25 J (E) 4375 J

37. Multiple Choice A leaky bag of sand weighs 50 n. It is lifted
from the ground at a constant rate, to a height of 20 m above the
ground. The sand leaks at a constant rate and just finishes drain-
ing as the bag reaches the top. Which of the following gives the
work done to lift the sand to the top? (Neglect the bag.) D

(A) 50 J (B) 100 J (C) 250 J (D) 500 J (E) 1000 J

38. Multiple Choice A spring has a natural length of 0.10 m. 
A 200-n force stretches the spring to a length of 0.15 m. Which
of the following gives the work done in stretching the spring
from 0.10 m to 0.15 m? B

(A) 0.05 J (B) 5 J (C) 10 J (D) 200 J (E) 4000 J

39. Multiple Choice A vertical right cylindrical tank measures 
12 ft high and 16 ft in diameter. It is full of water weighing 
62.4 lb/ft3. How much work does it take to pump the water to the
level of the top of the tank?  Round your answer to the nearest 
ft-lb. E

(A) 149,490 ft-lb   

(B) 285,696 ft-lb    

(C) 360,240 ft-lb  

(D) 448,776 ft-lb   

(E) 903,331 ft-lb

Extending the Ideas
40. Putting a Satellite into Orbit The strength of Earth’s

gravitational field varies with the distance r from Earth’s center,
and the magnitude of the gravitational force experienced by a
satellite of mass m during and after launch is 

F�r� � �
m

r
M

2
G

� .

Here, M � 5.975 	 1024 kg  is Earth’s mass,
G � 6.6726 	 10�11 N • m2kg�2 is the universal gravitational
constant, and r is measured in meters. The work it takes to lift a
1000-kg satellite from Earth’s surface to a circular orbit 35,780 km
above Earth’s center is therefore given by the integral

Work � �35,780,000

6,370,000

�
100

r
0

2
MG
� dr joules.

The lower limit of integration is Earth’s radius in meters at the
launch site. Evaluate the integral. (This calculation does not take
into account energy spent lifting the launch vehicle or energy
spent bringing the satellite to orbit velocity.) 5.1446 	 1010 J

41. Forcing Electrons Together Two electrons r meters apart
repel each other with a force of

F � �
23 	

r
1
2
0�29

� newton.

(a) Suppose one electron is held fixed at the point �1, 0� on the
x-axis (units in meters). How much work does it take 
to move a second electron along the x-axis from the point 
��1, 0� to the origin? 1.15 	 10�28 J

(b) Suppose an electron is held fixed at each of the points 
��1, 0� and �1, 0�. How much work does it take to move a third
electron along the x-axis from �5, 0� to �3, 0�?

42. Kinetic Energy If a variable force of magnitude F�x� moves a
body of mass m along the x-axis from x1 to x2, the body’s velocity
v can be written as dx�dt (where t represents time). Use Newton’s
second law of motion, F � m�dv�dt�, and the Chain Rule

�
d
d
v
t
� � �

d
dv

x
� �

d
d
x
t
� � v �

d
dv

x
�

to show that the net work done by the force in moving the body
from x1 to x2 is

W � �x2

x1

F�x� dx � �
1
2

� mv2
2 � �

1
2

� mv1
2, (1)

where v1 and v2 are the body’s velocities at x1 and x2. In physics
the expression  �1�2�mv2 is the kinetic energy of the body
moving with velocity v. Therefore, the work done by the force
equals the change in the body’s kinetic energy, and we can find
the work by calculating this change.

In Exercises 43–49, use Equation 1 from Exercise 42.

43. Tennis A 2-oz tennis ball was served at 160 ft �sec (about 
109 mph). How much work was done on the ball to make it 
go this fast? 50 ft-lb

44. Baseball How many foot-pounds of work does it take to throw
a baseball 90 mph? A baseball weighs 5 oz � 0.3125 lb.

45. Golf A 1.6-oz golf ball is driven off the tee at a speed of 
280 ft �sec (about 191 mph). How many foot-pounds of work
are done getting the ball into the air? 122.5 ft-lb

46. Tennis During the match in which Pete Sampras won the 1990
U.S. Open men’s tennis championship, Sampras hit a serve that
was clocked at a phenomenal 124 mph. How much work did
Sampras have to do on the 2-oz ball to get it to that speed?

Weight vs. Mass

Weight is the force that results from gravity pulling 
on a mass. The two are related by the equation in
Newton’s second law,

weight � mass 	 acceleration.
Thus,

newtons � kilograms 	 m �sec2,

pounds � slugs 	 ft �sec2.

To convert mass to weight, multiply by the accelera-
tion of gravity. To convert weight to mass, divide by
the acceleration of gravity.

35. True. The force against each vertical side is 842.4 lb

�7.6667 	 10�29 J

See page 429.

�85.1 ft-lb

�64.6 ft-lb
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47. Football A quarterback threw a 14.5-oz football 88 ft �sec 
(60 mph). How many foot-pounds of work were done on the
ball to get it to that speed? �109.7 ft-lb

48. Softball How much work has to be performed on a 
6.5-oz softball to pitch it at 132 ft �sec (90 mph)? �110.6 ft-lb

49. A Ball Bearing A 2-oz steel ball bearing is placed on a vertical
spring whose force constant is  k � 18 lb�ft.  The spring is
compressed 3 in. and released. About how high does the ball
bearing go? (Hint: The kinetic (compression) energy, mgh, of a
spring is �

1
2

�ks2, where s is the distance the spring is compressed,
m is the mass, g is the acceleration of gravity, and h is the height.)

Quick Quiz for AP* Preparation: Sections 7.4 and 7.5

You should solve the following problems without using a
graphing calculator.

1. Multiple Choice The length of a curve from x � 0 to x � 1 is 

given by �
1

0
	1 � 16
x6
 dx. If the curve contains the point (1, 4),

which of the following could be an equation for this curve? A

(A) y � x4 � 3

(B) y � x4 � 1

(C) y � 1 � 16x6

(D) y � 	1 � 16
x6


(E) y � x � �
x
7

7

�

2. Multiple Choice Which of the following gives the length of

the path described by the parametric equations x � �
1
4

�t4 and 
y � t3, where 0 � t � 2? D

(A) �2

0

t6 � 9t4 dt

(B) �2

0

	t6 � 1
 dt

(C) �2

0

	1 � 9t
4
 dt

(D) �2

0

	t6 � 9
t4
 dt

(E) �2

0

	t3 � 3t
2
 dt

3. Multiple Choice The base of a solid is a circle of radius 
2 inches. Each cross section perpendicular to a certain diameter
is a square with one side lying in the circle. The volume of the
solid in cubic inches is C

(A) 16 (B) 16p (C) �
12
3
8

� (D) �
12

3
8p
� (E) 32p

4. Free Response The front of a fish tank is rectangular in shape
and measures 2 ft wide by 1.5 ft tall. The water in the tank exerts
pressure on the front of the tank. The pressure at any point on the
front of the tank depends only on how far below the surface the
point lies and is given by the equation p � 62.4h, where h is
depth below the surface measured in feet and p is pressure 
measured in pounds/ft2.

The front of the tank can be partitioned into narrow horizontal
bands of height Δh. The force exerted by the water on a band at
depth hi is approximately

pressure � area = 62.4hi � 2Δh.

(a) Write the Riemann sum that approximates the force exerted
on the entire front of the tank.

(b) Use the Riemann sum from part (a) to write and evaluate a
definite integral that gives the force exerted on the front of the
tank. Include correct units.

(c) Find the total force exerted on the front of the tank if the front
(and back) are semicircles with diameter 2 ft. Include correct units.

2 ft

2 ft

1.5 ft

�h

h

42. F � m�
d
d
v
t
� � mv �

d
d
v
x
�, so W � �x2

x1

F(x) dx

� �x2

x1

mv �
d
d
v
x
� dx � �v2

v1

mv dv � �
1
2

�mv2
2 � �

1
2

�mv1
2

4.5 ft

(a) �
n

i�1
62.4hi � 2 �h

(b) �1.5

0
62.4h � 2 dh � 140.4 lbs (c) �1.5

0
62.4h � 2	1�h2
 dh � 41.6 lbs
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Calculus at Work
I am working toward becoming an

archeaoastronomer and ethnoastronomer

of Africa. I have a Bachelor’s degree in

Physics, a Master’s degree in Astronomy, 

and a Ph.D. in Astronomy and Astro-

physics. From 1988 to 1990 I was a mem-

ber of the Peace Corps, and I taught

mathematics to high school students in

the Fiji Islands. Calculus is a required

course in high schools there.

For my Ph.D. dissertation, I investigated

the possibility of the birthrate of stars

being related to the composition of star

formation clouds. I collected data on the

absorption of electromagnetic emissions

emanating from these regions. The inten-

sity of emissions graphed versus wave-

length produces a flat curve with down-

ward spikes at the characteristic wave-

lengths of the elements present. An esti-

mate of the area between a spike and the

flat curve results in a concentration in

molecules/cm3 of an element. This area is

the difference in the integrals of the flat

and spike curves. In particular, I was look-

ing for a large concentration of water-ice,

which increases the probability of planets

forming in a region.

Currently, I am applying for two research

grants. One will allow me to use the NASA

infrared telescope on Mauna Kea to

search for C3S2 in comets. The other will

help me study the history of astronomy in

Tunisia.

Jarita Holbrook
Los Angeles, CA

arc length (p. 413)

area between curves (p. 390)

Cavalieri’s theorems (p. 404)

center of mass (p. 389)

constant-force formula (p. 384)

cylindrical shells (p. 402)

displacement (p. 380)

fluid force (p. 421)

fluid pressure (p. 421)

foot-pound (p. 384)

force constant (p. 385)

Gaussian curve (p. 423)

Hooke’s Law (p. 385)

inflation rate (p. 388)

joule (p. 384)

length of a curve (p. 413)

mean (p. 423)

moment (p. 389)

net change (p. 379)

newton (p. 384)

normal curve (p. 423)

normal pdf (p. 423)

probability density function (pdf) (p. 422)

68-95-99.7 rule (p. 423)

smooth curve (p. 413)

smooth function (p. 413)

solid of revolution (p. 400)

standard deviation (p. 423)

surface area (p. 405)

total distance traveled (p. 381)

universal gravitational constant (p. 428)

volume by cylindrical shells (p. 402)

volume by slicing (p. 400)

volume of a solid (p. 399)

weight-density (p. 421)

work (p. 384)

Chapter 7 Key Terms

Chapter 7 Review Exercises

The collection of exercises marked in red could be used as a chapter
test.
In Exercises 1–5, the application involves the accumulation of small
changes over an interval to give the net change over that entire inter-
val. Set up an integral to model the accumulation and evaluate it to
answer the question.

1. A toy car slides down a ramp and coasts to a stop after 
5 sec. Its velocity from  t � 0  to t � 5  is modeled by 
v�t� � t2 � 0.2t3 ft �sec.  How far does it travel? �10.417 ft

2. The fuel consumption of a diesel motor between weekly
maintenance periods is modeled by the function  c�t� �
4 � 0.001t 4 gal �day, 0 � t � 7.  How many gallons does 
it consume in a week? �31.361 gal

3. The number of billboards per mile along a 100-mile stretch of an
interstate highway approaching a certain city is modeled by the
function B�x� � 21 � e0.03x, where x is the distance from the city
in miles. About how many billboards are along that stretch of
highway? �1464
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4. A 2-meter rod has a variable density modeled by the function
r�x� � 11 � 4x g�m, where x is the distance in meters from the
base of the rod. What is the total mass of the rod? 14 g

5. The electrical power consumption (measured in kilowatts) at a
factory t hours after midnight during a typical day is modeled by
E�t� � 300�2 � cos �pt�12��.  How many kilowatt-hours of
electrical energy does the company consume in a typical day?

In Exercises 6–19, find the area of the region enclosed by the lines
and curves.

6. y � x, y � 1�x2, x � 2 1

7. y � x � 1, y � 3 � x2 �
9
2

�

8. 	x
 � 	y
 � 1, x � 0, y � 0 1/6

9. x � 2y2, x � 0, y � 3 18

10. 4x � y2 � 4, 4x � y � 16 30.375

11. y � sin x, y � x, x � p�4 �0.0155

12. y � 2 sin x, y � sin 2x, 0 � x � p 4

13. y � cos x, y � 4 � x2 �8.9023

14. y � sec2 x, y � 3 � �x � �2.1043

15. The Necklace one of the smaller bead-shaped regions
enclosed by the graphs of  y � 1 � cos x and 
y � 2 � cos x 2	3
 � 2p/3 � 1.370

16. one of the larger bead-shaped regions enclosed by the curves in
Exercise 15 2	3
 � 4p/3 � 7.653

17. The Bow Tie the region enclosed by the graphs of 

y � x3 � x and y � �
x2 �

x
1

�

(shown in the next column). �1.2956

[–4�, 4�] by [–4, 8]

x

y

√⎯x � √⎯y � 1

1

0 1

18. The Bell the region enclosed by the graphs of

�5.7312y � 31�x2 and y � �
x2

1
�

0
3

�

19. The Kissing Fish the region enclosed between the graphs of
y � x sin x and y � �x sin x over the interval ��p, p� 4p

20. Find the volume of the solid generated by revolving the region
bounded by the x-axis, the curve  y � 3x4, and the lines x � �1
and x � 1 about the x-axis. 2p

21. Find the volume of the solid generated by revolving the region
enclosed by the parabola  y2 � 4x and the line  y � x about 

(a) the x-axis. 32p/3 (b) the y-axis. 128p/15

(c) the line x � 4. 64p/5 (d) the line y � 4. 32p/3

22. The section of the parabola  y � x2�2  from  y � 0  to  y � 2  is
revolved about the y-axis to form a bowl.

(a) Find the volume of the bowl. 4p

(b) Find how much the bowl is holding when it is filled to a
depth of k units �0 � k � 2�. pk2

(c) If the bowl is filled at a rate of 2 cubic units per second, how
fast is the depth k increasing when k � 1? 1/p

[–5, 5] by [–3, 3]

[–4, 4] by [–2, 3.5]

[–2, 2] by [–1.5, 1.5]

14,400
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23. The profile of a football resembles the ellipse shown here (all
dimensions in inches). Find the volume of the football 
to the nearest cubic inch. 88p � 276 in3

24. The base of a solid is the region enclosed between the graphs of
y � sin x and  y � �sin x from  x � 0  to  x � p. Each cross
section perpendicular to the x-axis is a semicircle with diameter
connecting the two graphs. Find the volume of the solid. p2/4

25. The region enclosed by the graphs of  y � ex�2, y � 1, and x �
ln 3  is revolved about the x-axis. Find the volume of the solid
generated. p(2 � ln 3)

26. A round hole of radius 	3
 feet is bored through the center of a
sphere of radius 2 feet. Find the volume of the piece cut out. 

27. Find the length of the arch of the parabola  y � 9 � x2 that lies
above the x-axis. �19.4942

28. Find the perimeter of the bow-tie-shaped region enclosed
between the graphs of  y � x3 � x and  y � x � x3. �5.2454

29. A particle travels at 2 units per second along the curve 
y � x3 � 3x2 � 2.  How long does it take to travel from 
the local maximum to the local minimum? 2.296 sec

30. Group Activity One of the following statements is true for all
k � 0 and one is false. Which is which? Explain. (a) is true

(a) The graphs of  y � k sin x and  y � sin kx have the same
length on the interval �0, 2p�.

(b) The graph of  y � k sin x is k times as long as the graph of
y � sin x on the interval �0, 2p�.

31. Let  F�x� � �x
1

	t 4
 �
 1
 dt.  Find the exact length of the graph of 

F from  x � 2  to  x � 5  without using a calculator. 39

32. Rock Climbing A rock climber is about to haul up 100 N
(about 22.5 lb) of equipment that has been hanging beneath her
on 40 m of rope weighing 0.8 N�m. How much work will it take
to lift

(a) the equipment? 4000 J (b) the rope? 640 J

(c) the rope and equipment together? 4640 J

33. Hauling Water You drove an 800-gallon tank truck from the
base of Mt. Washington to the summit and discovered on arrival
that the tank was only half full. You had started out with a full
tank of water, had climbed at a steady rate, and had taken 50
minutes to accomplish the 4750-ft elevation change. Assuming
that the water leaked out at a steady rate, how much work was
spent in carrying the water to the summit? Water weighs 8 lb�gal.
(Do not count the work done getting you and the truck to 
the top.) 22,800,000 ft-lb

x

y

0

 � 1
4x2
—–
121

11—
2

11—
2

–

y2
—
12

�

UNITS IN INCHES

34. Stretching a Spring If a force of 80 N is required to hold a
spring 0.3 m beyond its unstressed length, how much work does
it take to stretch the spring this far? How much work does it take
to stretch the spring an additional meter? 12 J, �213.3 J

35. Writing to Learn It takes a lot more effort to roll a stone up
a hill than to roll the stone down the hill, but the weight of the
stone and the distance it covers are the same. Does this mean
that the same amount of work is done? Explain.

36. Emptying a Bowl A hemispherical bowl with radius 8 inches
is filled with punch (weighing 0.04 pound per cubic inch) to
within 2 inches of the top. How much work is done emptying
the bowl if the contents are pumped just high enough to get over
the rim? �113.097 in.-lb

37. Fluid Force The vertical triangular plate shown below is 
the end plate of a feeding trough full of hog slop, weighing 
80 pounds per cubic foot. What is the force against the plate?

38. Fluid Force A standard olive oil can measures 5.75 in. by 
3.5 in. by 10 in. Find the fluid force against the base and each
side of the can when it is full. (Olive oil has a weight-density 
of 57 pounds per cubic foot.)

39. Volume A solid lies between planes perpendicular to the 
x-axis at  x � 0  and at x � 6. The cross sections between the
planes are squares whose bases run from the x-axis up to the
curve 	x
 � 	y
 � 	6
.  Find the volume of the solid. �14.4

x

y

x1/2 � y1/2 � √⎯⎯6

6

6

OLIVE
OIL

x

y

40

2

–4

UNITS IN FEET

y � x–
2

28p/3 ft3 � 29.3215 ft3

35. No, the work going uphill is positive, but the work going downhill is 
negative.

�426.67 lbs

base � 6.6385 lb,
front and back:
5.7726 lb,
sides � 9.4835 lb
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40. Yellow Perch A researcher measures the lengths of 3-year-old
yellow perch in a fish hatchery and finds that they have a mean
length of 17.2 cm with a standard deviation of 3.4 cm. What
proportion of 3-year-old yellow perch raised under similar
conditions can be expected to reach a length of 20 cm or more?

41. Group Activity Using as large a sample of classmates as
possible, measure the span of each person’s fully stretched hand,
from the tip of the pinky finger to the tip of the thumb. Based on
the mean and standard deviation of your sample, what percentage
of students your age would have a finger span of more than 10
inches? Answers will vary.

42. The 68-95-99.7 Rule (a) Verify that for every normal pdf, the
proportion of the population lying within one standard deviation
of the mean is close to 68%. �Hint: Since it is the same for every
pdf, you can simplify the function by assuming that m � 0 and 
s � 1.  Then integrate from �1 to 1.�

(b) Verify the two remaining parts of the rule.

43. Writing to Learn Explain why the area under the graph of a
probability density function has to equal 1. The probability that 

In Exercises 44–48, use the cylindrical shell method to find the
volume of the solid generated by revolving the region bounded by
the curves about the y-axis.

44. y � 2x, y � x�2, x � 1 p

45. y � 1�x, y � 0, x � 1�2, x � 2 3p

46. y � sin x, y � 0, 0 � x � p 2p2

47. y � x � 3, y � x2 � 3x 16p/3

48. the bell-shaped region in Exercise 18 �9.7717

49. Bundt Cake A bundt cake (see Exploration 1, Section 7.3) has
a hole of radius 2 inches and an outer radius of 6 inches at the
base. It is 5 inches high, and each cross-sectional slice is
parabolic.

(a) Model a typical slice by finding the equation of the parabola
with y-intercept 5 and x-intercepts �2. y � 5 � �

5
4

�x2

(b) Revolve the parabolic region about an appropriate line 
to generate the bundt cake and find its volume. �335.1032 in3

50. Finding a Function Find a function f that has a continuous
derivative on �0, ∞� and that has both of the following
properties.

i. The graph of f goes through the point �1, 1�.

ii. The length L of the curve from �1, 1� to any point 
�x, f �x�� is given by the formula  L � ln x � f �x� � 1.

In Exercises 51 and 52, find the area of the surface generated by
revolving the curve about the indicated axis.

51. y � tan x, 0 � x � p�4; x-axis �3.84

52. xy � 1, 1 � y � 2; y-axis �5.02

AP* Examination Preparation
You may use a graphing calculator to solve the following 
problems.

53. Let R be the region in the first quadrant enclosed by the y-axis
and the graphs of y � 2 � sin x and y � sec x.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved
about the x-axis.

(c) Find the volume of the solid whose base is R and whose cross
sections cut by planes perpendicular to the x-axis are squares.

54. The temperature outside a house during a 24-hour period is given by

F(t) � 80 � 10 cos��
1
p

2
t

��, 0 � t � 24,

where F(t) is measured in degrees Fahrenheit and t is measured
in hours.

(a) Find the average temperature, to the nearest degree Fahren-
heit, between t � 6 and t � 14.

(b) An air conditioner cooled the house whenever the outside
temperature was at or above 78 degrees Fahrenheit. For what
values of t was the air conditioner cooling the house?

(c) The cost of cooling the house accumulates at the rate of 
$0.05 per hour for each degree the outside temperature exceeds
78 degrees Fahrenheit. What was the total cost, to the nearest
cent, to cool the house for this 24-hour period?

55. The rate at which people enter an amusement park on a given
day is modeled by the function E defined by

E(t) ��
t2 �

1
2
5
4
6
t
0
�

0
160

�.

The rate at which people leave the same amusement park on the
same day is modeled by the function L defined by

L(t) ��
t2 � 3

9
8
8
t
9
�

0
370

�.

Both E(t) and L(t) are measured in people per hour, and time t is
measured in hours after midnight. These functions are valid for
9 � t � 23, which are the hours that the park is open. At time
t � 9, there are no people in the park.

(a) How many people have entered the park by 5:00 P.M.
(t � 17)? Round your answer to the nearest whole number.

(b) The price of admission to the park is $15 until 5:00 P.M.
(t � 17). After 5:00 P.M., the price of admission to the park is $11.
How many dollars are collected from admissions to the park on
the given day? Round your answer to the nearest whole number.

(c) Let H(t) � �
t

9
(E(x) � L(x))dx for 9 � t � 23. The value of

H(17) to the nearest whole number is 3725. Find the value of
H�(17) and explain the meaning of H(17) and H�(17) in the con-
text of the park.

(d) At what time t, for 9 � t � 23, does the model predict that
the number of people in the park is a maximum?

�0.2051 (20.5%)

(a) �0.6827 (68.27%)
(b) �0.9545 (95.45%)

the variable has some value in the range of all possible values is 1.

50. f (x) ��
x2 � 2

4
ln x � 3
�
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