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Chapter

An automobile’s gas mileage is a function of

many variables, including road surface, tire

type, velocity, fuel octane rating, road angle,

and the speed and direction of the wind. If we look

only at velocity’s effect on gas mileage, the mileage

of a certain car can be approximated by:

m(v) � 0.00015v 3 � 0.032v2 � 1.8v � 1.7 

(where v is velocity)

At what speed should you drive this car to ob-

tain the best gas mileage? The ideas in Section 4.1

will help you find the answer.

Applications of
Derivatives

4
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Section 4.1 Extreme Values of Functions 187

Chapter 4 Overview

In the past, when virtually all graphing was done by hand—often laboriously—derivatives
were the key tool used to sketch the graph of a function. Now we can graph a function
quickly, and usually correctly, using a grapher. However, confirmation of much of what we
see and conclude true from a grapher view must still come from calculus.

This chapter shows how to draw conclusions from derivatives about the extreme val-
ues of a function and about the general shape of a function’s graph. We will also see
how a tangent line captures the shape of a curve near the point of tangency, how to de-
duce rates of change we cannot measure from rates of change we already know, and
how to find a function when we know only its first derivative and its value at a single
point. The key to recovering functions from derivatives is the Mean Value Theorem, a
theorem whose corollaries provide the gateway to integral calculus, which we begin in
Chapter 5.

Extreme Values of Functions

Absolute (Global) Extreme Values
One of the most useful things we can learn from a function’s derivative is whether the
function assumes any maximum or minimum values on a given interval and where
these values are located if it does. Once we know how to find a function’s extreme val-
ues, we will be able to answer such questions as “What is the most effective size for a
dose of medicine?” and “What is the least expensive way to pipe oil from an offshore
well to a refinery down the coast?” We will see how to answer questions like these in
Section 4.4.

4.1

What you’ll learn about

• Absolute (Global) Extreme Values

• Local (Relative) Extreme Values

• Finding Extreme Values

. . . and why 

Finding maximum and minimum
values of functions, called opti-
mization, is an important issue in
real-world problems.

DEFINITION Absolute Extreme Values

Let f be a function with domain D. Then f �c� is the

(a) absolute maximum value on D if and only if f �x� � f �c� for all x in D.

(b) absolute minimum value on D if and only if f �x� � f �c� for all x in D.

Absolute (or global) maximum and minimum values are also called absolute extrema
(plural of the Latin extremum). We often omit the term “absolute” or “global” and just say
maximum and minimum.

Example 1 shows that extreme values can occur at interior points or endpoints of 
intervals.

EXAMPLE 1 Exploring Extreme Values

On ��p�2, p�2�, f �x� � cos x takes on a maximum value of 1 (once) and a minimum
value of 0 (twice). The function  g�x� � sin x takes on a maximum value of 1 and a
minimum value of �1 (Figure 4.1). Now try Exercise 1.

Functions with the same defining rule can have different extrema, depending on the
domain.Figure 4.1 (Example 1)

x

y

0

1

–1

y � sin x

�––
2

–

y � cos x

�––
2
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188 Chapter 4 Applications of Derivatives

EXAMPLE 2 Exploring Absolute Extrema

The absolute extrema of the following functions on their domains can be seen in Figure 4.2.

Function Rule Domain D Absolute Extrema on D

(a) y � x2 ���, �� No absolute maximum. 
Absolute minimum of 0 at x � 0.

(b) y � x2 �0, 2� Absolute maximum of 4 at x � 2. 
Absolute minimum of 0 at x � 0.

(c) y � x2 �0, 2� Absolute maximum of 4 at x � 2. 
No absolute minimum.

(d) y � x2 �0, 2� No absolute extrema.

Now try Exercise 3.

Example 2 shows that a function may fail to have a maximum or minimum value. This
cannot happen with a continuous function on a finite closed interval.

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval �a, b�, then f has both a maximum value and a
minimum value on the interval. (Figure 4.3)

Figure 4.2 (Example 2)

x

y

2

(a) abs min only

 y � x2

D � (–�, �)

x

y

2

(b) abs max and min

 y � x2

D � [0, 2]

x

y

2

(c) abs max only

 y � x2

D � (0, 2]

x

y

2

(d) no abs max or min

 y � x2

D � (0, 2)

Figure 4.3 Some possibilities for a continuous function’s maximum (M) and
minimum (m) on a closed interval [a, b].

x
a

y � f (x)

(x2, M)

Maximum and minimum
at interior points

x2 b

M

x1

(x1, m)

�m�

x
a b

y � f (x)
M

m

Maximum and minimum
at endpoints

x
a

y � f (x)

Maximum at interior point,
minimum at endpoint

x2

M

b

m
x

a

y � f(x)

Minimum at interior point,
maximum at endpoint

x1

M

b

m
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Section 4.1 Extreme Values of Functions 189

Local (Relative) Extreme Values
Figure 4.4 shows a graph with five points where a function has extreme values on its domain
�a, b�. The function’s absolute minimum occurs at a even though at e the function’s value is
smaller than at any other point nearby. The curve rises to the left and falls to the right around
c, making f �c� a maximum locally. The function attains its absolute maximum at d.

THEOREM 2 Local Extreme Values

If a function f has a local maximum value or a local minimum value at an interior
point c of its domain, and if f 	 exists at c, then

f 	�c� � 0.

Local extrema are also called relative extrema.
An absolute extremum is also a local extremum, because being an extreme value

overall makes it an extreme value in its immediate neighborhood. Hence, a list of local ex-
trema will automatically include absolute extrema if there are any.

Finding Extreme Values
The interior domain points where the function in Figure 4.4 has local extreme values are
points where either f 	 is zero or f 	does not exist. This is generally the case, as we see from
the following theorem.

Figure 4.4 Classifying extreme values. 

x
ba

y � f (x)

c e d

Local maximum.
No greater value of

f nearby.

Absolute maximum.
No greater value of f anywhere.
Also a local maximum.

Local minimum.
No smaller value of
f nearby.

Local minimum.
No smaller
value of f nearby.

Absolute minimum.
No smaller value

of f anywhere. Also a
local minimum.

DEFINITION Local Extreme Values

Let c be an interior point of the domain of the function f. Then f �c� is a

(a) local maximum value at c if and only if f �x� � f �c� for all x in some open 
interval containing c.

(b) local minimum value at c if and only if  f �x� � f �c� for all x in some open 
interval containing c.

A function f has a local maximum or local minimum at an endpoint c if the appro-
priate inequality holds for all x in some half-open domain interval containing c.
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190 Chapter 4 Applications of Derivatives

EXAMPLE 3 Finding Absolute Extrema

Find the absolute maximum and minimum values of f �x� � x2 �3 on the interval
��2, 3�.

SOLUTION

Solve Graphically Figure 4.5 suggests that f has an absolute maximum value of
about 2 at  x � 3 and an absolute minimum value of 0 at  x � 0.

Confirm Analytically We evaluate the function at the critical points and endpoints
and take the largest and smallest of the resulting values.

The first derivative

f 	�x� � 

2
3


 x�1�3 � 

3�

2
3 x�



has no zeros but is undefined at x � 0. The values of f at this one critical point and at
the endpoints are

Critical point value: f �0� � 0;

Endpoint values: f ��2� � ��2�2�3 � �3 4�;

f �3� � �3�2 �3 � �3 9�.

We can see from this list that the function’s absolute maximum value is �3 9� � 2.08,
and occurs at the right endpoint  x � 3.  The absolute minimum value is 0, and occurs
at the interior point  x � 0. Now try Exercise 11.

In Example 4, we investigate the reciprocal of the function whose graph was drawn in
Example 3 of Section 1.2 to illustrate “grapher failure.”

EXAMPLE 4 Finding Extreme Values

Find the extreme values of f �x� � 

�4�

1

�� x�2�

 .

SOLUTION

Solve Graphically Figure 4.6 suggests that f has an absolute minimum of about 0.5 at
x � 0. There also appear to be local maxima at x � �2 and x � 2. However, f is not de-
fined at these points and there do not appear to be maxima anywhere else.

continued

Figure 4.5 (Example 3)

[–2, 3] by [–1, 2.5]

y � x2/3

Figure 4.6 The graph of 

f �x� � 

�4�

1

�� x�2�

 .

(Example 4)

[–4, 4] by [–2, 4]

Because of Theorem 2, we usually need to look at only a few points to find a function’s
extrema. These consist of the interior domain points where f 	� 0 or f 	 does not exist (the
domain points covered by the theorem) and the domain endpoints (the domain points not
covered by the theorem). At all other domain points, f 	 � 0 or f 	� 0.

The following definition helps us summarize these findings.

Thus, in summary, extreme values occur only at critical points and endpoints.

DEFINITION Critical Point

A point in the interior of the domain of a function f at which  f 	� 0  or f 	 does not
exist is a critical point of f.
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Section 4.1 Extreme Values of Functions 191

Confirm Analytically The function f is defined only for  4 � x2 � 0, so its domain
is the open interval ��2, 2�. The domain has no endpoints, so all the extreme values
must occur at critical points. We rewrite the formula for f to find f 	:

f �x� � 

�4�

1

�� x�2�

 � �4 � x2��1�2.

Thus,

f 	�x� � � 

1
2


 �4 � x2��3/2��2x� � 

�4 �

x
x2�3�2
 .

The only critical point in the domain ��2, 2� is  x � 0.  The value

f �0� � 

�4�

1

�� 0�2�

 � 


1
2




is therefore the sole candidate for an extreme value.

To determine whether 1�2 is an extreme value of f, we examine the formula 

f �x� � 

�4�

1

�� x�2�

 .

As x moves away from 0 on either side, the denominator gets smaller, the values of f
increase, and the graph rises. We have a minimum value at x � 0, and the minimum is
absolute.

The function has no maxima, either local or absolute. This does not violate Theorem 1
(The Extreme Value Theorem) because here f is defined on an open interval. To invoke
Theorem 1’s guarantee of extreme points, the interval must be closed.

Now try Exercise 25.

While a function’s extrema can occur only at critical points and endpoints, not every
critical point or endpoint signals the presence of an extreme value. Figure 4.7 illustrates
this for interior points. Exercise 55 describes a function that fails to assume an extreme
value at an endpoint of its domain.

Figure 4.7 Critical points without extreme values. (a) y	 � 3x2 is 0 at x � 0, but 
y � x3 has no extremum there. (b) y	 � �1�3�x�2�3 is undefined at x � 0, but y � x1�3

has no extremum there.

–1

x

y

1–1

1

y � x3

0

(a)

–1

x

y

1–1

1
y � x1/3

(b)

EXAMPLE 5 Finding Extreme Values

Find the extreme values of 

5 � 2x2, x � 1
f �x� � {x � 2, x � 1.

continued
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192 Chapter 4 Applications of Derivatives

SOLUTION

Solve Graphically The graph in Figure 4.8 suggests that f 	�0� � 0  and that f 	�1�
does not exist. There appears to be a local maximum value of 5 at  x � 0  and a local
minimum value of 3 at  x � 1. 

Confirm Analytically For  x  1, the derivative is

f 	�x� � {

d
d
x

�5 � 2x2� � �4x, x � 1



d
d
x

�x � 2� � 1, x � 1.

The only point where f 	� 0 is x � 0.  What happens at x � 1?

At x � 1, the right- and left-hand derivatives are respectively

lim
h→0�



f �1 � h

h
� � f �1�

� lim

h→0�


�1 � h�

h
� 2 � 3

� lim

h→0�


h
h


 � 1,

lim
h→0�



f �1 � h

h
� � f �1�

� lim

h→0�


5 � 2�1 �

h
h�2 � 3



� lim
h→0�



�2h�

h
2 � h�

� �4.

Since these one-sided derivatives differ, f has no derivative at  x � 1, and 1 is a second
critical point of f.

The domain ���, �� has no endpoints, so the only values of f that might be local ex-
trema are those at the critical points:

f �0� � 5 and f �1� � 3.

From the formula for f, we see that the values of f immediately to either side of  x � 0
are less than 5, so 5 is a local maximum. Similarly, the values of f immediately to either
side of  x � 1  are greater than 3, so 3 is a local minimum. Now try Exercise 41.

Most graphing calculators have built-in methods to find the coordinates of points where
extreme values occur. We must, of course, be sure that we use correct graphs to find these
values. The calculus that you learn in this chapter should make you feel more confident
about working with graphs.

EXAMPLE 6 Using Graphical Methods

Find the extreme values of f �x� � ln 	
1 �

x
x2
 	.

SOLUTION

Solve Graphically The domain of f is the set of all nonzero real numbers. Figure 4.9
suggests that f is an even function with a maximum value at two points. The coordinates
found in this window suggest an extreme value of about �0.69 at approximately 
x � 1. Because f is even, there is another extreme of the same value at approximately 
x � �1. The figure also suggests a minimum value at  x � 0, but f is not defined
there.

Confirm Analytically The derivative

f 	�x� � 

x�

1
1

�

�

x
x

2

2�



is defined at every point of the function’s domain. The critical points where f 	�x� � 0 are
x � 1 and  x � �1. The corresponding values of f are both ln �1�2� � �ln 2 � �0.69.

Now try Exercise 37.

Figure 4.8 The function in Example 5.

[–5, 5] by [–5, 10]

Figure 4.9 The function in Example 6.

[–4.5, 4.5] by [–4, 2]

Maximum
X = .9999988 Y = –.6931472
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Section 4.1 Exercises

Finding Extreme Values

Let f �x� � 	
x2 �

x
1


 	, �2 � x � 2.

1. Determine graphically the extreme values of f and where they occur. Find f 	at
these values of x.

2. Graph f and f 	�or NDER � f �x�, x, x�� in the same viewing window. Comment
on the relationship between the graphs.

3. Find a formula for f 	�x�.

EXPLORATION 1

In Exercises 1–4, find the first derivative of the function.

1. f �x� � �4� �� x�

2. f �x� � 

�9�

2

�� x�2�

  


(9 �

2
x
x

2)3/2


3. g�x� � cos �ln x� �

sin (

x
ln x)

 4. h�x� � e2x 2e2x

In Exercises 5–8, match the table with a graph of f (x).

5. 6.  

7. 8.

In Exercises 9 and 10, find the limit for 

f �x� � 

�9�

2

�� x�2�

 .

9. lim
x→3�

f �x� � 10. lim
x→�3�

f �x� �

In Exercises 11 and 12, let 

x3 � 2x, x � 2
f �x� � {x � 2, x � 2.

11. Find  (a) f 	�1�, 1 (b) f 	�3�, 1 (c) f 	�2�. Undefined

12. (a) Find the domain of f 	. x  2

(b) Write a formula for f 	�x�. f 	(x) � 
3x2 � 2, x � 2
1, x � 2

a b c

(d)

a b c

(c)

a b c

(b)

a b c

(a)

x f 	�x�

a does not exist
b does not exist
c �1.7

x f 	�x�

a does not exist
b 0
c �2

x f 	�x�

a 0
b 0
c �5

x f 	�x�

a 0
b 0
c 5

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

In Exercises 1–4, find the extreme values and where they occur.

1. 2.

x

y

1–1

1

–1

x

y

2

2

–2 0

3. 4.

2
(1, 2)

–1
–3 2

x

y

x

y

0 2

5

�1



2�4 � x�

(c) (b)

(d) (a)

1. Minima at (�2, 0) and (2, 0), maximum at (0, 2)
2. Local minimum at (�1, 0), local maximum at (1, 0)

3. Maximum at (0, 5)
4. Local maximum at (�3, 0), local

minimum at (2, 0), maximum at
(1, 2), minimum at (0, �1)
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194 Chapter 4 Applications of Derivatives

In Exercises 5–10, identify each x-value at which any absolute ex-
treme value occurs. Explain how your answer is consistent with the
Extreme Value Theorem. See page 195.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, use analytic methods to find the extreme values
of the function on the interval and where they occur. See page 195.

11. f �x� � 

1
x


 � ln x, 0.5 � x � 4

12. g�x� � e�x, �1 � x � 1

13. h�x� � ln �x � 1�, 0 � x � 3

14. k�x� � e�x2, �� � x � �

15. f �x� � sin (x � 

p

4

 ), 0 � x � 


7
4
p



16. g�x� � sec x, � 

p

2

 � x � 


3
2
p



17. f �x� � x2 �5, �3 � x � 1

18. f �x� � x3�5, �2 � x � 3

In Exercises 19–30, find the extreme values of the function and where
they occur.

19. y � 2x 2 � 8x � 9 20. y � x3 � 2x � 4

21. y � x3 � x2 � 8x � 5 22. y � x3 � 3x2 � 3x � 2

23. y � �x�2��� 1� 24. y � 

x2

1
� 1



25. y � 

�1�

1

�� x�2�

 26. y � 


�3 1�
1

�� x�2�



27. y � �3� �� 2�x��� x�2�

28. y � 

3
2


 x4 � 4x3 � 9x2 � 10

29. y � 

x2 �

x
1


 30. y � 

x2 �

x �

2x
1
� 2




x

y

0 a c b

y � g(x)

x

y

0 a c b

y � g(x)

x

y

0 a b

y � h(x)

c
x

y

0 a b

y � f (x)

c

x

y

0 a c b

y � f (x)

x

y

0 a c1 b

y � h(x)

c2

Group Activity In Exercises 31–34, find the extreme values of the
function on the interval and where they occur.

31. f �x� � 	x � 2	 � 	x � 3	, �5 � x � 5

32. g�x� � 	x � 1	 � 	x � 5	, �2 � x � 7

33. h�x� � 	x � 2	 � 	x � 3	, �� � x � �

34. k�x� � 	x � 1	 � 	x � 3	, �� � x � �

In Exercises 35–42, identify the critical point and determine the local
extreme values.

35. y � x 2�3�x � 2� 36. y � x 2�3�x2 � 4�

37. y � x�4� �� x�2� 38. y � x2�3� �� x�

39.
4 � 2x, x � 1

y � {x � 1, x � 1

40.
3 � x, x � 0

y � {3 � 2x � x2, x � 0

41.
�x2 � 2x � 4, x � 1

y � {�x2 � 6x � 4, x � 1

� 

1
4


 x2 � 

1
2


 x � 

1
4
5

 , x � 1

42. y � {
x3 � 6x2 � 8x, x � 1

43. Writing to Learn The function 

V�x� � x�10 � 2x��16 � 2x�, 0 � x � 5,

models the volume of a box.

(a) Find the extreme values of V.

(b) Interpret any values found in (a) in terms of volume of 
the box.

44. Writing to Learn The function

P�x� � 2x � 

20

x
0


 , 0 � x � �,

models the perimeter of a rectangle of dimensions x by 100�x.

(a) Find any extreme values of P.

(b) Give an interpretation in terms of perimeter of the rectangle
for any values found in (a).

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

45. True or False If f (c) is a local maximum of a continuous
function f on an open interval (a, b), then f 	(c) � 0. Justify your 
answer.

46. True or False If m is a local minimum and M is a local maxi-
mum of a continuous function f on (a, b), then m � M. Justify
your answer.

47. Multiple Choice Which of the following values is the ab-
solute maximum of the function f (x) � 4x � x2 � 6 on the interval
[0, 4]? E

(A) 0 (B) 2 (C) 4 (D) 6 (E) 10

45. False. For example, the maximum could occur at a corner, where f 	(c)
would not exist.

Min value 1 at
x � 2

Min value 
1 at x � 0

Max value 2 at x � 1; 
min value 0 at x � �1, 3

Min value 0 
at x � �1, 1

None

Local max at (0, �1)

Local min
at (0, 1)

21. Local max at (�2, 17); local min at �

4
3


, �

4
2
1
7

�

Max value is 144 at x � 2.

Min value is 40 at x � 10.

The largest volume of the box is 144 cubic units and
it occurs when x � 2.

The smallest perimeter is 40 units
and it occurs when x � 10, which makes it a 10 by 10 square.
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Section 4.1 Extreme Values of Functions 195

48. Multiple Choice If f is a continuous, decreasing function on
[0, 10] with a critical point at (4, 2), which of the following state-
ments must be false? E

(A) f (10) is an absolute minimum of f on [0, 10].

(B) f (4) is neither a relative maximum nor a relative minimum.

(C) f 	(4) does not exist.

(D) f 	(4) � 0

(E) f 	(4) � 0

49. Multiple Choice Which of the following functions has exactly
two local extrema on its domain? B

(A) f (x) � ⏐x � 2⏐
(B) f (x) � x3 � 6x � 5

(C) f(x) � x3 � 6x � 5

(D) f (x) � tan x

(E) f (x) � x � ln x

50. Multiple Choice If an even function f with domain all real
numbers has a local maximum at x � a, then f (�a) B

(A) is a local minimum.

(B) is a local maximum.

(C) is both a local minimum and a local maximum.

(D) could be either a local minimum or a local maximum.

(E) is neither a local minimum nor a local maximum.

Explorations
In Exercises 51 and 52, give reasons for your answers.

51. Writing to Learn Let f �x� � �x � 2�2�3.

(a) Does f 	�2� exist? No

(b) Show that the only local extreme value of f occurs at x � 2.

(c) Does the result in (b) contradict the Extreme Value Theorem?

(d) Repeat parts (a) and (b) for f �x� � �x � a�2�3, replacing 2 by a.

52. Writing to Learn Let f �x� � 	x3 � 9x	.

(a) Does f 	�0� exist? No (b) Does f 	�3� exist? No

(c) Does f 	��3� exist? No (d) Determine all extrema of f.

Extending the Ideas
53. Cubic Functions Consider the cubic function

f �x� � ax3 � bx2 � cx � d.

(a) Show that f can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

(b) How many local extreme values can f have? Two or none

54. Proving Theorem 2 Assume that the function f has a local
maximum value at the interior point c of its domain and that f 	(c)
exists.

(a) Show that there is an open interval containing c such that
f �x� � f �c� � 0 for all x in the open interval.

(b) Writing to Learn Now explain why we may say

lim
x→c�



f �x

x
�

�

�

c
f �c�


 � 0.

(c) Writing to Learn Now explain why we may say

lim
x→c�



f �x

x
�

�

�

c
f �c�


 � 0.

(d) Writing to Learn Explain how parts (b) and (c) allow us
to conclude f 	�c� � 0.

(e) Writing to Learn Give a similar argument if f has a local
minimum value at an interior point.

55. Functions with No Extreme Values at Endpoints

(a) Graph the function

sin 

1
x


 , x � 0
f �x� � {0, x � 0.

Explain why f �0� � 0  is not a local extreme value of f.

(b) Group Activity Construct a function of your own that fails
to have an extreme value at a domain endpoint.

Answers:
5. Maximum at x � b, minimum at x � c2; 

Extreme Value Theorem applies, so both the max
and min exist.

6. Maximum at x � c, minimum at x � b; 
Extreme Value Theorem applies, so both the max 
and min exist.

7. Maximum at x � c, no minimum; 
Extreme Value Theorem doesn’t apply, since the 
function isn’t defined on a closed interval.

8. No maximum, no minimum; 
Extreme Value Theorem doesn’t apply, since the 
function isn’t continuous or defined on a closed 
interval.

9. Maximum at x � c, minimum at x � a; 
Extreme Value Theorem doesn’t apply, since the 
function isn’t continuous.

10. Maximum at x � a, minimum at x � c; 
Extreme Value Theorem doesn’t apply, since the 
function isn’t continuous.

11. Maximum value is 

1
4


 � ln 4 at x � 4; minimum value is 1 at x � 1; 

local maximum at �

1
2


, 2 � ln 2�
12. Maximum value is e at x � �1; minimum value is 


1
e


 at x � 1.

13. Maximum value is ln 4 at x � 3; minimum value is 0 at x � 0.
14. Maximum value is 1 at x � 0

15. Maximum value is 1 at x � 

�

4

; minimum value is �1 at x � 


5
4
�

; 

local minimum at �0, �; local maximum at �

7
4
�

, 0�

16. Local minimum at (0, 1); local maximum at (�, �1)
17. Maximum value is 32/5 at x � �3; minimum value is 0 at x � 0
18. Maximum value is 33/5 at x � 3

1


�2�

51. (b) The derivative is defined and nonzero for x  2. Also, f (2) � 0, and
f (x) � 0 for all x  2.

(c) No, because (��, �) is not a closed interval.
(d) The answers are the same as (a) and (b) with 2 replaced by a.

Minimum value is 0 at x � �3,
x � 0, and x � 3; local maxima
at (��3�, 6�3�) and (�3�, 6�3�)
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Mean Value Theorem

Mean Value Theorem
The Mean Value Theorem connects the average rate of change of a function over an interval
with the instantaneous rate of change of the function at a point within the interval. Its pow-
erful corollaries lie at the heart of some of the most important applications of the calculus.

The theorem says that somewhere between points A and B on a differentiable curve,
there is at least one tangent line parallel to chord AB (Figure 4.10).

The hypotheses of Theorem 3 cannot be relaxed. If they fail at even one point, the
graph may fail to have a tangent parallel to the chord. For instance, the function f �x� � 	x 	
is continuous on ��1, 1� and differentiable at every point of the interior ��1, 1� except 
x � 0. The graph has no tangent parallel to chord AB (Figure 4.11a). The function
g�x� � int �x� is differentiable at every point of �1, 2� and continuous at every point of 
�1, 2� except x � 2. Again, the graph has no tangent parallel to chord AB (Figure 4.11b).

The Mean Value Theorem is an existence theorem. It tells us the number c exists
without telling how to find it. We can sometimes satisfy our curiosity about the value of
c but the real importance of the theorem lies in the surprising conclusions we can draw
from it.

4.2

What you’ll learn about

• Mean Value Theorem

• Physical Interpretation

• Increasing and Decreasing 
Functions

• Other Consequences

. . . and why 

The Mean Value Theorem is an
important theoretical tool to
connect the average and in-
stantaneous rates of change.

Figure 4.10 Figure for the Mean Value
Theorem.

x

y

0

Slope f '(c)

a

Tangent parallel to chord

c b
y � f (x)

Slope f(b) � f(a)
————–

b � a

B

A

THEOREM 3 Mean Value Theorem for Derivatives

If y � f �x� is continuous at every point of the closed interval �a, b� and differen-
tiable at every point of its interior �a, b�, then there is at least one point c in �a, b� at
which

f 	�c� � 

f �b

b
� �

�

f
a
�a�


 .

Rolle’s Theorem

The first version of the Mean Value The-

orem was proved by French mathemati-

cian Michel Rolle (1652–1719). His ver-

sion had f�a� � f�b� � 0 and was proved

only for polynomials, using algebra and

geometry.

Rolle distrusted calculus and spent

most of his life denouncing it. It is

ironic that he is known today only for

an unintended contribution to a field

he tried to suppress.

y

x
0

f ' (c) = 0

a

y = f (x) 

c b

Figure 4.11 No tangent parallel to chord AB.

x

y

B (1, 1)

b � 1a � –1

(a)

A (–1, 1)

y � |x |, –1 ≤ x ≤ 1

y

x

y � int x, 1≤ x ≤ 2
A (1, 1)

B (2, 2)

b � 2a � 1

(b)

2

1

0

EXAMPLE 1 Exploring the Mean Value Theorem

Show that the function f �x� � x2 satisfies the hypotheses of the Mean Value Theorem
on the interval �0, 2�. Then find a solution c to the equation

f 	�c� � 

f �b

b
� �

�

f
a
�a�




on this interval.

continued
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SOLUTION  

The function f �x� � x2 is continuous on �0, 2� and differentiable on �0, 2�. Since
f �0� � 0 and f �2� � 4, the Mean Value Theorem guarantees a point c in the interval
�0, 2� for which

f 	�c� � 

f �b

b
� �

�

f
a
�a�




2c � 

f �2

2
�

�

�

0
f �0�


 � 2    f	�x� � 2x

c � 1.

Interpret The tangent line to f �x� � x2 at  x � 1  has slope 2 and is parallel to the
chord joining A�0, 0� and B�2, 4� (Figure 4.12). 

Now try Exercise 1.

EXAMPLE 2 Exploring the Mean Value Theorem

Explain why each of the following functions fails to satisfy the conditions of the Mean
Value Theorem on the interval [–1, 1].

(a) f (x) � �x2� � 1 (b)

SOLUTION  

(a) Note that �x2� � 1 � |x| � 1, so this is just a vertical shift of the absolute value
function, which has a nondifferentiable “corner” at x � 0. (See Section 3.2.) The 
function f is not differentiable on (–1, 1).

(b) Since limx→1– f (x) � limx→1– x3 � 3 � 4 and limx→1+ f (x) � limx→1+ x2 � 1 � 2, the
function has a discontinuity at x � 1. The function f is not continuous on [–1, 1].

If the two functions given had satisfied the necessary conditions, the  conclusion of the
Mean Value Theorem would have guaranteed the existence of a number c in (– 1, 1) 

such that f	(c) � 

f (1

1
)
�

�

(
f
�

(�
1)

1)

 � 0. Such a number c does not exist for the function in 

part (a), but one happens to exist for the function in part (b) (Figure 4.13). 

Figure 4.12 (Example 1)

y =  x2

x

y

1

(1, 1)

B(2, 4)

A(0, 0) 2

Figure 4.13 For both functions in Example 2, 

f (1

1
)
�

�

(
f
�

(�
1)

1)

 � 0 but neither

function satisfies the conditions of the Mean Value Theorem on the interval 
[– 1, 1]. For the function in Example 2(a), there is no number c such that 
f	(c) � 0. It happens that f	(0) � 0 in Example 2(b).

y

x

1

2

3

1 2–1–2 0

(a)

y

(b)

x– 4

4

04

x3 � 3 for x � 1
f �x� � { x2 � 1 for x � 1

Now try Exercise 3.
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EXAMPLE 3 Applying the Mean Value Theorem

Let f �x� � �1� �� x�2�, A � ��1, f ��1��, and  B � �1, f �1��.  Find a 
tangent to f in the interval ��1, 1� that is parallel to the secant AB.

SOLUTION  

The function f (Figure 4.14) is continuous on the interval [–1, 1] and

f 	�x� � 

�1�

�

��
x

x�2�



is defined on the interval ��1, 1�. The function is not differentiable at  x � �1  and  x � 1,
but it does not need to be for the theorem to apply. Since f ��1� � f �1� � 0, the tangent
we are looking for is horizontal. We find that f 	� 0  at  x � 0, where the graph has the
horizontal tangent y � 1. Now try Exercise 9.

Physical Interpretation
If we think of the difference quotient � f �b� � f �a����b � a� as the average change in f
over �a, b� and f 	�c� as an instantaneous change, then the Mean Value Theorem says that
the instantaneous change at some interior point must equal the average change over the en-
tire interval.

EXAMPLE 4 Interpreting the Mean Value Theorem

If a car accelerating from zero takes 8 sec to go 352 ft, its average velocity for the 8-sec
interval is 352�8 � 44 ft�sec, or 30 mph. At some point during the acceleration, the the-
orem says, the speedometer must read exactly 30 mph (Figure 4.15).

Now try Exercise 11.

Increasing and Decreasing Functions
Our first use of the Mean Value Theorem will be its application to increasing and decreas-
ing functions.

Figure 4.15 (Example 4)

Figure 4.14 (Example 3)

y �

x

y

0 1–1

1 � x2√⎯⎯⎯⎯⎯⎯1 , –1     x     1≤ ≤

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s � f(t)

Monotonic Functions

A function that is always increasing on

an interval or always decreasing on an

interval is said to be monotonic there.

The Mean Value Theorem allows us to identify exactly where graphs rise and fall.
Functions with positive derivatives are increasing functions; functions with negative deriv-
atives are decreasing functions.

COROLLARY 1 Increasing and Decreasing Functions

Let f be continuous on �a, b� and differentiable on �a, b�.

1. If f 	 � 0  at each point of �a, b�, then f increases on �a, b�.

2. If f 	� 0  at each point of �a, b�, then f decreases on �a, b�.

DEFINITIONS Increasing Function, Decreasing Function

Let f be a function defined on an interval I and let x1 and x2 be any two points in I.

1. f increases on I if x1 � x2 ⇒ f �x1 � � f �x2 �.

2. f decreases on I if x1 � x2 ⇒ f �x1 � � f �x2 �.
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Proof  Let x1 and x2 be any two points in �a, b� with  x1 � x2.  The Mean Value Theorem
applied to f on �x1, x2� gives

f �x2 � � f �x1 � � f 	�c��x2 � x1�

for some c between x1 and x2. The sign of the right-hand side of this equation is the same
as the sign of f 	�c� because  x2 � x1 is positive. Therefore,

(a) f �x1 � � f �x2 � if f 	 � 0 on  �a, b� ( f is increasing), or

(b) f �x1 � � f �x2 � if f 	 � 0 on  �a, b� ( f is decreasing). ■

EXAMPLE 5 Determining Where Graphs Rise or Fall

The function  y � x2 (Figure 4.16) is

(a) decreasing on ���, 0� because y	 � 2x � 0 on  ���, 0�.
(b) increasing on �0, �� because y	 � 2x � 0 on  �0, ��. Now try Exercise 15.

EXAMPLE 6 Determining Where Graphs Rise or Fall

Where is the function f �x� � x3 � 4x increasing and where is it decreasing?

SOLUTION

Solve Graphically The graph of f in Figure 4.17 suggests that f is increasing from
�� to the x-coordinate of the local maximum, decreasing between the two local ex-
trema, and increasing again from the x-coordinate of the local minimum to �. This in-
formation is supported by the superimposed graph of  f 	�x� � 3x2 � 4.

Confirm Analytically The function is increasing where f 	�x� � 0.

3x2 � 4 � 0

x2 � 

4
3




x � �

4
3


� or x �

4
3


�
The function is decreasing where f 	�x� � 0.

3x2 � 4 � 0

x2 � 

4
3




�

4
3


� � x � 

4
3


�
In interval notation, f is increasing on ���, ��4��3�], decreasing on ���4��3�, �4��3��,

and increasing on ��4��3�, ��. Now try Exercise 27.

Other Consequences
We know that constant functions have the zero function as their derivative. We can now
use the Mean Value Theorem to show conversely that the only functions with the zero
function as derivative are constant functions.

Figure 4.16 (Example 5)

Figure 4.17 By comparing the graphs of
f �x� � x3 � 4x and f 	�x� � 3x2 � 4 we 
can relate the increasing and decreasing 
behavior of f to the sign of f 	. (Example 6)

x

y

–1 0 1

1

2–2

2

3

4
y � x 2

Function
increasing

Function
decreasing

y' � 0

y' � 0

y' � 0

[–5, 5] by [–5, 5]

What’s Happening at Zero?

Note that 0 appears in both intervals in

Example 5, which is consistent both with

the definition and with Corollary 1. Does

this mean that the function y � x2 is both

increasing and decreasing at x � 0? No!

This is because a function can only be

described as increasing or decreasing on

an interval with more than one point (see

the definition). Saying that y � x2 is “in-

creasing at x � 2” is not really proper ei-

ther, but you will often see that statement

used as a short way of saying y � x2 is

“increasing on an interval containing 2.”

COROLLARY 2 Functions with f � = 0 are Constant

If f 	�x� � 0 at each point of an interval I, then there is a constant C for which
f �x� � C for all x in I.
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200 Chapter 4 Applications of Derivatives

Proof Our plan is to show that f �x1� � f �x2� for any two points x1 and x2 in I. We can
assume the points are numbered so that  x1 � x2.  Since f is differentiable at every point of
�x1, x2�, it is continuous at every point as well. Thus, f satisfies the hypotheses of the Mean
Value Theorem on �x1, x2�. Therefore, there is a point c between x1 and x2 for which

f 	�c� � 

f �x

x
2

2

�
�

�

x
f

1

�x1�

.

Because f 	�c� � 0, it follows that f �x1� � f �x2�. ■

We can use Corollary 2 to show that if two functions have the same derivative, they dif-
fer by a constant.

COROLLARY 3 Functions with the Same Derivative Differ 
by a Constant

If f 	�x� � g	�x� at each point of an interval I, then there is a constant C such that
f �x� � g�x� � C for all x in I.

Proof  Let  h � f � g.  Then for each point x in I,

h	�x� � f 	�x� � g	�x� � 0.

It follows from Corollary 2 that there is a constant C such that  h�x� � C for all x in I.
Thus, h�x� � f �x� � g�x� � C, or f �x� � g�x� � C. ■

We know that the derivative of f �x� � x2 is 2x on the interval ���, ��. So, any other
function g�x� with derivative 2x on ���, �� must have the formula  g�x� � x2 � C for
some constant C.

EXAMPLE 7 Applying Corollary 3

Find the function f �x� whose derivative is sin x and whose graph passes through the
point �0, 2�.

SOLUTION  

Since f has the same derivative as g(x) � – cos x, we know that f (x) � – cos x � C, for
some constant C. To identify C, we use the condition that the graph must pass through
(0, 2). This is equivalent to saying that 

f(0) � 2

�cos �0� � C � 2 f�x� � �cos x � C

�1 � C � 2

C � 3.

The formula for f is f �x� � �cos x � 3. Now try Exercise 35.

In Example 7 we were given a derivative and asked to find a function with that deriva-
tive. This type of function is so important that it has a name.

DEFINITION Antiderivative

A function F�x� is an antiderivative of a function f �x� if F	�x� � f �x� for all x in
the domain of f. The process of finding an antiderivative is antidifferentiation.
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We know that if f has one antiderivative F then it has infinitely many antiderivatives,
each differing from F by a constant. Corollary 3 says these are all there are. In Exam-
ple 7, we found the particular antiderivative of sin x whose graph passed through the
point �0, 2�.

EXAMPLE 8 Finding Velocity and Position

Find the velocity and position functions of a body falling freely from a height of 0 me-
ters under each of the following sets of conditions:

(a) The acceleration is 9.8 m �sec2 and the body falls from rest.

(b) The acceleration is 9.8 m �sec2 and the body is propelled downward with an initial
velocity of 1 m �sec.

SOLUTION  

(a) Falling from rest. We measure distance fallen in meters and time in seconds, and as-
sume that the body is released from rest at time  t � 0.

Velocity: We know that the velocity v�t� is an antiderivative of the constant function 9.8.
We also know that  g�t� � 9.8t is an antiderivative of 9.8. By Corollary 3,

v�t� � 9.8t � C

for some constant C. Since the body falls from rest, v�0� � 0.  Thus,

9.8�0� � C � 0 and C � 0.

The body’s velocity function is  v�t� � 9.8t.

Position: We know that the position s�t� is an antiderivative of 9.8t. We also know that
h�t� � 4.9t2 is an antiderivative of 9.8t. By Corollary 3,

s�t� � 4.9t2 � C

for some constant C. Since  s�0� � 0,

4.9�0�2 � C � 0 and C � 0.

The body’s position function is  s�t� � 4.9t2.

(b) Propelled downward. We measure distance fallen in meters and time in seconds, and
assume that the body is propelled downward with velocity of 1 m �sec at time  t � 0.

Velocity: The velocity function still has the form  9.8t � C, but instead of being zero,
the initial velocity (velocity at t � 0) is now 1 m �sec. Thus,

9.8�0� � C � 1 and C � 1.

The body’s velocity function is  v�t� � 9.8t � 1.

Position: We know that the position s�t� is an antiderivative of  9.8t � 1.  We also know
that  k�t� � 4.9t2 � t is an antiderivative of  9.8t � 1. By Corollary 3,

s�t� � 4.9t2 � t � C

for some constant C. Since  s�0� � 0,

4.9�0�2 � 0 � C � 0 and C � 0.

The body’s position function is  s�t� � 4.9t2 � t. Now try Exercise 43.
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Quick Review 4.2 (For help, go to Sections 1.2, 2.3, and 3.2.)

In Exercises 1 and 2, find exact solutions to the inequality.

1. 2x2 � 6 � 0 (��3�, �3�) 2.  3x2 � 6 � 0

In Exercises 3–5, let f �x� � �8� �� 2�x�2�.

3. Find the domain of f. [� 2, 2]

4. Where is f continuous? For all x in its domain, or, [�2, 2]

5. Where is f differentiable? On (�2, 2)

In Exercises 6–8, let f �x� � 

x2 �

x
1


 .

6. Find the domain of f. x  �1

7. Where is f continuous? For all x in its domain, or, for all x  �1

8. Where is f differentiable? For all x in its domain, or, for all x  �1

In Exercises 9 and 10, find C so that the graph of the function f
passes through the specified point.

9. f �x� � �2x � C, ��2, 7� C � 3

10. g�x� � x2 � 2x � C, �1, �1� C � �4

Section 4.2 Exercises

sin�1 x, �1 � x � 1

x/2�1, 1 � x � 3

cos x, 0 � x � p�2

sin x, p�2 � x � p

11. Speeding A trucker handed in a ticket at a toll booth showing
that in 2 h she had covered 159 mi on a toll road with speed limit
65 mph. The trucker was cited for speeding. Why?

12. Temperature Change It took 20 sec for the temperature to
rise from 0°F to 212°F when a thermometer was taken from a
freezer and placed in boiling water. Explain why at some mo-
ment in that interval the mercury was rising at exactly
10.6°F/sec.

13. Triremes Classical accounts tell us that a 170-oar trireme (an-
cient Greek or Roman warship) once covered 184 sea miles in 24 h.
Explain why at some point during this feat the trireme’s speed
exceeded 7.5 knots (sea miles per hour).

14. Running a Marathon A marathoner ran the 26.2-mi New
York City Marathon in 2.2 h. Show that at least twice, the
marathoner was running at exactly 11 mph.

In Exercises 15–22, use analytic methods to find (a) the local ex-
trema, (b) the intervals on which the function is increasing, and 
(c) the intervals on which the function is decreasing.

15. f �x� � 5x � x2 16. g�x� � x2 � x � 12

17. h�x� � 

2
x


 See page 204. 18. k�x� � 

x
1
2
 See page 204.

19. f �x� � e2x See page 204. 20. f �x� � e�0.5x See page 204.

21. y � 4 � �x��� 2� 22. y � x4 � 10x2 � 9

In Exercises 1–8, (a) state whether or not the function satisfies the
hypotheses of the Mean Value Theorem on the given interval, and 
(b) if it does, find each value of c in the interval (a, b) that satisfies
the equation

f	(c) � 

f (b

b
) �

�

f
a
(a)


.

1. f (x) � x2 � 2x � 1 on [0, 1]

2. f (x) � x2�3 on [0, 1]

3. f (x) � x1�3 on [�1,1] No. There is a vertical tangent at x � 0.

4. f (x) � |x � 1| on [0, 4] No. There is a corner at x � 1.

5. f (x) � sin�1x on [�1, 1]

6. f (x) � ln(x � 1) on [2, 4]

7. f (x) � 
 on [0, p]

8. f (x) � 
 on [�1, 3]

In Exercises 9 and 10, the interval  a � x � b is given. Let A �
�a, f �a�� and  B � �b, f �b��.  Write an equation for

(a) the secant line AB.

(b) a tangent line to f in the interval �a, b� that is parallel to AB.

9. f �x� � x � 

1
x


 , 0.5 � x � 2

10. f �x� � �x��� 1�, 1 � x � 3 See page 204.

(��, ��2�) � (�2�, �)

1. (a) Yes. (b) 2c � 2 � 

2

1

�

�

(�

0

1)

 � 3, so c � 


1
2


.

2. (a) Yes. (b) 

2
3


c�1/3 � 

1

1

�

�

0

0

 � 1, so c � 


2
8
7

.

5. (a) Yes. (b) 

�1

1
� c2�

 �


(�/2

1

)

�

�

(

(

�

�

1

�

)

/2)

� 


�

2

, so c � �1 � 4/�� 2� � 0.771.

6. (a) Yes. (b) 

c �

1

1

 � 


ln

4

3

�

�

2

ln1

, so c � 2.820.

No. The split function is discontinuous at x � 

�

2

.

No. The split function is discontinuous at x � 1.

(a) y � 

5
2


 (b) y � 2

See page 204.

See page 204. See page 204.

See page 204.
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In Exercises 23–28, find (a) the local extrema, (b) the intervals on
which the function is increasing, and (c) the intervals on which the
function is decreasing.

23. f �x� � x �4� �� x� 24. g�x� � x1�3�x � 8�

25. h�x� � 

x2

�

�

x
4


 26. k�x� � 

x2 �

x
4




27. f �x� � x3 � 2x � 2 cos x 28. g�x� � 2x � cos x

In Exercises 29–34, find all possible functions f with the given
derivative.

29. f 	�x� � x 

x
2

2

 � C 30. f 	�x� � 2 2x � C

31. f 	�x� � 3x2 � 2x � 1 32. f 	�x� � sin x �cos x � C

33. f 	�x� � ex 34. f 	�x� � 

x �

1
1


 , x � 1

In Exercises 35–38, find the function with the given derivative whose
graph passes through the point P.

35. f 	�x� � �

x
1
2
 , x � 0, P�2, 1� 


1
x


 � 

1
2


, x � 0

36. f 	�x� � 

4x

1
3�4
 , P�1, �2� x1/4 � 3

37. f 	�x� � 

x �

1
2


 , x � �2, P��1, 3� ln (x � 2) � 3

38. f 	�x� � 2x � 1 � cos x, P�0, 3� x2 � x � sin x � 3

Group Activity In Exercises 39–42, sketch a graph of a differen-
tiable function  y � f �x� that has the given properties.

39. (a) local minimum at �1, 1�, local maximum at �3, 3�
(b) local minima at �1, 1� and �3, 3�
(c) local maxima at �1, 1� and �3, 3�

40. f �2� � 3, f 	�2� � 0, and

(a) f 	�x� � 0 for  x � 2, f 	�x� � 0 for  x � 2.

(b) f 	�x� � 0 for  x � 2, f 	�x� � 0 for  x � 2.

(c) f 	�x� � 0 for  x  2.

(d) f 	�x� � 0 for  x  2.

41. f 	��1� � f 	�1� � 0, f 	�x� � 0 on ��1, 1�,
f 	�x� � 0  for  x � �1, f 	�x� � 0  for  x � 1.

42. A local minimum value that is greater than one of its local maxi-
mum values.

43. Free Fall On the moon, the acceleration due to gravity is 
1.6 m�sec2. 

(a) If a rock is dropped into a crevasse, how fast will it be going
just before it hits bottom 30 sec later? 48 m/sec

(b) How far below the point of release is the bottom of the cre-
vasse? 720 meters

(c) If instead of being released from rest, the rock is thrown into
the crevasse from the same point with a downward velocity of 
4 m�sec, when will it hit the bottom and how fast will it be going
when it does? After about 27.604 seconds, and it will be going about
48.166 m/sec

44. Diving (a) With what velocity will you hit the water if you step
off from a 10-m diving platform? 14 m/sec

(b) With what velocity will you hit the water if you dive off the
platform with an upward velocity of 2 m�sec? 10�2� m/sec, or,

45. Writing to Learn The function

x, 0 � x � 1
f �x� � {0, x � 1

is zero at  x � 0  and at  x � 1.  Its derivative is equal to 1 at
every point between 0 and 1, so f 	 is never zero between 0 and 1,
and the graph of f has no tangent parallel to the chord from �0, 0�
to �1, 0�. Explain why this does not contradict the Mean Value
Theorem. Because the function is not continuous on [0, 1].

46. Writing to Learn Explain why there is a zero of y � cos x
between every two zeros of  y � sin x.

47. Unique Solution Assume that f is continuous on �a, b� and
differentiable on �a, b�. Also assume that f �a� and f �b� have op-
posite signs and f 	 0  between a and b. Show that f �x� � 0
exactly once between a and b.

In Exercises 48 and 49, show that the equation has exactly one solu-
tion in the interval. [Hint: See Exercise 47.]

48. x4 � 3x � 1 � 0, �2 � x � �1

49. x � ln �x � 1� � 0, 0 � x � 3

50. Parallel Tangents Assume that f and g are differentiable on 
�a, b� and that f �a� � g�a� and f �b� � g�b�.  Show that there is
at least one point between a and b where the tangents to the
graphs of f and g are parallel or the same line. Illustrate with a
sketch.

Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

51. True or False If f is differentiable and increasing on (a, b),
then f	(c) � 0 for every c in (a, b). Justify your answer. 

52. True or False If f is differentiable and f	(c) > 0 for every c in
(a, b), then f is increasing on (a, b). Justify your answer. 

x3 � x2 � x � C

ln (x � 1) � Cex � C

about 14.142 m/sec

51. False. For example, the function x3 is increasing on (�1, 1), but f 	(0) � 0.
52. True. In fact, f is increasing on [a, b] by Corollary 1 to the Mean Value

Theorem.

23. (a) Local max at � (2.67, 3.08); local min at (4, 0)
(b) On (��, 8/3] (c) On [8/3, 4]

(a) None (b) On (��, �) (c) None

24. (a) Local min at � (�2, �7.56)
(b) On [�2, �)

(c) On (��, �2]
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53. Multiple Choice If f (x) � cos x, then the Mean Value 
Theorem guarantees that somewhere between 0 and p/3, f	(x) �

(A) �

2
3
p

 (B) �


�
2
3�


 (C) �

1
2


 (D) 0 (E) 

1
2




54. Multiple Choice On what interval is the function g(x) �
ex3�6x2�8 decreasing? B

(A) (��, 2] (B) [0, 4] (C) [2, 4] (D) (4, �) (E) no interval

55. Multiple Choice Which of the following functions is an

antiderivative of 

�
1

x�

? E

(A) �

�

1
2x3�

 (B) �


�
2

x�

 (C) 


�
2

x�

 (D) �x� � 5  (E) 2�x� � 10

56. Multiple Choice All of the following functions satisfy the
conditions of the Mean Value Theorem on the interval [– 1, 1]
except D

(A) sin x (B) sin�1 x (C) x5/3 (D) x3/5 (E) 

x �

x
2




Explorations
57. Analyzing Derivative Data Assume that f is continuous on

��2, 2� and differentiable on ��2, 2�. The table gives some
values of f 	(x�.

(a) Estimate where f is increasing, decreasing, and has local
extrema.

(b) Find a quadratic regression equation for the data in the table
and superimpose its graph on a scatter plot of the data.

(c) Use the model in part (b) for f 	and find a formula for f that
satisfies f �0� � 0.

58. Analyzing Motion Data Priya’s distance D in meters from a
motion detector is given by the data in Table 4.1.

(a) Estimate when Priya is moving toward the motion detector;
away from the motion detector. 

(b) Writing to Learn Give an interpretation of any local
extreme values in terms of this problem situation.

(c) Find a cubic regression equation  D � f �t� for the data in
Table 4.1 and superimpose its graph on a scatter plot of the data.

(d) Use the model in (c) for f to find a formula for f 	. Use this
formula to estimate the answers to (a).

Extending the Ideas
59. Geometric Mean The geometric mean of two positive

numbers a and b is �a�b�. Show that for f �x� � 1�x on any
interval �a, b� of positive numbers, the value of c in the
conclusion of the Mean Value Theorem is  c � �a�b�.

60. Arithmetic Mean The arithmetic mean of two numbers 
a and b is  �a � b��2.  Show that for f �x� � x2 on any interval
�a, b�, the value of c in the conclusion of the Mean Value
Theorem is  c � �a � b��2.

61. Upper Bounds Show that for any numbers a and b,
	sin b � sin a 	 � 	b � a 	.

62. Sign of f	 Assume that f is differentiable on  a � x � b and
that f �b� � f �a�.  Show that f 	 is negative at some point
between a and b.

63. Monotonic Functions Show that monotonic increasing and
decreasing functions are one-to-one.

Table 4.1 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 3.36 4.5 3.59
0.5 2.61 5.0 4.15
1.0 1.86 5.5 3.99
1.5 1.27 6.0 3.37
2.0 0.91 6.5 2.58
2.5 1.14 7.0 1.93
3.0 1.69 7.5 1.25
3.5 2.37 8.0 0.67
4.0 3.01

x f 	(x� x f 	(x�

�2 7 0.25 �4.81
�1.75 4.19 0.5 �4.25
�1.5 1.75 0.75 �3.31
�1.25 �0.31 1 �2
�1 �2 1.25 �0.31
�0.75 �3.31 1.5 1.75
�0.5 �4.25 1.75 4.19
�0.25 �4.81 2 7

0 �5

10. (a) y � x � , or y � 0.707x � 0.707

(b) y � x � , or y � 0.707x � 0.354
1



2�2�

1


�2�

1


�2�

1


�2�

15. (a) Local maximum at �

5
2


, 

2
4
5

�   (b) On ���, 


5

2

�

15. (c) On �

5
2


, ��
16. (a) Local minimum at �


1
2


, �

4
4
9

�   (b) On �


1
2


, ��
16. (c) On ���, 


1
2


�

17. (a) None (b) None (c) On (��, 0) and (0, �)
18. (a) None (b) On (��, 0) (c) On (0, �)
19. (a) None (b) On (��, �) (c) None
20. (a) None (b) None (c) On (��, �)
21. (a) Local maximum at (�2, 4) (b) None (c) On [�2, �)

22. (a) Local maximum at (0, 9);  local minima at (��5�, �16) 

and (�5�, �16) (b) On [��5�, 0] and [�5�, �)

(c) On (��, ��5�] and [0, �5�]

A

Answers:
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Connecting f 	 and f � with the Graph of f

First Derivative Test for Local Extrema
As we see once again in Figure 4.18, a function f may have local extrema at some critical
points while failing to have local extrema at others. The key is the sign of f 	 in a critical
point’s immediate vicinity. As x moves from left to right, the values of f increase where
f 	 � 0 and decrease where f 	� 0.

At the points where f has a minimum value, we see that f 	� 0 on the interval immedi-
ately to the left and f 	 � 0 on the interval immediately to the right. (If the point is an end-
point, there is only the interval on the appropriate side to consider.) This means that the
curve is falling (values decreasing) on the left of the minimum value and rising (values in-
creasing) on its right. Similarly, at the points where f has a maximum value, f 	 � 0 on the
interval immediately to the left and f 	� 0 on the interval immediately to the right. This
means that the curve is rising (values increasing) on the left of the maximum value and
falling (values decreasing) on its right.

4.3

What you’ll learn about

• First Derivative Test for Local
Extrema

• Concavity  

• Points of Inflection

• Second Derivative Test for Local
Extrema

• Learning about Functions from
Derivatives

. . . and why 

Differential calculus is a powerful
problem-solving tool precisely 
because of its usefulness for ana-
lyzing functions.

Figure 4.18 A function’s first derivative tells how the graph rises and falls.

x

y � f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
f ' undefined

Local min
f ' � 0

Local max
f ' � 0 No extreme

f ' � 0

No extreme
f ' � 0

f ' � 0
f ' � 0f ' � 0

f ' � 0
Local min

f ' � 0
f ' � 0

THEOREM 4   First Derivative Test for Local Extrema

The following test applies to a continuous function f �x�.

At a critical point c:
1. If f 	 changes sign from positive to negative at c � f 	 � 0 for x � c and f 	� 0 for

x � c�, then f has a local maximum value at c.

continued

f' � 0

c

local max

(a)  f '(c) � 0

f ' � 0 f ' � 0

c

local max

(b)  f '(c) undefined

f ' � 0
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Here is how we apply the First Derivative Test to find the local extrema of a function. The
critical points of a function f partition the x-axis into intervals on which f 	 is either positive
or negative. We determine the sign of f 	 in each interval by evaluating f 	 for one value of x in
the interval. Then we apply Theorem 4 as shown in Examples 1 and 2.

EXAMPLE 1 Using the First Derivative Test

For each of the following functions, use the First Derivative Test to find the local ex-
treme values. Identify any absolute extrema. 

(a) f (x) � x3 � 12x � 5 (b) g(x) � (x2 � 3)ex

continued

2. If f 	 changes sign from negative to positive at c � f 	� 0 for x � c and f 	 � 0 for
x � c�, then f has a local minimum value at c.

3. If  f 	 does not change sign at c � f 	 has the same sign on both sides of c�, then f
has no local extreme value at c.

At a left endpoint a:
If f 	� 0 ( f 	 � 0)  for  x � a, then f has a local maximum (minimum) value at a.

At a right endpoint b:
If f 	� 0 ( f 	 � 0)  for  x � b, then f has a local minimum (maximum) value at b.

f ' � 0f ' � 0f ' � 0

c

local
min

(a)  f '(c) � 0

f ' � 0

c

local min

(b)  f '(c) undefined

f ' � 0

c

no extreme

(a)  f '(c) � 0

f ' � 0

c

(b)  f '(c) undefined

f ' � 0

no extreme

f ' � 0

f ' � 0

a

local max

f ' � 0

a

local min

f ' � 0

b

local max

f ' � 0

b

local min
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SOLUTION   

(a) Since f is differentiable for all real numbers, the only possible critical points are the
zeros of f	. Solving f	(x) � 3x2 � 12 � 0, we find the zeros to be x � 2 and x � �2. The
zeros partition the x-axis into three intervals, as shown below:

Figure 4.19 The graph of
f �x� � x3 � 12x � 5.

Figure 4.20 The graph of
g�x� � �x2 � 3�ex. 

[–5, 5] by [–25, 25]

[–5, 5] by [–8, 5]

Using the First Derivative Test, we can see from the sign of f	 on each interval that there is
a local maximum at x � �2 and a local minimum at x � 2. The local maximum value is
f (�2) � 11, and the local minimum value is f(2) � �21. There are no absolute extrema,
as the function has range (��, �) (Figure 4.19).

(b) Since g is differentiable for all real numbers, the only possible critical points are the
zeros of g	. Since g	(x) � (x2 � 3) • ex � (2x) • ex � (x2 � 2x � 3) • ex, we find the zeros
of g	 to be x � 1 and x � �3. The zeros partition the x-axis into three intervals, as shown
below:

Figure 4.21 The graph of y � x3 is 
concave down on ���, 0� and concave up
on �0, ��.

y' decreases
y' increases

x

y

0

y � x3

CONCAV
E U

P

CO
N

CA
VE D

OWN

x

Sign of f + – +

–2 2

	

x

Sign of g + – +

–3 1

	

If a function y � f �x� has a second derivative, then we can conclude that y	 increases if
y� � 0 and y	 decreases if y� � 0.

DEFINITION   Concavity

The graph of a differentiable function  y � f (x)  is 

(a) concave up on an open interval I if y	 is increasing on I.

(b) concave down on an open interval I if y	 is decreasing on I.

Using the First Derivative Test, we can see from the sign of f	 on each interval that there is
a local maximum at x � �3 and a local minimum at x � 1. The local maximum value is
g(�3) � 6e�3 � 0.299, and the local minimum value is g(1) � �2e � �5.437. Although
this function has the same increasing–decreasing–increasing pattern as f, its left end
behavior is quite different. We see that limx→�� g(x) � 0, so the graph approaches the
y-axis asymptotically and is therefore bounded below. This makes g(1) an absolute
minimum. Since  limx→� g(x) � �, there is no absolute maximum (Figure 4.20).

Now try Exercise 3.

Concavity
As you can see in Figure 4.21, the function y � x3 rises as x increases, but the portions de-
fined on the intervals ���, 0� and �0, �� turn in different ways. Looking at tangents as we
scan from left to right, we see that the slope y	 of the curve decreases on the interval ���,
0� and then increases on the interval �0, ��. The curve y � x3 is concave down on ���, 0�
and concave up on �0, ��. The curve lies below the tangents where it is concave down, and
above the tangents where it is concave up.
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EXAMPLE 2 Determining Concavity
Use the Concavity Test to determine the concavity of the given functions on the given
intervals:

(a) y � x2 on (3, 10)               (b) y � 3 � sin x on (0, 2p)

SOLUTION

(a) Since y� � 2 is always positive, the graph of y � x2 is concave up on any interval.
In particular, it is concave up on (3, 10) (Figure 4.22).

(b) The graph of y � 3 � sin x is concave down on (0, p), where y� � �sin x is 
negative. It is concave up on (p , 2p), where y� � �sin x is positive (Figure 4.23).

Now try Exercise 7.

Figure 4.22 The graph of y � x2 is con-
cave up on any interval. (Example 2)

�2 �1 0 1 2
x

1

2

3

4

y

y � x2

y'' > 0 y'' > 0 

C
O

N
C

A
V

E
 U

P

C
O

N
C

A
V

E
 U

P

Figure 4.23 Using the graph of y� to
determine the concavity of y. (Example 2)

[0, 2p] by [–2, 5]

y y � � � 3   � sin x, sin x21

Points of Inflection
The curve y � 3 � sin x in Example 2 changes concavity at the point �p, 3�. We call 
�p, 3� a point of inflection of the curve.

Figure 4.24 Graphical confirmation that
the graph of y � e�x2

has a point of inflec-
tion at x � �1/2� (and hence also at x �
��1/2� ). (Example 3)

X=.70710678 Y=.60653066

1

[–2, 2] by [–1, 2]

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.

A point on a curve where y� is positive on one side and negative on the other is a point
of inflection. At such a point, y� is either zero (because derivatives have the intermediate
value property) or undefined. If y is a twice differentiable function, y� � 0 at a point of in-
flection and y	 has a local maximum or minimum.

EXAMPLE 3 Finding Points of Inflection

Find all points of inflection of the graph of y � e�x2
.

SOLUTION

First we find the second derivative, recalling the Chain and Product Rules:

y � e�x2

y	 � e�x2
• (�2x)

y� � e�x2
• (�2x) • (�2x) � e�x2

• (�2)

� e�x2
(4x2 � 2)

The factor e�x2

is always positive, while the factor (4x2 � 2) changes sign at ��1/2� and
at �1/2�. Since y� must also change sign at these two numbers, the points of inflection
are (��1/2�, 1/�e�)  and (�1/2�, 1/�e�). We confirm our solution graphically by observ-
ing the changes of curvature in Figure 4.24.

Now try Exercise 13.

Concavity Test

The graph of a twice-differentiable function  y � f (x)  is

(a) concave up on any interval where  y� � 0.

(b) concave down on any interval where  y� � 0.

5128_Ch04_pp186-260.qxd  1/13/06  12:36 PM  Page 208



Section 4.3 Connecting f ′ and f″ with the Graph of f 209

EXAMPLE 4 Reading the Graph of the Derivative

The graph of the derivative of a function f on the interval [�4, 4]  is shown in Figure 4.25.
Answer the following questions about f, justifying each answer with information obtained
from the graph of  f 	.

(a) On what intervals is f increasing? 

(b) On what intervals is the graph of f concave up?

(c) At which x-coordinates does f have local extrema?

(d) What are the x-coordinates of all inflection points of the graph of f ?

(e) Sketch a possible graph of f on the interval [�4, 4]. 

SOLUTION

(a) Since  f	 � 0 on the intervals [�4, �2) and (�2, 1), the function f must be increasing
on the entire interval [�4, 1] with a horizontal tangent at x � �2 (a “shelf point”). 

(b) The graph of f is concave up on the intervals where f	 is increasing. We see from the
graph that f	 is increasing on the intervals (�2, 0) and (3, 4).

(c) By the First Derivative Test, there is a local maximum at x � 1 because the sign of f	
changes from positive to negative there. Note that there is no extremum at x � �2, since
f	 does not change sign. Because the function increases from the left endpoint and de-
creases to the right endpoint, there are local minima at the endpoints x � �4 and x � 4.

(d) The inflection points of the graph of f have the same x-coordinates as the turning
points of the graph of f	, namely �2, 0, and 3.

(e) A possible graph satisfying all the conditions is shown in Figure 4.26. 
Now try Exercise 23.

Caution: It is tempting to oversimplify a point of inflection as a point where the second
derivative is zero, but that can be wrong for two reasons:

1. The second derivative can be zero at a noninflection point. For example, consider
the function f (x) � x4 (Figure 4.27). Since f �(x) � 12x2 , we have  f �(0) � 0; how-
ever, (0, 0) is not an inflection point. Note that f � does not change sign at x � 0.

2. The second derivative need not be zero at an inflection point. For example, consider
the function f (x) � �3 x� (Figure 4.28). The concavity changes at x � 0, but there is a
vertical tangent line, so both  f 	(0)  and f �(0) fail to exist. 

Therefore, the only safe way to test algebraically for a point of inflection is to confirm a
sign change of the second derivative. This could occur at a point where the second deriva-
tive is zero, but it also could occur at a point where the second derivative fails to exist. 

To study the motion of a body moving along a line, we often graph the body’s position as
a function of time. One reason for doing so is to reveal where the body’s acceleration, given
by the second derivative, changes sign. On the graph, these are the points of inflection.

EXAMPLE 5   Studying Motion along a Line

A particle is moving along the x-axis with position function 

x�t� � 2t3 � 14t2 � 22t � 5, t � 0.

Find the velocity and acceleration, and describe the motion of the particle.

continued

Figure 4.26 A possible graph of f.
(Example 4)

Figure 4.25 The graph of f	, the deriva-
tive of f, on the interval [�4, 4].

y

x
0–2– 44 –1– 3 321

y

x
0–2– 44 –1– 3 321

Figure 4.27 The function  f (x) � x4

does not have a point of inflection at
the origin, even though f �(0) � 0.

Figure 4.28 The function f (x) � �3 x�
has a point of inflection at the origin, even
though f �(0) ≠ 0.

[– 4.7, 4.7] by [–3.1, 3.1]

[–4.7, 4.7] by [–3.1, 3.1]
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210 Chapter 4 Applications of Derivatives

SOLUTION 

Solve Analytically

The velocity is 

v�t� � x	�t� � 6t2 � 28t � 22 � 2�t � 1��3t � 11�,

and the acceleration is 

a�t� � v	�t� � x��t� � 12t � 28 � 4�3t � 7�.

When the function x�t� is increasing, the particle is moving to the right on the x-axis; when
x�t� is decreasing, the particle is moving to the left. Figure 4.29 shows the graphs of the
position, velocity, and acceleration of the particle.

Notice that the first derivative (v � x	) is zero when t � 1 and t � 11/3. These zeros par-
tition the t-axis into three intervals, as shown in the sign graph of v below:

x

+ – +

increasing decreasing increasingBehavior of x

right left rightParticle motion

Sign of v = x'

11
310

The particle is moving to the right in the time intervals [0, 1) and (11/3, �) and moving to
the left in (1, 11/3). 

The acceleration a(t) � 12t � 28 has a single zero at t � 7/3. The sign graph of the
acceleration is shown below:

The growth of an individual company, of a population, in sales of a new product, or of
salaries often follows a logistic or life cycle curve like the one shown in Figure 4.30. For ex-
ample, sales of a new product will generally grow slowly at first, then experience a 
period of rapid growth. Eventually, sales growth slows down again. The function f in 
Figure 4.30 is increasing. Its rate of increase, f 	, is at first increasing � f � � 0� up to the
point of inflection, and then its rate of increase, f 	, is decreasing � f � � 0�. This is, in a
sense, the opposite of what happens in Figure 4.21.

Some graphers have the logistic curve as a built-in regression model. We use this fea-
ture in Example 6.

x

concave down concave upGraph of x

decelerating acceleratingParticle motion

Sign of a = x"

0

– +

7
3

Figure 4.29 The graph of 
(a) x�t� � 2t3 � 14t2 � 22t � 5, t � 0,
(b) x	�t� � 6t2 � 28t � 22, and 
(c) x��t� � 12t � 28. (Example 5)

[0, 6] by [–30, 30]

(a)

[0, 6] by [–30, 30]

(b)

[0, 6] by [–30, 30]

(c)

Figure 4.30 A logistic curve 

y � 

1 � a

c
e�bx
 .

1

5

Point of
inflection

y

x

1

5

Point of
inflection

y

x

The accelerating force is directed toward the left during the time interval [0, 7/3], is mo-
mentarily zero at t � 7/3, and is directed toward the right thereafter. 

Now try Exercise 25.
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EXAMPLE 6   Population Growth in Alaska

Table 4.2 shows the population of Alaska in each 10-year census between 1920 and 2000.

(a) Find the logistic regression for the data.

(b) Use the regression equation to predict the Alaskan population in the 2020 census.

(c) Find the inflection point of the regression equation. What significance does the
inflection point have in terms of population growth in Alaska?

(d) What does the regression equation indicate about the population of Alaska in the
long run?

SOLUTION

(a) Using years since 1900 as the independent variable and population as the 
dependent variable, the logistic regression equation is approximately

y �

1 � 7

8
1
9
.5
5
7
5
e
9
�

8
0.0516x
.

Its graph is superimposed on a scatter plot of the data in Figure 4.31(a). Store the
regression equation as Y1 in your calculator.

(b) The calculator reports Y1(120) to be approximately 781,253. (Given the uncer-
tainty of this kind of extrapolation, it is probably more reasonable to say “approxi-
mately 781,200.”)

(c) The inflection point will occur where y″ changes sign. Finding y″ algebraically
would be tedious, but we can graph the numerical derivative of the numerical deriva-
tive and find the zero graphically. Figure 4.31(b) shows the graph of y″, which is
nDeriv(nDeriv(Y1,X,X),X,X) in calculator syntax. The zero is approximately 83, so
the inflection point occurred in 1983, when the population was about 450,570 and
growing the fastest. 

(d) Notice that lim
x→�

� 895598, so the regression equation 

indicates that the population of Alaska will stabilize at about 895,600 in the long run.
Do not put too much faith in this number, however, as human population is depend-
ent on too many variables that can, and will, change over time. Now try Exercise 31.

Second Derivative Test for Local Extrema
Instead of looking for sign changes in y	 at critical points, we can sometimes use the fol-
lowing test to determine the presence of local extrema.

895598



1� 71.57e�0.0516x

Table 4.2 Population of Alaska

Years since 1900 Population

20 55,036
30 59,278
40 75,524
50 128,643
60 226,167
70 302,583
80 401,851
90 550,043

100 626,932

Source: Bureau of the Census, U.S. Chamber of

Commerce.

Figure 4.31 (a) The logistic regression
curve

y �

1 � 7

8
1
9
.5
5
7
5
e
9
�

8
0.0516x


superimposed on the population data
from Table 4.2, and (b) the graph of y″
showing a zero at about x � 83.

[12, 108] by [0, 730000]

(a)

Zero
X=82.76069 Y=0

[12, 108] by [–250, 250]

(b)

THEOREM 5 Second Derivative Test for Local Extrema

1. If f 	�c� � 0 and f ��c� � 0, then f has a local maximum at  x � c.

2. If f 	�c� � 0 and f ��c� � 0, then f has a local minimum at  x � c.

This test requires us to know f � only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test fails if
f ��c� � 0 or if f ��c� fails to exist. When this happens, go back to the First Derivative Test
for local extreme values.

In Example 7, we apply the Second Derivative Test to the function in Example 1.
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212 Chapter 4 Applications of Derivatives

EXAMPLE 7   Using the Second Derivative Test

Find the local extreme values of f �x� � x3 � 12x � 5.

SOLUTION

We have

f 	�x� � 3x2 � 12 � 3(x2 � 4)

f ��x� � 6x.

Testing the critical points  x � �2  (there are no endpoints), we find

f ���2� � �12 � 0 ⇒ f has a local maximum at  x � �2  and

f ��2� � 12 � 0 ⇒ f has a local minimum at  x � 2.

Now try Exercise 35.

EXAMPLE 8   Using f � and f � to Graph f

Let f 	�x� � 4x3 � 12x2.

(a) Identify where the extrema of f occur.

(b) Find the intervals on which f is increasing and the intervals on which f is decreasing.

(c) Find where the graph of f is concave up and where it is concave down.

(d) Sketch a possible graph for f.

SOLUTION

f is continuous since f 	 exists. The domain of f 	 is ���, ��, so the domain of f is also
���, ��. Thus, the critical points of f occur only at the zeros of f 	. Since

f 	�x� � 4x3 � 12x2 � 4x2�x � 3�,

the first derivative is zero at  x � 0  and  x � 3.

Intervals ⏐ x � 0 ⏐ 0 � x � 3 ⏐ 3 � x

Sign of f 	 ⏐ � ⏐ � ⏐ �

Behavior of f ⏐ decreasing ⏐ decreasing ⏐ increasing

(a) Using the First Derivative Test and the table above we see that there is no extremum
at  x � 0  and a local minimum at  x � 3.

(b) Using the table above we see that f is decreasing in ���, 0� and �0, 3�, and increas-
ing in �3, ��.

(c) f ��x� � 12x2 � 24x � 12x�x � 2� is zero at  x � 0  and  x � 2.

Intervals ⏐ x � 0 ⏐ 0 � x � 2 ⏐ 2 � x

Sign of f � ⏐ � ⏐ � ⏐ �

Behavior of f ⏐ concave up ⏐ concave down ⏐ concave up

We see that f is concave up on the intervals ���, 0� and �2, ��, and concave down 
on �0, 2�.

continued

Note

The Second Derivative Test does not

apply at x � 0 because f ��0� � 0. We

need the First Derivative Test to see that

there is no local extremum at x � 0.
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Learning about Functions from Derivatives
We have seen in Example 8 and Exploration 1 that we are able to recover almost every-
thing we need to know about a differentiable function y � f �x� by examining y	. We can
find where the graph rises and falls and where any local extrema are assumed. We can
differentiate y	 to learn how the graph bends as it passes over the intervals of rise and fall.
We can determine the shape of the function’s graph. The only information we cannot get
from the derivative is how to place the graph in the xy-plane. As we discovered in Section
4.2, the only additional information we need to position the graph is the value of f at one
point.

(d) Summarizing the information in the two tables above we obtain

x � 0 ⏐ 0 � x � 2 ⏐ 2 � x � 3 ⏐ x � 3

decreasing ⏐ decreasing ⏐ decreasing ⏐ increasing

concave up ⏐ concave down ⏐ concave up ⏐ concave up

Figure 4.32 The graph for f has no ex-
tremum but has points of inflection where
x � 0 and x � 2, and a local minimum
where x � 3. (Example 8)

Figure 4.32 shows one possibility for the graph of f. Now try Exercise 39.

Finding f from f �

Let f 	�x� � 4x3 � 12x2.

1. Find three different functions with derivative equal to f 	�x�. How are the graphs
of the three functions related?

2. Compare their behavior with the behavior found in Example 8.

EXPLORATION 1

y � f(x)

Differentiable  ⇒
smooth, connected; graph
may rise and fall

y' � 0 ⇒ graph rises
from left to right;
may be wavy

y' � 0 ⇒ graph falls
from left to right;
may be wavy

y � f(x) y � f(x)

y'' � 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

Inflection point
y'' � 0 ⇒ concave up
throughout; no waves;
graph may rise or fall

or or

y'' changes sign

y' � 0  and  y'' � 0
at a point; graph has
local maximum

y' � 0  and  y'' � 0
at a point; graph has
local minimum

or

y' changes 
sign ⇒ graph 
has local 
maximum or 
minimum 
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214 Chapter 4 Applications of Derivatives

Remember also that a function can be continuous and still have points of nondifferen-
tiability (cusps, corners, and points with vertical tangent lines). Thus, a noncontinuous
graph of f ′ could lead to a continuous graph of f, as Example 9 shows. 

EXAMPLE 9   Analyzing a Discontinuous Derivative

A function f is continuous on the interval [�4, 4]. The discontinuous function f	, with
domain [�4, 0) � (0, 2) � (2, 4], is shown in the graph to the right (Figure 4.33). 

(a) Find the x-coordinates of all local extrema and points of inflection of f.

(b) Sketch a possible graph of f.

SOLUTION

(a) For extrema, we look for places where  f	 changes sign. There are local maxima
at x � �3, 0, and 2 (where f	 goes from positive to negative) and local minima at
x � �1 and 1 (where f	 goes from negative to positive). There are also local minima
at the two endpoints x � �4 and 4, because f	 starts positive at the left endpoint and
ends negative at the right endpoint.

For points of inflection, we look for places where  f � changes sign, that is, where
the graph of f	 changes direction. This occurs only at x � �2. 

(b) A possible graph of f is shown in Figure 4.34. The derivative information deter-
mines the shape of the three components, and the continuity condition determines
that the three components must be linked together. Now try Exercises 49 and 53.

Figure 4.33 The graph of f ′ , a discon-
tinuous derivative.

0

–2

– 4

2

y

x
4

Figure 4.34 A possible graph of f. 
(Example 9)

0 44–

–2

1

x

y

Finding f from f � and f �

A function f is continuous on its domain ��2, 4�, f ��2� � 5, f �4� � 1, and f 	
and f � have the following properties.

x ⏐ �2 � x � 0 ⏐ x � 0 ⏐ 0 � x � 2 ⏐ x � 2 ⏐2 � x � 4

f 	 ⏐ � ⏐ does not exist ⏐ � ⏐ 0 ⏐ �

f � ⏐ � ⏐ does not exist ⏐ � ⏐ 0 ⏐ �

1. Find where all absolute extrema of f occur.

2. Find where the points of inflection of f occur.

3. Sketch a possible graph of f.

EXPLORATION 2

Quick Review 4.3 (For help, go to Sections 1.3, 2.2, 3.3, and 3.9.)

In Exercises 1 and 2, factor the expression and use sign charts to
solve the inequality.

1. x2 � 9 � 0 (�3, 3) 2. x3 � 4x � 0 (�2, 0) � (2, �)

In Exercises 3–6, find the domains of f and f 	.

3. f �x� � xex 4. f �x� � x3�5

5. f �x� � 

x �

x
2


 6. f �x� � x2 �5

In Exercises 7–10, find the horizontal asymptotes of the function’s
graph.

7. y � �4 � x2 �ex y � 0 8. y � �x2 � x�e�x y � 0

9. y � 10. y � 

2 �

7
5
5
e
0
�0.1x


200



1 � 10e�0.5xf : all reals

f 	: all reals

f : x  2
f 	: x  2

f : all reals
f 	: x  0

f : all reals
f 	: x  0 y � 0 and y � 200 y � 0 and y � 375
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Section 4.3 Exercises

In Exercises 1–6, use the First Derivative Test to determine the local
extreme values of the function, and identify any absolute extrema.
Support your answers graphically.

1. y � x2 � x � 1 2. y � �2x3 � 6x2 � 3

3. y � 2x4 � 4x2 � 1 4. y � xe1�x Local minimum: (1, e)

5. y � x�8� �� x�2� 6.
3 � x2, x � 0

6 y � {x2 � 1, x � 0

In Exercises 7–12, use the Concavity Test to determine the intervals
on which the graph of the function is (a) concave up and (b) concave
down.

7. y � 4x3 � 21x2 � 36x � 20 8. y � �x4 � 4x3 � 4x � 1

9. y � 2x1�5 � 3 10. y � 5 � x1�3

11.
2x, x � 1

12. y � ex, 0 � x � 2py � {2 � x2, x � 1

In Exercises 13–20, find all points of inflection of the function.

13. y � xex (�2, �2/e2) 14. y � x�9� �� x�2� (0, 0)

15. y � tan�1 x (0, 0) 16. y � x3�4 � x� (0, 0) and (2, 16)

17. y � x1�3�x � 4� 18. y � x1�2�x � 3� (1, 4)

19. y ��
x3 � 2

x
x
�

2 �

2
x � 1

� 20. y � �
x2 �

x
1

�

In Exercises 21 and 22, use the graph of the function f to estimate
where (a) f 	 and (b) f 
 are 0, positive, and negative.

21.

22.

In Exercises 23 and 24, use the graph of the function f 	 to estimate the
intervals on which the function f is (a) increasing or (b) decreasing.
Also, (c) estimate the x-coordinates of all local extreme values.

23.

24.

In Exercises 25–28, a particle is moving along the x-axis with
position function x(t). Find the (a) velocity and (b) acceleration, and
(c) describe the motion of the particle for t � 0.

25. x�t� � t2 � 4t � 3 26. x�t� � 6 � 2t � t2

27. x�t� � t3 � 3t � 3 28. x�t� � 3t2 � 2t3

In Exercises 29 and 30, the graph of the position function  y � s�t�
of a particle moving along a line is given. At approximately what
times is the particle’s (a) velocity equal to zero? (b) acceleration
equal to zero?

29.

30.

y

x
2–2 0

y = f '(x)

y

x
2–2

y � f   '

0

 (x)

y

x
0 2–2

y = f (x)

y

x

y = f (x)

2–2
0

t

y

0 5

y = s(t)

D
is

ta
nc

e
fr

om
 o

ri
gi

n

10 15

Time (sec)

t

y

0 5

y � s(t)

D
is

ta
nc

e
fr

om
 o

ri
gi

n

10 15

ime (sec)T

1. Local minimum at ��
1
2

�, ��
5
4

��; ��
5
4

� is an absolute minimum. 2. Local maximum: (2, 5); local minimum: (0, �3)

3. Local maximum: (0, 1); local minima: (�1, �1) and (1, �1); �1 is an absolute minimum.

Local minimum: (0, 1)Local maxima: (��8�, 0) and (2, 4); 

local minima: (�2, �4) and (�8�, 0); 
4 is an absolute maximum and �4 is an absolute minimum.

(a) (�7/4, �) (b) (��, �7/4) (a) (0, 2) (b) (��, 0) and (2, �)

(a) (��, 0) (b) (0, �) (a) (0, �) (b) (��, 0)

(a) None (b) (1, �)
(a) (0, 2�) (b) None

(0, 0) and (�2, 6�3
2�)

(1, 1)

(0, 0), (�3�, �3��4),
and (��3�, ��3��4)

(a) Zero: x � 1; 
positive; (��, �1) and (1, �); 
negative: (�1, 1)

(b) Zero: x � 0;
positive: (0, �); 
negative: (��, 0)

(a) Zero: x � 0, 1.25; 
positive: (�1.25, 0) and (1.25, �); 
negative: (��, �1.25) and (0, 1.25)

(b) Zero: x � 0.7; 
positive: (��, �0.7) and (0.7, �); 
negative: (�0.7, 0.7)

(a) (��, �2] and [0, 2]
(b) [�2, 0] and [2, �)
(c) Local maxima: x � �2 and x � 2; 

local minimum: x � 0

(a) [�2, 2] (b) (��, �2] and [2, �)
(c) Local maximum: x � 2; 

local minimum: x � �2

(a) t � 2.2, 6, 9.8 (b) t � 4, 8, 11

(a) t � �0.2, 4, 12 (b) t � 1.5, 5.2, 8, 11, 13
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31. Table 4.3 shows the population of Pennsylvania in each 10-year
census between 1830 and 1950. 

(c) In what year between 1977 and 1985 were basic cable TV
subscriptions growing the fastest? What significant behavior does
the graph of the regression equation exhibit at that point?

(d) What does the regression equation indicate about the number
of basic cable television subscribers in the long run? (Be sure to
add the baseline 1977 number.)

(e) Writing to Learn In fact, the long-run number of basic
cable subscribers predicted by the regression equation falls short
of the actual 2002 number by more than 32 million. What cir-
cumstances changed to render the earlier model so ineffective? 

In Exercises 33–38, use the Second Derivative Test to find the local
extrema for the function. 

33. y � 3x � x3 � 5

34. y � x5 � 80x � 100

35. y � x3 � 3x2 � 2

36. y � 3x5 � 25x3 � 60x � 20

37. y � xex

38. y � xe�x

In Exercises 39 and 40, use the derivative of the function 
y � f �x� to find the points at which f has a

(a) local maximum, (b) local minimum, or

(c) point of inflection.

39. y	 � �x � 1�2�x � 2�

40. y	 � �x � 1�2�x � 2��x � 4�

Exercises 41 and 42 show the graphs of the first and second
derivatives of a function  y � f �x�. Copy the figure and add a sketch
of a possible graph of f that passes through the point P.

41.

42.

(a) Find the logistic regression for the data.

(b) Graph the data in a scatter plot and superimpose the regres-
sion curve.

(c) Use the regression equation to predict the Pennsylvania popu-
lation in the 2000 census.

(d) In what year was the Pennsylvania population growing the
fastest? What significant behavior does the graph of the regres-
sion equation exhibit at that point?

(e) What does the regression equation indicate about the popula-
tion of Pennsylvania in the long run?

32. In 1977, there were 12,168,450 basic cable television subscri-
bers in the U.S. Table 4.4 shows the cumulative number of
subscribers added to that baseline number from 1978 to 1985.

Table 4.4 Growth of Cable Television

Added Subscribers
Years since 1977 since 1977

1 1,391,910
2 2,814,380
3 5,671,490
4 11,219,200
5 17,340,570
6 22,113,790
7 25,290,870
8 27,872,520

Source: Nielsen Media Research, as reported in The World

Almanac and Book of Facts 2004.

x

y

P

y � f '(x)

y � f ''(x)

x

y

O

y � f '(x)

y � f ''(x)

P

Table 4.3 Population of Pennsylvania

Population in
Years since 1820 thousands

10 1348
20 1724
30 2312
40 2906
50 3522
60 4283
70 5258
80 6302
90 7665

100 8720
110 9631
120 9900
130 10,498

Source: Bureau of the Census, U.S. Chamber of Commerce.

(a) Find the logistic regression for the data.

(b) Graph the data in a scatter plot and superimpose the regres-
sion curve. Does it fit the data well?

(a) None (b) At x � 2 (c) At x � 1 and x � 

5
3




(a) At x � 2 (b) At x � 4 (c) At x � 1, x � 1.63, x � 3.37
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43. Writing to Learn If f �x� is a differentiable function and
f 	�c� � 0 at an interior point c of f ’s domain, must f have a
local maximum or minimum at  x � c?  Explain.

44. Writing to Learn If f �x� is a twice-differentiable function and
f ��c� � 0 at an interior point c of f ’s domain, must f have an
inflection point at  x � c?  Explain.

45. Connecting f and f � Sketch a smooth curve  y � f �x�
through the origin with the properties that f 	�x� � 0 for x � 0
and f 	�x� � 0 for  x � 0.

46. Connecting f and f � Sketch a smooth curve  y � f �x�
through the origin with the properties that f ��x� � 0 for x � 0
and f ��x� � 0 for  x � 0.

47. Connecting f, f�, and f � Sketch a continuous curve  y � f �x�
with the following properties. Label coordinates where possible.

f ��2� � 8 f 	�x� � 0 for 	x 	 � 2

f �0� � 4 f 	�x� � 0 for 	x 	 � 2

f �2� � 0 f ��x� � 0 for x � 0

f 	�2� � f 	��2� � 0 f ��x� � 0 for x � 0

48. Using Behavior to Sketch Sketch a continuous curve
y � f �x� with the following properties. Label coordinates 
where possible.

50. The domain of f 	 is �0, 1� � �1, 2� � �2, 3�.

Group Activity In Exercises 51 and 52, do the following.

(a) Find the absolute extrema of f and where they occur.

(b) Find any points of inflection.

(c) Sketch a possible graph of f.

51. f is continuous on �0, 3� and satisfies the following.

52. f is an even function, continuous on ��3, 3�, and satisfies 
the following.

(d) What can you conclude about f �3� and f ��3�?

Group Activity In Exercises 53 and 54, sketch a possible graph of
a continuous function f that has the given properties.

53. Domain �0, 6�, graph of f 	 given in Exercise 49, and 
f �0� � 2.

54. Domain �0, 3�, graph of f 	 given in Exercise 50, and  
f �0� � �3.

x ⏐ 0 � x � 1 ⏐ 1 � x � 2 ⏐ 2 � x � 3
f ⏐ � ⏐ � ⏐ �
f 	 ⏐ � ⏐ � ⏐ �
f � ⏐ � ⏐ � ⏐ �

x ⏐ 0 ⏐ 1 ⏐ 2
f ⏐ 2 ⏐ 0 ⏐ �1
f 	 ⏐ does not exist ⏐ 0 ⏐ does not exist
f � ⏐ does not exist ⏐ 0 ⏐ does not exist

x ⏐ 0 � x � 1 ⏐ 1 � x � 2 ⏐ 2 � x � 3
f ⏐ � ⏐ � ⏐ �
f 	 ⏐ � ⏐ � ⏐ �
f � ⏐ � ⏐ � ⏐ �

x ⏐ 0 ⏐ 1 ⏐ 2 ⏐ 3
f ⏐ 0 ⏐ 2 ⏐ 0 ⏐ �2
f 	 ⏐ 3 ⏐ 0 ⏐ does not exist ⏐ �3
f � ⏐ 0 ⏐ �1 ⏐ does not exist ⏐ 0

 y = f'(x)

1

y

x
1 2 3 4 5 6

 y = f'(x)

1

1 2 3

y

x

x ⏐ y ⏐ Curve
x � 2 ⏐ ⏐ falling, concave up

2 ⏐ 1 ⏐ horizontal tangent
2 � x � 4 ⏐ ⏐ rising, concave up

4 ⏐ 4 ⏐ inflection point
4 � x � 6 ⏐ ⏐ rising, concave down

6 ⏐ 7 ⏐ horizontal tangent
x � 6 ⏐ ⏐ falling, concave down

In Exercises 49 and 50, use the graph of f 	 to estimate the intervals
on which the function f is (a) increasing or (b) decreasing. Also,
(c) estimate  the x-coordinates of all local extreme values. (Assume
that the function f is continuous, even at the points where  f 	 is
undefined.)

49. The domain of f 	 is �0, 4� � �4, 6�.

(a) [0, 1], [3, 4], and [5.5, 6]
(b) [1, 3] and [4, 5.5]
(c) Local maxima: x � 1, x � 4 

(if f is continuous at x � 4), and x � 6; 
local minima: x � 0, x � 3, and x � 5.5

If f is continuous on [0, 3]:
(a) [0, 3] (b) Nowhere
(c) Local maximum: x � 3; 

local minimum: x � 0
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Standardized Test Questions

You should solve the following problems without using a
graphing calculator.

55. True  or False If f ��c� � 0 , then (c, f (c)) is a point of
inflection. Justify your answer.

56. True or False If f 	�c� � 0 and  f ��c� � 0, then f (c) is a local
maximum. Justify your answer.

57. Multiple Choice If a � 0, the graph of y � ax3 � 3x2 �
4x � 5 is concave up on A

(A) ���, �

1
a


� (B) ���, 

1
a


� (C) ��

1
a


, ��
(D) �


1
a


, �� (E) ���, �1�

58. Multiple Choice If f �0� � f 	�0� � f ��0� � 0, which of the
following must be true? E

(A) There is a local maximum of f at the origin.
(B) There is a local minimum of f at the origin.
(C) There is no local extremum of f at the origin.
(D) There is a point of inflection of the graph of f at the origin.
(E) There is a horizontal tangent to the graph of f at the origin.

59. Multiple Choice The x-coordinates of the points of inflection
of the graph of y � x5 � 5x4 � 3x � 7  are C

(A) 0 only (B) 1 only (C) 3 only (D) 0 and 3 (E) 0 and 1 

60. Multiple Choice Which of the following conditions would
enable you to conclude that the graph of f has a point of
inflection at x � c? A

(A) There is a local maximum of  f 	 at x � c.
(B) f ��c� � 0.
(C) f ��c� does not exist.
(D) The sign of  f 	 changes at x � c.
(E) f is a cubic polynomial and c � 0.

Exploration
61. Graphs of Cubics There is almost no leeway in the locations

of the inflection point and the extrema of  f �x� � ax3 � bx2 �
cx � d, a  0, because the one inflection point occurs at  x �
�b��3a� and the extrema, if any, must be located symmetrically
about this value of x. Check this out by examining (a) the cubic
in Exercise 7 and (b) the cubic in Exercise 2. Then (c) prove the
general case.

Extending the Ideas
In Exercises 62 and 63, feel free to use a CAS (computer algebra
system), if you have one, to solve the problem.

62. Logistic Functions Let f �x� � c��1 � ae�bx� with  a � 0,
abc  0.

(a) Show that f is increasing on the interval ���, �� if  abc � 0,
and decreasing if  abc � 0.

(b) Show that the point of inflection of f occurs at
x � �ln 	a 	 ��b.

63. Quartic Polynomial Functions Let f �x� �
ax4 � bx3 � cx2 � dx � e with  a  0.

(a) Show that the graph of f has 0 or 2 points of inflection.

(b) Write a condition that must be satisfied by the coefficients if
the graph of f has 0 or 2 points of inflection.

You should solve these problems without using a graphing 
calculator.

1. Multiple Choice How many critical points does the function
f (x) � (x � 2)5 (x � 3)4 have?   C

(A) One (B) Two (C) Three (D) Five (E) Nine

2. Multiple Choice For what value of x does the function 
f (x) � (x � 2) (x � 3)2 have a relative maximum?   D

(A) �3 (B) �

7
3


 (C) �

5
2


 (D) 

7
3


 (E) 

5
2




3. Multiple Choice If g is a differentiable function such that
g(x) � 0 for all real numbers x, and if f ′(x) � (x2 � 9)g(x), which
of the following is true?   B

(A) f has a relative maximum at x � �3 and a relative minimum
at x � 3. 

(B) f has a relative minimum at x � �3 and a relative maximum
at x � 3.

(C) f has relative minima at x � �3 and at x � 3.

(D) f has relative maxima at x � �3 and at x � 3.

(E) It cannot be determined if f has any relative extrema.

4. Free Response Let f be the function given by 
f �x� � 3 ln (x2 � 2) � 2x with domain [–2, 4].

(a) Find the coordinate of each relative maximum point and each
relative minimum point of f . Justify your answer.

(b) Find the x-coordinate of each point of inflection of the graph
of f .

(c) Find the absolute maximum value of f �x�. 

Quick Quiz for AP* Preparation: Sections 4.1–4.3

False. For example, consider f (x) � x 4 at c � 0.

True. This is the Second Derivative Test for a local maximum.
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Section 4.4 Modeling and Optimization 219

Modeling and Optimization

Examples from Mathematics
While today’s graphing technology makes it easy to find extrema without calculus, the al-
gebraic methods of differentiation were understandably more practical, and certainly more
accurate, when graphs had to be rendered by hand. Indeed, one of the oldest applications
of what we now call “differential calculus” (pre-dating Newton and Leibniz) was to find
maximum and minimum values of functions by finding where horizontal tangent lines
might occur. We will use both algebraic and graphical methods in this section to solve
“max-min” problems in a variety of contexts, but the emphasis will be on the modeling
process that both methods have in common. Here is a strategy you can use:

4.4

What you’ll learn about

• Examples from Mathematics 

• Examples from Business and
Industry

• Examples from Economics

• Modeling Discrete Phenomena
with Differentiable Functions

. . . and why 

Historically, optimization problems
were among the earliest applica-
tions of what we now call differ-
ential calculus.

Strategy for Solving Max-Min Problems

1. Understand the Problem Read the problem carefully. Identify the information
you need to solve the problem.

2. Develop a Mathematical Model of the Problem Draw pictures and label the
parts that are important to the problem. Introduce a variable to represent the
quantity to be maximized or minimized. Using that variable, write a function
whose extreme value gives the information sought.

3. Graph the Function Find the domain of the function. Determine what values
of the variable make sense in the problem.

4. Identify the Critical Points and Endpoints Find where the derivative is zero
or fails to exist.

5. Solve the Mathematical Model If unsure of the result, support or confirm
your solution with another method.

6. Interpret the Solution Translate your mathematical result into the problem
setting and decide whether the result makes sense.

EXAMPLE 1   Using the Strategy

Find two numbers whose sum is 20 and whose product is as large as possible.

SOLUTION

Model If one number is x, the other is �20 � x�, and their product is
f �x� � x�20 � x�.

Solve Graphically We can see from the graph of f in Figure 4.35 that there is a
maximum. From what we know about parabolas, the maximum occurs at  x � 10.

Interpret The two numbers we seek are  x � 10  and  20 � x � 10.
Now try Exercise 1.

Sometimes we find it helpful to use both analytic and graphical methods together, as in
Example 2.

EXAMPLE 2   Inscribing Rectangles

A rectangle is to be inscribed under one arch of the sine curve (Figure 4.36). What is the
largest area the rectangle can have, and what dimensions give that area?

continued

Figure 4.35 The graph of f �x� �
x�20 � x� with domain ���, �� has 
an absolute maximum of 100 at x � 10.
(Example 1)

[–5, 25] by [–100, 150]

Figure 4.36 A rectangle inscribed under
one arch of y � sin x. (Example 2)

[0, π] by [–0.5, 1.5]

P Q
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220 Chapter 4 Applications of Derivatives

SOLUTION

Model Let �x, sin x� be the coordinates of point P in Figure 4.36. From what we know
about the sine function the x-coordinate of point Q is �p � x�. Thus,

p � 2x � length of rectangle
and 

sin x � height of rectangle.

The area of the rectangle is

A�x� � �p� 2x� sin x.

Solve Analytically and Graphically We can assume that  0 � x � p�2.  Notice
that A � 0  at the endpoints  x � 0  and  x � p�2.  Since A is differentiable, the only
critical points occur at the zeros of the first derivative,

A	�x� � �2 sin x � �p � 2x� cos x.

It is not possible to solve the equation A	�x� � 0 using algebraic methods. We can use
the graph of A (Figure 4.37a) to find the maximum value and where it occurs. Or, we can
use the graph of A	 (Figure 4.37b) to find where the derivative is zero, and then evaluate
A at this value of x to find the maximum value. The two x-values appear to be the same,
as they should.

Interpret The rectangle has a maximum area of about 1.12 square units when
x � 0.71. At this point, the rectangle is p � 2x � 1.72 units long by sin x � 0.65 unit
high. Now try Exercise 5.

Constructing Cones

A cone of height h and radius r is constructed from a flat, circular disk of radius 4 in. by
removing a sector AOC of arc length x in. and then connecting the edges OA and OC.
What arc length x will produce the cone of maximum volume, and what is that volume?

1. Show that 

r � 

8p

2p
� x

 , h � �1�6� �� r�2�, and 

V�x� � 

p

3

 (
8p2p� x


)2

�16 � (
8p2p� x

)2

.

2. Show that the natural domain of V is  0 � x � 16p.  Graph V over this domain.

3. Explain why the restriction  0 � x � 8p makes sense in the problem situation.
Graph V over this domain.

4. Use graphical methods to find where the cone has its maximum volume, and
what that volume is.

5. Confirm your findings in part 4 analytically. [Hint: Use V�x� � �1�3�pr2h,
h2 � r2 � 16, and the Chain Rule.]

EXPLORATION 1

O

A

C

4"

4" O A

C

h

r

4"

x

NOT TO SCALE

Figure 4.37 The graph of (a) A�x� �
�p� 2x� sin x and (b) A	 in the interval 
0 � x � p�2. (Example 2)

[0, p/2] by [–1, 2]

(a)

Maximum
X = .71046344 Y = 1.1221927

[0, p/2] by [–4, 4]

(b)

Zero
X = .71046274 Y = 0
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Examples from Business and Industry

To optimize something means to maximize or minimize some aspect of it. What is the size
of the most profitable production run? What is the least expensive shape for an oil can?
What is the stiffest rectangular beam we can cut from a 12-inch log? We usually answer
such questions by finding the greatest or smallest value of some function that we have
used to model the situation.

EXAMPLE 3   Fabricating a Box

An open-top box is to be made by cutting congruent squares of side length x from the cor-
ners of a 20- by 25-inch sheet of tin and bending up the sides (Figure 4.38). How large
should the squares be to make the box hold as much as possible? What is the resulting
maximum volume?

SOLUTION 

Model The height of the box is x, and the other two dimensions are �20 � 2x� and
�25 � 2x�. Thus, the volume of the box is

V�x� � x�20 � 2x��25 � 2x�.

Solve Graphically Because 2x cannot exceed 20, we have  0 � x � 10.  Figure 4.39
suggests that the maximum value of V is about 820.53 and occurs at  x � 3.68.

Confirm Analytically Expanding, we obtain  V�x� � 4x3 � 90x2 � 500x.  The first
derivative of V is

V	�x� � 12x2 � 180x � 500.

The two solutions of the quadratic equation  V	�x� � 0 are 

c1 � � 3.68 and

c2 � � 11.32.

Only c1 is in the domain �0, 10� of V. The values of V at this one critical point and the
two endpoints are

Critical point value: V�c1� � 820.53

Endpoint values: V�0� � 0, V�10� � 0.

Interpret Cutout squares that are about 3.68 in. on a side give the maximum volume,
about 820.53 in3. Now try Exercise 7.

EXAMPLE 4   Designing a Can

You have been asked to design a one-liter oil can shaped like a right circular cylinder
(see Figure 4.40 on the next page). What dimensions will use the least material?

continued

180 � �1�8�0�2��� 4�8��5�0�0���





24

180 � �1�8�0�2��� 4�8��5�0�0���





24

Figure 4.38 An open box made by cut-
ting the corners from a piece of tin. 
(Example 3)

20"

x x

x x

x

x

x

x

x

20 � 2x

25 � 2x

(a)

25"

(b)

Figure 4.39 We chose the �300 in
�300 � y � 1000 so that the coordinates 
of the local maximum at the bottom of the
screen would not interfere with the graph.
(Example 3)

[0, 10] by [–300, 1000]

y � x(20 � 2x)(25 � 2x)

Maximum
X = 3.6811856 Y = 820.52819
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222 Chapter 4 Applications of Derivatives

SOLUTION 

Volume of can: If r and h are measured in centimeters, then the volume of the can in
cubic centimeters is 

pr2h � 1000. 1 liter � 1000 cm3

Surface area of can: A � 2pr2 � 2prh

circular cylinder 
ends wall

How can we interpret the phrase “least material”? One possibility is to ignore the thick-
ness of the material and the waste in manufacturing. Then we ask for dimensions r and
h that make the total surface area as small as possible while satisfying the constraint
pr2h � 1000.  (Exercise 17 describes one way to take waste into account.)

Model To express the surface area as a function of one variable, we solve for one of
the variables in  pr2h � 1000 and substitute that expression into the surface area for-
mula. Solving for h is easier,

h � 

1
p

0
r
0

2
0


 .

Thus,

A � 2pr2 � 2prh

� 2pr2 � 2pr(

1
p

0
r
0

2
0


)
� 2pr2 � 


20
r
00

 .

Solve Analytically Our goal is to find a value of  r � 0  that minimizes the value of
A. Figure 4.41 suggests that such a value exists.

Notice from the graph that for small r (a tall thin container, like a piece of pipe), the
term  2000�r dominates and A is large. For large r (a short wide container, like a pizza
pan), the term 2pr2 dominates and A again is large.

Since A is differentiable on  r � 0, an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.



d
d
A
r

 � 4pr � 


20
r
0
2
0




0 � 4pr � 

20

r
0
2
0


 Set dA�dr � 0.

4pr 3 � 2000 Multiply by r 2.

r � 3 

5�p0�0


� � 5.42 Solve for r.

Something happens at  r � �3 5�0�0��p�, but what?

If the domain of A were a closed interval, we could find out by evaluating A at this criti-
cal point and the endpoints and comparing the results. But the domain is an open inter-
val, so we must learn what is happening at r � �3 5�0�0��p� by referring to the shape of
A’s graph. The second derivative



d
dr

2A
2
 � 4p� 


40
r
0
3
0




is positive throughout the domain of A. The graph is therefore concave up and the value
of A at  r � �3 5�0�0��p� an absolute minimum.

continued

Figure 4.41 The graph of A �
2pr2 � 2000�r, r � 0. (Example 4)

[0, 15] by [0, 2000]

Figure 4.40 This one-liter can uses the
least material when h � 2r. (Example 4)

h

2r
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The corresponding value of h (after a little algebra) is

h � 

1
p

0
r
0

2
0


 � 23 

5�p0�0


� � 2r.

Interpret The one-liter can that uses the least material has height equal to the dia-
meter, with  r � 5.42 cm and  h � 10.84 cm. Now try Exercise 11.

Examples from Economics
Here we want to point out two more places where calculus makes a contribution to eco-
nomic theory. The first has to do with maximizing profit. The second has to do with mini-
mizing average cost.

Suppose that
r �x� � the revenue from selling x items,

c�x� � the cost of producing the x items,

p�x� � r �x� � c�x� � the profit from selling x items.

The marginal revenue, marginal cost, and marginal profit at this production level (x items)
are



d
d
x
r

 � marginal revenue, 


d
dc

x

 � marginal cost, 


d
d
p
x

 � marginal profit.

The first observation is about the relationship of p to these derivatives.

THEOREM 6 Maximum Profit

Maximum profit (if any) occurs at a production level at which marginal revenue
equals marginal cost.

Proof We assume that r �x� and c�x� are differentiable for all  x � 0, so if p�x� �
r �x� � c�x� has a maximum value, it occurs at a production level at which  p	�x� � 0.
Since  p	�x� � r	�x� � c	�x�, p	�x� � 0 implies that

r	�x� � c	�x� � 0 or r	�x� � c	�x�. ■

Figure 4.42 gives more information about this situation.

Marginal Analysis

Because differentiable functions are lo-

cally linear, we can use the marginals to

approximate the extra revenue, cost, or

profit resulting from selling or producing

one more item. Using these approxima-

tions is referred to as marginal analysis.

Figure 4.42 The graph of a typical cost function starts concave down
and later turns concave up. It crosses the revenue curve at the break-
even point B. To the left of B, the company operates at a loss. To the
right, the company operates at a profit, the maximum profit occurring
where r	�x� � c	�x�. Farther to the right, cost exceeds revenue (perhaps
because of a combination of market saturation and rising labor and ma-
terial costs) and production levels become unprofitable again.

x

y

0

D
ol

la
rs

Items produced

Maximum profit, c'(x) � r'(x)

Cost c(x)

Revenue r(x)

Break-even

B

c'(x) � r'(x)Maximum loss (minimum profit), 
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What guidance do we get from this observation? We know that a production level at
which p	�x� � 0 need not be a level of maximum profit. It might be a level of minimum
profit, for example. But if we are making financial projections for our company, we should
look for production levels at which marginal cost seems to equal marginal revenue. If there
is a most profitable production level, it will be one of these.

EXAMPLE 5   Maximizing Profit

Suppose that  r �x� � 9x and  c�x� � x3 � 6x2 � 15x, where x represents thousands of
units. Is there a production level that maximizes profit? If so, what is it?

SOLUTION

Notice that  r	�x� � 9 and  c	�x� � 3x2 � 12x � 15.

3x2 �12x � 15 � 9 Set c	�x� � r	�x�.

3x2 � 12x � 6 � 0

The two solutions of the quadratic equation are 

x1 � 

12 �

6
�7�2�

 � 2 � �2� � 0.586 and

x2 � 

12 �

6
�7�2�

 � 2 � �2� � 3.414.

The possible production levels for maximum profit are x � 0.586 thousand units or 
x � 3.414 thousand units. The graphs in Figure 4.43 show that maximum profit occurs
at about x � 3.414 and maximum loss occurs at about x � 0.586.

Another way to look for optimal production levels is to look for levels that minimize the
average cost of the units produced. Theorem 7 helps us find them.  Now try Exercise 23.

Figure 4.43 The cost and revenue
curves for Example 5.

x

y

0 2

Maximum 
for profit

r (x) � 9x

2 � √⎯2 2 � √⎯2

c(x) � x3 � 6x2 � 15x

Local maximum for loss

 NOT TO SCALE

THEOREM 7 Minimizing Average Cost

The production level (if any) at which average cost is smallest is a level at which
the average cost equals the marginal cost.

Proof We assume that c�x� is differentiable.

c�x� � cost of producing x items, x � 0



c�

x
x�

 � average cost of producing x items

If the average cost can be minimized, it will be a production level at which



d
d
x

(


c�
x
x�

) � 0



xc	�x�

x
�
2

c�x�

 � 0 Quotient Rule

xc	�x� � c�x� � 0 Multiply by x2.

c	�x� � 

c�

x
x�

.

marginal average
cost cost ■
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Again we have to be careful about what Theorem 7 does and does not say. It does not
say that there is a production level of minimum average cost—it says where to look to see
if there is one. Look for production levels at which average cost and marginal cost are
equal. Then check to see if any of them gives a minimum average cost.

EXAMPLE 6   Minimizing Average Cost

Suppose  c�x� � x3 � 6x2 � 15x, where x represents thousands of units. Is there a pro-
duction level that minimizes average cost? If so, what is it?

SOLUTION

We look for levels at which average cost equals marginal cost.

Marginal cost: c	�x� � 3x2 � 12x � 15

Average cost: 

c�

x
x�

 � x2 � 6x � 15

3x2 � 12x � 15 � x2 � 6x � 15 Marginal cost � Average cost

2x2 � 6x � 0

2x�x � 3� � 0

x � 0 or x � 3

Since  x � 0, the only production level that might minimize average cost is  x � 3 
thousand units.

We use the second derivative test.



d
d
x

 (


c�
x
x�

 ) � 2x � 6



d
d
x

2

2
 (

c�

x
x�

 ) � 2 � 0

The second derivative is positive for all  x � 0, so  x � 3  gives an absolute 
minimum. Now try Exercise 25.

Modeling Discrete Phenomena with Differentiable
Functions
In case you are wondering how we can use differentiable functions c�x� and r �x� to de-
scribe the cost and revenue that comes from producing a number of items x that can only
be an integer, here is the rationale.

When x is large, we can reasonably fit the cost and revenue data with smooth curves
c�x� and r �x� that are defined not only at integer values of x but at the values in between
just as we do when we use regression equations. Once we have these differentiable func-
tions, which are supposed to behave like the real cost and revenue when x is an integer, we
can apply calculus to draw conclusions about their values. We then translate these mathe-
matical conclusions into inferences about the real world that we hope will have predictive
value. When they do, as is the case with the economic theory here, we say that the func-
tions give a good model of reality.

What do we do when our calculus tells us that the best production level is a value of 
x that isn’t an integer, as it did in Example 5? We use the nearest convenient integer. For
x � 3.414 thousand units in Example 5, we might use 3414, or perhaps 3410 or 3420 if we
ship in boxes of 10.
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226 Chapter 4 Applications of Derivatives

Quick Review 4.4 (For help, go to Sections 1.6, 4.1, and Appendix A.1.)

In Exercises 1–10, solve the problem analytically. Support your
answer graphically.

1. Finding Numbers The sum of two nonnegative numbers is
20. Find the numbers if

(a) the sum of their squares is as large as possible; as small as
possible.

(b) one number plus the square root of the other is as large as
possible; as small as possible.

2. Maximizing Area What is the largest possible area for a right
triangle whose hypotenuse is 5 cm long, and what are its
dimensions?

3. Maximizing Perimeter What is the smallest perimeter
possible for a rectangle whose area is 16 in2, and what are its
dimensions? Smallest perimeter � 16 in., dimensions are 4 in. by 4 in.

4. Finding Area Show that among all rectangles with an 8-m
perimeter, the one with largest area is a square. See page 232.

5. Inscribing Rectangles The figure shows a rectangle
inscribed in an isosceles right triangle whose hypotenuse is 
2 units long.

(a) Express the y-coordinate of P in terms of x. [Hint: Write an
equation for the line AB.] y � 1 � x

(b) Express the area of the rectangle in terms of x.

(c) What is the largest area the rectangle can have, and what are
its dimensions? Largest area � 


1
2


, dimensions are 1 by 

1
2




6. Largest Rectangle A rectangle has its base on the x-axis
and its upper two vertices on the parabola  y � 12 � x2.  What
is the largest area the rectangle can have, and what are its
dimensions? Largest area � 32, dimensions are 4 by 8

7. Optimal Dimensions You are planning to make an open
rectangular box from an 8- by 15-in. piece of cardboard by
cutting congruent squares from the corners and folding up the
sides. What are the dimensions of the box of largest volume you
can make this way, and what is its volume? See page 232.

8. Closing Off the First Quadrant You are planning to close
off a corner of the first quadrant with a line segment 20 units
long running from �a, 0� to �0, b�. Show that the area of the
triangle enclosed by the segment is largest when a � b.

9. The Best Fencing Plan A rectangular plot of farmland will
be bounded on one side by a river and on the other three sides
by a single-strand electric fence. With 800 m of wire at your
disposal, what is the largest area you can enclose, and what are
its dimensions? Largest area � 80,000 m2; dimensions: 200 m 

10. The Shortest Fence A 216-m2 rectangular pea patch is to be
enclosed by a fence and divided into two equal parts by another
fence parallel to one of the sides. What dimensions for the outer
rectangle will require the smallest total length of fence? How
much fence will be needed? Dimensions: 12 m (divider is this 

1. Use the first derivative test to identify the local extrema of 
y � x3 � 6x2 � 12x � 8. None

2. Use the second derivative test to identify the local extrema of
y � 2x3 � 3x2 � 12x � 3. Local maximum: (�2, 17); 

3. Find the volume of a cone with radius 5 cm and height 8 cm.

4. Find the dimensions of a right circular cylinder with volume
1000 cm3 and surface area 600 cm2.

In Exercises 5–8, rewrite the expression as a trigonometric function
of the angle 	.

5. sin ��	� �sin � 6. cos ��	� cos �

7. sin �p � 	� sin � 8. cos �p� 	� �cos �

In Exercises 9 and 10, use substitution to find the exact solutions 
of the system of equations.

x2 � y2 � 4 

x
4

2


 � 

y
9

2


 � 1
9. {y � �3�x

10. {
y � x � 3

Section 4.4 Exercises

P(x, ?)

x

y

0 1

B

A
x–1



x
4

2


 � 

y
9

2


 � 1
10. {

y � x � 3

local minimum: (1, �10)


20

3
0�

 cm3

r � 4.01 cm and h � 19.82 cm, or,
r � 7.13 cm and h � 6.26 cm

x � 1 and y � �3�, or, x � �1 and y � ��3�

x � 0 and y � 3, or, x � �

2
1
4
3

 and y � 


1
1
5
3



A(x) � 2x(1 � x)

See page 232.

(perpendicular to river) by 400 m (parallel to river)

length) by 18 m; total length required: 72 m

1. (a) As large as possible: 0 and 20; as small as possible: 10 and 10

1. (b) As large as possible: 

7
4
9

 and 


1
4


; as small as possible: 0 and 20

2. Largest area � 

2
4
5

, dimensions are cm by cm

5


�2�

5


�2�
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11. Designing a Tank Your iron works has contracted to design
and build a 500-ft3, square-based, open-top, rectangular steel
holding tank for a paper company. The tank is to be made by
welding thin stainless steel plates together along their edges. 
As the production engineer, your job is to find dimensions for
the base and height that will make the tank weigh as little as
possible.

(a) What dimensions do you tell the shop to use?

(b) Writing to Learn Briefly describe how you took weight
into account. Assume that the weight is minimized when the total 

12. Catching Rainwater A 1125-ft3 open-top rectangular tank
with a square base x ft on a side and y ft deep is to be built
with its top flush with the ground to catch runoff water. The
costs associated with the tank involve not only the material from
which the tank is made but also an excavation charge
proportional to the product xy.

(a) If the total cost is

c � 5�x2 � 4xy� � 10xy,

what values of x and y will minimize it? See page 232.

(b) Writing to Learn Give a possible scenario for the cost
function in (a). See page 232.

13. Designing a Poster You are designing a rectangular poster to
contain 50 in2 of printing with a 4-in. margin at the top and
bottom and a 2-in. margin at each side. What overall dimensions
will minimize the amount of paper used? 18 in. high by 9 in. wide

14. Vertical Motion The height of an object moving vertically is
given by

s � �16t2 � 96t � 112,

with s in ft and t in sec. Find (a) the object’s velocity when
t � 0, (b) its maximum height and when it occurs, and 
(c) its velocity when  s � 0.

15. Finding an Angle Two sides of a triangle have lengths a and
b, and the angle between them is u. What value of u will
maximize the triangle’s area? [Hint: A � �1�2� ab sin u.]

16. Designing a Can What are the dimensions of the lightest
open-top right circular cylindrical can that will hold a volume
of 1000 cm3? Compare the result here with the result in
Example 4. Radius � height � 10��1/3 cm � 6.83 cm. In Example 4,

17. Designing a Can You are designing a 1000-cm3 right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the
top and bottom of radius r will be cut from squares that measure
2r units on a side. The total amount of aluminum used up by the
can will therefore be

A � 8r2 � 2prh

rather than the  A � 2pr2 � 2prh in Example 4. In Example 4
the ratio of h to r for the most economical can was 2 to 1. What
is the ratio now? 


�
8


 to 1

18. Designing a Box with Lid A piece of cardboard measures
10- by 15-in. Two equal squares are removed from the corners
of a 10-in. side as shown in the figure. Two equal rectangles are
removed from the other corners so that the tabs can be folded to
form a rectangular box with lid.

10"

xx

x

x x

x

15"

Base Lid

x x

N
O

T
 T

O
 S

C
A

L
E

24"

36"

x

24"

x

x x

x x

x x

18"

24"

36"

Base

The sheet  is then unfolded.

(a) Write a formula V�x� for the volume of the box.

(b) Find the domain of V for the problem situation and graph V
over this domain.

(c) Use a graphical method to find the maximum volume and the
value of x that gives it.

(d) Confirm your result in part (c) analytically.

19. Designing a Suitcase A 24- by 36-in. sheet of cardboard is
folded in half to form a 24- by 18-in. rectangle as shown in the
figure. Then four congruent squares of side length x are cut from
the corners of the folded rectangle. The sheet is unfolded, and
the six tabs are folded up to form a box with sides and a lid.

(a) Write a formula V�x� for the volume of the box.

(b) Find the domain of V for the problem situation and graph V
over this domain.

(c) Use a graphical method to find the maximum volume and the
value of x that gives it.

(d) Confirm your result in part (c) analytically.

(e) Find a value of x that yields a volume of 1120 in3.

(f) Writing to Learn Write a paragraph describing the issues
that arise in part (b).

10 ft by 10 ft by 5 ft

area of the bottom and the 4 sides is minimized.

(a) 96 ft/sec
(b) 256 feet at t � 3 seconds
(c) �128 ft/sec

� � 

�

2



because of the top on the can, the “best” design is less big around and taller.
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20. Quickest Route Jane is 2 mi offshore in a boat and wishes to
reach a coastal village 6 mi down a straight shoreline from the
point nearest the boat. She can row 2 mph and can walk 5 mph.
Where should she land her boat to reach the village in the least
amount of time?

21. Inscribing Rectangles A rectangle is to be inscribed under
the arch of the curve  y � 4 cos �0.5x� from x � �p to  x � p.
What are the dimensions of the rectangle with largest area, and
what is the largest area? Dimensions: width � 3.44, height � 2.61;

22. Maximizing Volume Find the dimensions of a right circular
cylinder of maximum volume that can be inscribed in a sphere
of radius 10 cm. What is the maximum volume?

23. Maximizing Profit Suppose r(x) � 8�x� represents revenue
and c(x) � 2x2 represents cost, with x measured in thousands
of units. Is there a production level that maximizes profit? If
so, what is it?

24. Maximizing Profit Suppose r(x) � x2/(x2 � 1) represents
revenue and c(x) � (x � 1)3/3 � 1/3  represents cost, with x
measured in thousands of units. Is there a production level that
maximizes profit? If so, what is it?

25. Minimizing Average Cost Suppose c(x) � x3 � 10x2 � 30x,
where x is measured in thousands of units. Is there a production
level that minimizes average cost? If so, what is it?

26. Minimizing Average Cost Suppose c(x) � xex � 2x2, where
x is measured in thousands of units. Is there a production level
that minimizes average cost? If so, what is it?

27. Tour Service You operate a tour service that offers the
following rates:

• $200 per person if 50 people (the minimum number to book
the tour) go on the tour.

• For each additional person, up to a maximum of 80 people
total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

28. Group Activity The figure shows the graph of f �x� � xe�x,
x � 0.

(a) Find where the absolute maximum of f occurs.

(b) Let  a � 0  and  b � 0  be given as shown in the figure.
Complete the following table where A is the area of the
rectangle in the figure.

a b A

0.1
0.2
0.3
..
.

1

(c) Draw a scatter plot of the data �a, A�.

(d) Find the quadratic, cubic, and quartic regression equations
for the data in part (b), and superimpose their graphs on a scatter
plot of the data.

(e) Use each of the regression equations in part (d) to estimate 
the maximum possible value of the area of the rectangle.

29. Cubic Polynomial Functions
Let f �x� � ax3 � bx2 � cx � d, a  0.

(a) Show that f has either 0 or 2 local extrema. See page 232.

(b) Give an example of each possibility in part (a). See page 232.

30. Shipping Packages The U.S. Postal Service will accept a
box for domestic shipment only if the sum of its length and girth
(distance around), as shown in the figure, does not exceed 108 in.
What dimensions will give a box with a square end the largest
possible volume? 18 in. by 18 in. by 36 in.

31. Constructing Cylinders Compare the answers to the
following two construction problems.

(a) A rectangular sheet of perimeter 36 cm and dimensions x cm
by y cm is to be rolled into a cylinder as shown in part (a) of the
figure. What values of x and y give the largest volume?

(b) The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of the
figure. What values of x and y give the largest volume?

32. Constructing Cones A right triangle whose hypotenuse is
�3� m long is revolved about one of its legs to generate a right
circular cone. Find the radius, height,
and volume of the cone of greatest
volume that can be made this way.

x

y

a b

Square end

Girth � Distance
around here

Length

x

Circumference � x

y

y

(a) (b)

y
x

r

h √⎯3

20. � 0.87 miles down the shoreline from the point nearest her boat.
4



�21�

maximum area � 8.98

67 people

(a) x � 12 cm and y � 6 cm (b) x � 12 cm and y � 6 cm

Radius � �2� m, height � 1 m, volume 

2
3
�

 m3

5128_Ch04_pp186-260.qxd  1/13/06  12:37 PM  Page 228



Section 4.4 Modeling and Optimization 229

33. Finding Parameter Values What value of a makes
f �x� � x2 � �a�x� have (a) a local minimum at x � 2? 
(b) a point of inflection at  x � 1? (a) a � 16 (b) a � �1

34. Finding Parameter Values Show that f �x� � x2 � �a�x�
cannot have a local maximum for any value of a. See page 232.

35. Finding Parameter Values What values of a and b make
f �x� � x3 � ax2 � bx have (a) a local maximum at x � �1 
and a local minimum at  x � 3?  (b) a local minimum at x � 4
and a point of inflection at  x � 1?

36. Inscribing a Cone Find the volume of the largest right
circular cone that can be inscribed in a sphere of radius 3.

37. Strength of a Beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.

(a) Find the dimensions of the strongest beam that can be cut
from a 12-in. diameter cylindrical log.

(b) Writing to Learn Graph S as a function of the beam’s
width w, assuming the proportionality constant to be  k � 1.
Reconcile what you see with your answer in part (a).

(c) Writing to Learn On the same screen, graph S as a
function of the beam’s depth d, again taking  k � 1.  Compare the
graphs with one another and with your answer in part (a). What
would be the effect of changing to some other value of k? Try it.

38. Stiffness of a Beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

(a) Find the dimensions of the stiffest beam that can be cut from
a 12-in. diameter cylindrical log.

(b) Writing to Learn Graph S as a function of the beam’s
width w, assuming the proportionality constant to be  k � 1.
Reconcile what you see with your answer in part (a).

(c) Writing to Learn On the same screen, graph S as 
a function of the beam’s depth d, again taking  k � 1.  Compare
the graphs with one another and with your answer in part (a). What
would be the effect of changing to some other value of k?
Try it.

39. Frictionless Cart A small frictionless cart, attached to the
wall by a spring, is pulled 10 cm from its rest position and
released at time  t � 0  to roll back and forth for 4 sec. Its
position at time t is  s � 10 cos pt.

(a) What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the
acceleration then?

(b) Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

40. Electrical Current Suppose that at any time t (sec) 
the current i (amp) in an alternating current circuit is  
i � 2 cos t � 2 sin t. What is the peak (largest magnitude)
current for this circuit? 2�2� amps

41. Calculus and Geometry How close does the curve 
y � �x� come to the point �3�2, 0�? [Hint: If you minimize the
square of the distance, you can avoid square roots.]

42. Calculus and Geometry How close does the semicircle  
y � �1�6� �� x�2� come to the point �1, �3��? The minimum 

43. Writing to Learn Is the function f �x� � x2 � x � 1 ever
negative? Explain.

44. Writing to Learn You have been asked to determine whether
the function f �x� � 3 � 4 cos x � cos 2x is ever negative.

(a) Explain why you need to consider values of x only in 
the interval �0, 2p�. Because f (x) is periodic with period 2�.

(b) Is f ever negative? Explain.

y

x

3

3

12"
d

w

0 10
s

0

y

x
3
2 , 0

(x,   x )
y =   x

(a) a � �3 and b � �9
(b) a � �3 and b � �24



32

3
�

 cubic units

The minimum distance is 

�
2
5�


.

distance is 2.

No. It has an absolute minimum at the point �

1
2


, 

3
4


�.

No. It has an absolute minimum at the point (�, 0).
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45. Vertical Motion Two masses hanging side by side from
springs have positions  s1 � 2 sin t and  s2 � sin 2t,
respectively, with s1 and s2 in meters and t in seconds.

(a) At what times in the interval  t � 0 do the masses pass each
other? [Hint: sin 2t � 2 sin t cos t.]

(b) When in the interval  0 � t � 2p is the vertical distance
between the masses the greatest? What is this distance? (Hint:
cos 2t � 2 cos2 t � 1.)

46. Motion on a Line The positions of two particles on the 
s-axis are  s1 � sin t and  s2 � sin �t � p�3�, with s1 and s2
in meters and t in seconds.

(a) At what time(s) in the interval  0 � t � 2p do the particles
meet?

(b) What is the farthest apart that the particles ever get?

(c) When in the interval  0 � t � 2p is the distance between the
particles changing the fastest?

47. Finding an Angle The trough in the figure is to be made to
the dimensions shown. Only the angle u can be varied. What
value of u will maximize the trough’s volume? � � 


�

6



48. Group Activity Paper Folding A rectangular sheet of 8 1�2-
by 11-in. paper is placed on a flat surface. One of the corners is
placed on the opposite longer edge, as shown in the figure, and
held there as the paper is smoothed flat. The problem is to make
the length of the crease as small as possible. Call the length L. Try
it with paper. 

(a) Show that  L2 � 2x3��2x � 8.5�. Answers will vary.

(b) What value of x minimizes L2? x � 

5
8
1

 � 6.375 in.

(c) What is the minimum value of L? Minimum length � 11.04 in.

49. Sensitivity to Medicine (continuation of Exercise 48,
Section 3.3) Find the amount of medicine to which the body is
most sensitive by finding the value of M that maximizes the
derivative dR�dM. M � 


C
2




50. Selling Backpacks It costs you c dollars each to manufacture
and distribute backpacks. If the backpacks sell at x dollars each,
the number sold is given by

n � 

x �

a
c


 � b�100 � x�,

where a and b are certain positive constants. What selling price
will bring a maximum profit? x � 


c �

2
100

 � 50 � 


2
c




Standardized Test Questions
You may use a graphing calculator to solve the following 
problems. 

51. True or False A continuous function on a closed interval
must attain a maximum value on that interval. Justify your
answer. True. This is guaranteed by the Extreme Value Theorem 

52. True or False If f 	(c) � 0 and f (c) is not a local maximum,
then f (c) is a local minimum. Justify your answer. False.

53. Multiple Choice Two positive numbers have a sum of 60.
What is the maximum product of one number times the square
of the second number? D

(A) 3481

(B) 3600

(C) 27,000

(D) 32,000

(E) 36,000

54. Multiple Choice A continuous function f has domain [1, 25]
and range [3, 30]. If  f 	(x) � 0 for all x between 1 and 25, what
is  f (25)? B

(A) 1

(B) 3

(C) 25

(D) 30  

(E) impossible to determine from the information given

1'


 
 1'1'

20'

L2 � x2

D C

BPA
x

x

L

R

Q (originally at A) √⎯⎯⎯⎯⎯⎯⎯
Crease

s

0

m2

s1

s2

m1

(Section 4.1).

For example, consider f(x) � x3 at c � 0.

Whenever t is an integer multiple of � sec.

The greatest distance is 3�3�/2 m when t � 2��3 and 4��3 sec.

At t � ��3 sec and at t � 4��3 sec

The maximum distance between particles is 1 m.

Near t � ��3 sec and near t � 4��3 sec

5128_Ch04_pp186-260.qxd  1/13/06  12:37 PM  Page 230



Section 4.4 Modeling and Optimization 231

55. Multiple Choice What is the maximum area of a right
triangle with hypotenuse 10? B

(A) 24 (B) 25 (C) 25�2� (D) 48 (E) 50 

56. Multiple Choice A rectangle is inscribed between the
parabolas y � 4x2 and y � 30 � x2 as shown below:

What is the maximum area of such a rectangle ? E

(A) 20�2� (B) 40 (C) 30�2� (D) 50 (E) 40�2�

Explorations
57. Fermat’s Principle in Optics Fermat’s principle in optics

states that light always travels from one point to another along a
path that minimizes the travel time. Light from a source A is
reflected by a plane mirror to a receiver at point B, as shown in
the figure. Show that for the light to obey Fermat’s principle, the
angle of incidence must equal the angle of reflection, both
measured from the line normal to the reflecting surface. (This
result can also be derived without calculus. There is a purely
geometric argument, which you may prefer.)

58. Tin Pest When metallic tin is kept below 13.2°C, it slowly
becomes brittle and crumbles to a gray powder. Tin objects
eventually crumble to this gray powder spontaneously if kept in
a cold climate for years. The Europeans who saw tin organ pipes
in their churches crumble away years ago called the change tin
pest because it seemed to be contagious. And indeed it was, for
the gray powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls the
rate of reaction without undergoing any permanent change in
itself. An autocatalytic reaction is one whose product is a catalyst
for its own formation. Such a reaction may proceed slowly at first
if the amount of catalyst present is small and slowly again at the
end, when most of the original substance is used up. But in
between, when both the substance and its catalyst product are
abundant, the reaction proceeds at a faster pace.

In some cases it is reasonable to assume that the rate 
v � dx�dt of the reaction is proportional both to the amount of
the original substance present and to the amount of product.
That is, v may be considered to be a function of x alone, and 

v � kx�a � x� � kax � kx2,

where 
x � the amount of product,

a � the amount of substance at the beginning,

k � a positive constant.

At what value of x does the rate v have a maximum? What is the
maximum value of v?

59. How We Cough When we cough, the trachea (windpipe)
contracts to increase the velocity of the air going out. This raises
the question of how much it should contract to maximize the
velocity and whether it really contracts that much when we
cough.

Under reasonable assumptions about the elasticity of the tracheal
wall and about how the air near the wall is slowed by friction,
the average flow velocity v (in cm�sec) can be modeled by the
equation

v � c�r0 � r�r2, 

r
2
0
 � r � r0,

where r0 is the rest radius of the trachea in cm and c is a positive
constant whose value depends in part on the length of the trachea.

(a) Show that v is greatest when  r � �2�3�r0, that is, when the
trachea is about 33% contracted. The remarkable fact is that 
X-ray photographs confirm that the trachea contracts about this
much during a cough.

(b) Take r0 to be 0.5 and c to be 1, and graph v over the interval
0 � r � 0.5.  Compare what you see to the claim that v is a
maximum when  r � �2�3�r0.

60. Wilson Lot Size Formula One of the formulas for inventory
management says that the average weekly cost of ordering,
paying for, and holding merchandise is

A�q� � 

k
q
m

 � cm � 


h
2
q

 ,

where q is the quantity you order when things run low (shoes,
radios, brooms, or whatever the item might be), k is the cost of
placing an order (the same, no matter how often you order), c is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and h is the weekly holding cost per
item (a constant that takes into account things such as space,
utilities, insurance, and security). 

(a) Your job, as the inventory manager for your store, is to find
the quantity that will minimize A�q�. What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

(b) Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace k by  k � bq, the sum of k and
a constant multiple of q. What is the most economical quantity
to order now?

[–3, 3] by [–2, 40]

B

Plane mirror


2

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection


1
A

The rate v is maximum when x � 

a
2


. The rate then is 

k

4

a2

.

q � �2km/h�

q � �2km/h� (the same amount as in part (a))
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232 Chapter 4 Applications of Derivatives

61. Production Level Show that if  r �x� � 6x and  c�x� �
x3 � 6x2 � 15x are your revenue and cost functions, then the
best you can do is break even (have revenue equal cost).

62. Production Level Suppose  c�x� � x3 � 20x2 � 20,000x is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items. x � 10 items

Extending the Ideas
63. Airplane Landing Path An airplane is flying at altitude H

when it begins its descent to an airport runway that is at
horizontal ground distance L from the airplane, as shown in the
figure. Assume that the landing path of the airplane is the graph
of a cubic polynomial function  y � ax3 � bx2 � cx � d where
y��L� � H and  y�0� � 0.

(a) What is  dy�dx at  x � 0?

(b) What is  dy�dx at  x � �L?

(c) Use the values for  dy�dx at  x � 0  and x � �L together
with  y�0� � 0  and  y��L� � H to show that

y�x� � H [2( 

L
x


 )
3

� 3( 

L
x


 )
2

].

In Exercises 64 and 65, you might find it helpful to use a CAS.

64. Generalized Cone Problem A cone of height h and radius r
is constructed from a flat, circular disk of radius a in. as
described in Exploration 1.

(a) Find a formula for the volume V of the cone in terms of x
and a.

(b) Find r and h in the cone of maximum volume for  a � 4, 5,
6, 8.

(c) Writing to Learn Find a simple relationship between r and
h that is independent of a for the cone of maximum volume.
Explain how you arrived at your relationship.

65. Circumscribing an Ellipse Let P�x, a� and Q��x, a� be two
points on the upper half of the ellipse



1
x
0

2

0

 � 


�y �

25
5�2


 � 1

centered at �0, 5�. A triangle RST is formed by using the tangent
lines to the ellipse at Q and P as shown in the figure.

(a) Show that the area of the triangle is 

A�x� � �f 	�x� [x � 

f
f
	

�
�
x
x
�
�


 ]
2

,

where  y � f �x� is the function representing the upper half of
the ellipse.

(b) What is the domain of A? Draw the graph of A. How are the
asymptotes of the graph related to the problem situation?

(c) Determine the height of the triangle with minimum area.
How is it related to the y-coordinate of the center of the ellipse?

(d) Repeat parts (a)–(c) for the ellipse



C
x2

2
 � 

�y �

B2
B�2


 � 1

centered at �0, B�. Show that the triangle has minimum area
when its height is 3B.

y

x

P(x, a)Q(–x, a)

R

S T

5

Landing path y

x

H � Cruising altitude
Airport

L

4. A(x) � x(4 � x), 0 � x � 4. A	(x) � 4 � 2x, so there is an absolute 
maximum at x � 2. If x � 2, then the length of the second side is also 2, so
the rectangle with the largest area is a square.

7. Largest volume is 

24
2
5
7
0


 � 90.74 in3; dimensions: 

5

3

 in.

by 

1
3
4

 in. by 


3
3
5

 in.

8. Since a2 � b2 � 400, Area � 

1
2


a(400 � a2)1/2.



d
d
a

Area � 


(4

2

0

0

0

0

�

�

a

a
2)

2

1/2
. 

Thus the maximum area occurs when a2 � 200,
but then b2 � 200 as well, so a � b.

12. (a) x � 15 ft and y � 5 ft
(b) The material for the tank costs 5 dollars/sq ft and the excavation charge

is 10 dollars for each square foot of the cross-sectional area of one wall
of the hole.

29. (a) f 	(x) is a quadratic polynomial, and as such it can have 0, 1, or 2 zeros.
If it has 0 or 1 zeros, then its sign never changes, so f(x) has no local
extrema.

If f 	(x) has 2 zeros, then its sign changes twice, and f(x) has 2 local ex-
trema at those points.

(b) Possible answers:
No local extrema: y � x3; 
2 local extrema: y � x3 � 3x

34. f 	(x) � 

2x3

x
�
2

a

, so the only sign change in f 	(x) occurs at x � �


a
2


�1/3
,

where the sign changes from negative to positive. This means there is a
local minimum at that point, and there are no local maxima.

61. p(x) � 6x � (x3 � 6x2 � 15x), x � 0. This function has its maximum value at the points (0, 0) and (3, 0).
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Section 4.5 Linearization and Newton’s Method 233

Linearization and Newton’s Method

Linear Approximation
In our study of the derivative we have frequently referred to the “tangent line to the curve”
at a point. What makes that tangent line so important mathematically is that it provides a
useful representation of the curve itself if we stay close enough to the point of tangency.
We say that differentiable curves are always locally linear, a fact that can best be appreci-
ated graphically by zooming in at a point on the curve, as Exploration 1 shows.

4.5

What you’ll learn about

• Linear Approximation

• Newton’s Method

• Differentials

• Estimating Change with 
Differentials

• Absolute, Relative, and 
Percentage Change

• Sensitivity to Change

. . . and why

Engineering and science depend
on approximations in most practi-
cal applications; it is important to
understand how approximation
techniques work.

Appreciating Local Linearity

The function f (x) � (x2 � 0.0001)1/4 � 0.9 is differentiable at x � 0 and hence 
“locally linear” there. Let us explore the significance of this fact with the help of a
graphing calculator.

1. Graph y � f (x) in the “ZoomDecimal” window. What appears to be the behavior
of the function at the point (0, 1)?

2. Show algebraically that f is differentiable at x � 0. What is the equation of the
tangent line at (0, 1)?

3. Now zoom in repeatedly, keeping the cursor at (0, 1). What is the long-range
outcome of repeated zooming?

4. The graph of y � f(x) eventually looks like the graph of a line. What line is it?

We hope that this exploration gives you a new appreciation for the tangent line. As you
zoom in on a differentiable function, its graph at that point actually seems to become
the graph of the tangent line! This observation—that even the most complicated differ-
entiable curve behaves locally like the simplest graph of all, a straight line—is the
basis for most of the applications of differential calculus. It is what allows us, for exam-
ple, to refer to the derivative as the “slope of the curve” or as “the velocity at time t0.”

Algebraically, the principle of local linearity means that the equation of the tangent
line defines a function that can be used to approximate a differentiable function
near the point of tangency. In recognition of this fact, we give the equation of the
tangent line a new name: the linearization of f at a. Recall that the tangent line at
(a, f (a)) has point-slope equation y � f (a) � f 	(x)(x � a) (Figure 4.44).

EXPLORATION 1

Figure 4.44 The tangent to the 
curve y � f �x� at x � a is the line 
y � f �a� � f 	�a��x � a�. 

x

y

0

y � f(x)

a

Slope � f'(a)

(a,  f(a))

DEFINITION Linearization

If f is differentiable at x � a, then the equation of the tangent line,

L(x) � f (a) � f 	(a)(x � a),

defines the linearization of f at a. The approximation f (x) � L(x) is the standard
linear approximation of f at a. The point x � a is the center of the approximation.
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234 Chapter 4 Applications of Derivatives

EXAMPLE 1   Finding a Linearization

Find the linearization of f (x) � �1 � x� at x � 0, and use it to approximate �1.02� with-
out a calculator. Then use a calculator to determine the accuracy of the approximation.

SOLUTION

Since f (0) � 1, the point of tangency is (0, 1). Since  f �(x) � �
1
2

�(1 � x)�1/2, the slope of

the tangent line is  f �(0) � �
1
2

�. Thus

L(x) � 1 � �
1
2

�(x � 0) � 1 � �
2
x

�.     (Figure 4.45)

To approximate �1.02�, we use x � 0.02:

�1.02� � f (0.02) � L(0.02) � 1� �
0.

2
02
� � 1.01

The calculator gives �1.02� � 1.009950494, so the approximation error is
|1.009950494 �1.01| � 4.05 � 10�5 . We report that the error is less than 10�4.

Now try Exercise 1.

Look at how accurate the approximation �1 � x� � 1 � �
2
x

� is for values of x near 0. 

Approximation |True Value – Approximation|

�1.002� � 1 � �
0.0

2
02
� � 1.001 �10�6

�1.02� � 1 � �
0.

2
02
� � 1.01 �10�4

�1.2� � 1 � �
0
2
.2
� � 1.1 �10�2

As we move away from zero (the center of the approximation), we lose accuracy and
the approximation becomes less useful. For example, using L(2) � 2 as an approxima-
tion for f (2) � �3� is not even accurate to one decimal place. We could do slightly bet-
ter using L(2) to approximate f (2) if we were to use 3 as the center of our approximation
(Figure 4.45).

EXAMPLE 2   Finding a Linearization

Find the linearization of f (x) � cos x at x � p/2 and use it to approximate cos 1.75 with-
out a calculator. Then use a calculator to determine the accuracy of the approximation.

SOLUTION

Since f (p/2) � cos (p/2) � 0, the point of tangency is (p/2, 0). The slope of the tangent
line is f �(p/2) � �sin (p/2) � �1. Thus

L(x) � 0 � (�1)�x � �
p

2
�� � �x � �

p

2
�. (Figure 4.46)

To approximate cos (1.75), we use x � 1.75:

cos 1.75 � f (1.75) � L(1.75) � �1.75 � �
p

2
�

The calculator gives cos 1.75 � �0.1782460556, so the approximation error is
|�0.1782460556 � (�1.75 � p/2)| � 9.57 � 10�4. We report that the error is less 
than 10�3. Now try Exercise 5.

Why not just use a calculator?

We readily admit that linearization will

never replace a calculator when it

comes to finding square roots. Indeed,

historically it was the other way around.

Understanding linearization, however,

brings you one step closer to under-

standing how the calculator finds those

square roots so easily. You will get

many steps closer when you study 

Taylor polynomials in Chapter 9. (A lin-

earization is just a Taylor polynomial of

degree 1.)

Figure 4.45 The graph of f �x� �

�1� �� x� and its linearization at x � 0 and
x � 3. (Example 1) 

x

y

0

y � √ 

y � 1�

1

2

1 2 3 4–1

x–
2

y�     � x–
4

5–
4

1�x

Figure 4.46 The graph of f �x� � cos x
and its linearization at x � p�2. Near 
x � p�2, cos x � �x � �p�2�. (Example 2)

�–
2

x

y

0 y � cos x

y � –x ��–
2
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Section 4.5 Linearization and Newton’s Method 235

EXAMPLE 3   Approximating Binomial Powers

Example 1 introduces a special case of a general linearization formula that applies to
powers of 1 � x for small values of x:

(1 � x)k � 1 � kx.

If k is a positive integer this follows from the Binomial Theorem, but the formula actu-
ally holds for all real values of k. (We leave the justification to you as Exercise 7.) Use
this formula to find polynomials that will approximate the following functions for val-
ues of x close to zero:

(a) �3
1� x� (b) 


1�

1
x


 (c) �1� 5x�4� (d) 

�1

1
�x2�



SOLUTION

We change each expression to the form (1 � y)k, where k is a real number and y is a
function of x that is close to 0 when x is close to zero. The approximation is then given
by 1 � ky.

(a) �3
1� x� � (1 � (�x))1/3 � 1 � 


1
3


(�x) � 1 � 

3
x




(b) 

1�

1
x


 � (1 � (�x))�1 � 1 � (�1)(�x)� 1 � x

(c) �1 � 5x�4� � ((1 � 5x4))1/2 � 1 � 

1
2


 (5x4) � 1 � 

5
2


x4

(d) 

�1

1
�x2�

 � ((1 � (�x2))�1/2 � 1 ���


1
2


�(�x2) � 1 � 

1
2


x2

Now try Exercise 9.

EXAMPLE 4   Approximating Roots

Use linearizations to approximate (a) �123� and (b) �3
123�.

SOLUTION

Part of the analysis is to decide where to center the approximations.

(a) Let f (x) � �x� . The closest perfect square to 123 is 121, so we center the lineariza-
tion at x � 121. The tangent line at (121, 11) has slope

f 	(121) � 

1
2


(121)�1/2 � 

1
2


 • 

�

1

121�

 � 


2
1
2

.

So

�121� � L(121) � 11 � 

2
1
2

(123 � 121) � 11.0�9�.

(b) Let  f (x) � �
3

x�. The closest perfect cube to 123 is 125, so we center the lineariza-
tion at x � 125. The tangent line at (125, 5) has slope

f 	(125) � 

1
3


 (125)�2/3 � 

1
3


 • 

(�3 1

1
25�)2
 � 


7

1

5

.

So

�
3

123� � L(123) � 5 � 

7
1
5

 (123 � 125) � 4.973�.

A calculator shows both approximations to be within 10�3 of the actual values.

Now try Exercise 11.

Newton’s Method
Newton’s method is a numerical technique for approximating a zero of a function with
zeros of its linearizations. Under favorable circumstances, the zeros of the linearizations
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236 Chapter 4 Applications of Derivatives

converge rapidly to an accurate approximation. Many calculators use the method because
it applies to a wide range of functions and usually gets results in only a few steps. Here is
how it works.

To find a solution of an equation f �x� � 0, we begin with an initial estimate x1, found
either by looking at a graph or simply guessing. Then we use the tangent to the curve
y � f �x� at �x1, f �x1 �� to approximate the curve (Figure 4.47). The point where the tan-
gent crosses the x-axis is the next approximation x2. The number x2 is usually a better
approximation to the solution than is x1. The point where the tangent to the curve at 
�x2, f �x2 �� crosses the x-axis is the next approximation x3. We continue on, using each ap-
proximation to generate the next, until we are close enough to the zero to stop.

There is a formula for finding the �n � 1�st approximation xn�1 from the nth approxi-
mation xn. The point-slope equation for the tangent to the curve at �xn, f �xn�� is

y � f �xn� � f 	�xn��x � xn�.

We can find where it crosses the x-axis by setting  y � 0 (Figure 4.48).

0 � f �xn� � f 	�xn��x � xn�

�f �xn� � f 	�xn� • x � f 	�xn� • xn

f 	�xn� • x � f 	�xn� • xn � f �xn�

x � xn � 

f
f
	

�
�
x
x

n

n

�
�


 If f	�xn�  0

This value of x is the next approximation xn�1. Here is a summary of Newton’s method.

EXAMPLE 5   Using Newton’s Method

Use Newton’s method to solve  x3 � 3x � 1 � 0.

SOLUTION

Let f �x� � x3 � 3x � 1, then f 	�x� � 3x2 � 3 and

xn�1 � xn � 

f
f
	

�
�
x
x

n

n

�
�


 � xn � 

xn

3

3
�

xn
2
3x

�
n

3
� 1


 .

The graph of f in Figure 4.49 on the next page suggests that  x1 � �0.3 is a good first
approximation to the zero of f in the interval �1 � x � 0.  Then,

x1 � �0.3,

x2 � �0.322324159,

x3 � �0.3221853603,

x4 � �0.3221853546.

The xn for  n � 5 all appear to equal x4 on the calculator we used for our computations.
We conclude that the solution to the equation x3 � 3x � 1 � 0 is about
�0.3221853546. Now try Exercise 15.

Figure 4.48 From xn we go up to the
curve and follow the tangent line down to
find xn�1.

Equation:
 y – f (xn ) � f '(xn)(x – xn)

x

y

0

y � f(x)
Point: (xn, f (xn))

Root sought

xn

Tangent line
(graph of
linearization
of f at xn)

Slope: f '(xn)

f(xn)
——–
f'(xn)

xn+1 � xn –

(xn, f(xn))

Procedure for Newton’s Method

1. Guess a first approximation to a solution of the equation f �x� � 0.  A graph of
y � f �x� may help.

2. Use the first approximation to get a second, the second to get a third, and so on,
using the formula

xn�1 � xn � 

f
f
	

�
�
x
x

n

n

�
�


 .

Figure 4.47 Usually the approxima-
tions rapidly approach an actual zero of
y � f �x�.

x4

x

y

0

(x1, f(x1))

y � f (x)

Root
sought

x1

APPROXIMATIONS

Fourth First

x2
Second

x3
Third

(x2, f (x2))

(x3, f(x3))
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Section 4.5 Linearization and Newton’s Method 237

Newton’s method does not work if f 	�x1� � 0. In that case, choose a new starting point.
Newton’s method does not always converge. For instance (see Figure 4.51), successive

approximations r � h and r � h can go back and forth between these two values, and no
amount of iteration will bring us any closer to the zero r.

If Newton’s method does converge, it converges to a zero of f. However, the method
may converge to a zero that is different from the expected one if the starting value is not
close enough to the zero sought. Figure 4.52 shows how this might happen.

Differentials
Leibniz used the notation dy�dx to represent the derivative of y with respect to x. The nota-
tion looks like a quotient of real numbers, but it is really a limit of quotients in which both
numerator and denominator go to zero (without actually equaling zero). That makes it
tricky to define dy and dx as separate entities. (See the margin note, “Leibniz and His 
Notation.”) Since we really only need to define dy and dx as formal variables, we define
them in terms of each other so that their quotient must be the derivative. 

Figure 4.49 A calculator graph of y � x3 � 3x � 1 suggests that �0.3 is a good  first guess at
the zero to begin Newton’s method. (Example 5)

[–5, 5] by [–5, 5]

Using Newton’s Method on Your Calculator

Here is an easy way to get your calculator to perform the calculations in Newton’s
method. Try it with the function f �x� � x3 � 3x � 1 from Example 5.

1. Enter the function in Y1 and its derivative in Y2.

2. On the home screen, store the initial guess into x. For example, using the initial
guess in Example 5, you would type �.3→X.

3. Type  X–Y1/Y2→X and press the ENTER key over and over. Watch as the
numbers converge to the zero of f. When the values stop changing, it means
that your calculator has found the zero to the extent of its displayed digits
(Figure 4.50).

4. Experiment with different initial guesses and repeat Steps 2 and 3.

5. Experiment with different functions and repeat Steps 1 through 3. Compare each
final value you find with the value given by your calculator’s built-in zero-
finding feature. 

EXPLORATION 2

Figure 4.50 A graphing calculator 
does the computations for Newton’s
method. (Exploration 2)

Y2   /
-.3

- 322324159
- 3221853603
- 3221853546
- 3221853546

-  3  

X–Y1 →

→

X

X

Figure 4.51 The graph of the function 

��r��� x�, x � r
f �x� � {�x��� r�, x � r.

If x1 � r � h, then x2 � r � h. Successive
approximations go back and forth between
these two values, and Newton’s method
fails to converge.

x

y

O x1 x2

r

y � f(x)

Figure 4.52 Newton’s method may
miss the zero you want if you start too far
away.

x3

Root found

x2

y � f (x)

Starting
point

Root
sought

x
x1
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238 Chapter 4 Applications of Derivatives

EXAMPLE 6   Finding the Differential dy

Find the differential dy and evaluate dy for the given values of x and dx.

(a) y � x5 � 37x, x � 1, dx � 0.01 (b) y � sin 3x , x � p, dx � �0.02

(c) x � y � xy, x � 2, dx � 0.05

SOLUTION

(a) dy � (5x4 � 37) dx.  When x � 1 and dx � 0.01, dy � (5 � 37)(0.01) � 0.42.

(b) dy � (3 cos 3x) dx.   When x � p and dx � �0.02, dy � (3 cos 3p)( �0.02) � 0.06.

(c) We could solve explicitly for y before differentiating, but it is easier to use implicit 

differentiation:

d(x � y) � d(xy)

dx � dy � xdy � ydx Sum and Product Rules in differential form

dy(1 � x) � (y � 1)dx

dy � 

(y

1
�

�

1)
x
dx




When x � 2 in the original equation, 2 � y � 2y, so y is also 2. Therefore 

dy � 

(2 �

(1
1
�

)(0
2
.
)
05)


 � �0.05. Now try Exercise 19.

If dx  0, then the quotient of the differential dy by the differential dx is equal to the
derivative f 	�x� because



d
dy

x

 � 


f 	�
d
x�
x

dx

 � f 	�x�.

We sometimes write 

df � f 	�x� dx

in place of dy � f 	�x� dx, calling df the differential of f . For instance, if f �x� � 3x2 � 6,
then

df � d�3x2 � 6� � 6x dx.

Every differentiation formula like



d�u

d
�

x
v�


 � 

d
d
u
x

 � 


d
d

v
x

 or 


d�s
d
in
x

u�

 � cos u


d
d
u
x



has a corresponding differential form like

d�u � v� � du � dv or d�sin u� � cos u du.

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx.

Leibniz and His Notation

Although Leibniz did most of his calcu-

lus using dy and dx as separable enti-

ties, he never quite settled the issue of

what they were. To him, they were “in-

finitesimals”—nonzero numbers, but in-

finitesimally small. There was much de-

bate about whether such things could

exist in mathematics, but luckily for the

early development of calculus it did not

matter: thanks to the Chain Rule, dy/dx

behaved like a quotient whether it was

one or not.

DEFINITION Differentials

Let y � f �x� be a differentiable function. The differential dx is an independent
variable. The differential dy is

dy � f 	�x� dx.

Fan Chung Graham
(1949–1949)

“Don’t be intim-

idated!” is Dr.

Fan Chung Gra-

ham’s advice to

young women

considering ca-

reers in

mathematics.

Fan Chung 

Graham came

to the U.S. from Taiwan to earn a Ph.D.

in Mathematics from the University of

Pennsylvania. She worked in the field of

combinatorics at Bell Labs and Bellcore,

and then, in 1994, returned to her alma

mater as a Professor of Mathematics.

Her research interests include spectral

graph theory, discrete geometry, algo-

rithms, and communication networks.
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EXAMPLE 7   Finding Differentials of Functions

(a) d�tan 2x� � sec2 �2x� d�2x� � 2 sec2 2x dx

(b) d(
x �

x
1


) � �

x dx

�
�

x �

dx
1
�

�2
x dx


� 

�x �

dx
1�2


Now try Exercise 27.

Estimating Change with Differentials
Suppose we know the value of a differentiable function f �x� at a point a and we want to
predict how much this value will change if we move to a nearby point a � dx. If dx is
small, f and its linearization L at a will change by nearly the same amount (Figure 4.53).
Since the values of L are simple to calculate, calculating the change in L offers a practical
way to estimate the change in f.

�x � 1� dx � x d�x � 1�





�x � 1�2

Figure 4.53 Approximating the change in the function f by the change in the linearization of f.

x

y

0 a a  � dx

(a,  f (a ))
dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely df .

Tangent
line

y � f (x)

�L � f '(a)dx

�f � f (a � dx) � f(a )

In the notation of Figure 4.53, the change in f is 

� f � f �a � dx� � f �a�.

The corresponding change in L is

�L � L�a � dx� � L�a�

� f �a� � f 	�a���a � dx� � a� � f �a�
L�a � dx� L�a�

� f 	�a� dx.

Thus, the differential df � f 	�x� dx has a geometric interpretation: The value of df at x � a
is �L, the change in the linearization of f corresponding to the change dx.

Differential Estimate of Change

Let f �x� be differentiable at  x � a. The approximate change in the value of f when
x changes from a to  a � dx is

df � f 	�a� dx.
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240 Chapter 4 Applications of Derivatives

EXAMPLE 8   Estimating Change With Differentials

The radius r of a circle increases from a � 10 m to 10.1 m (Figure 4.54). Use dA to es-
timate the increase in the circle’s area A. Compare this estimate with the true change
�A, and find the approximation error.

SOLUTION

Since A � pr2, the estimated increase is

dA � A	�a� dr � 2pa dr � 2p�10��0.1� � 2p m2.

The true change is 

�A � p�10.1�2 � p�10�2 � �102.01 � 100�p � 2.01p m2.

The approximation error is �A � dA � 2.01p� 2p � 0.01p m2.

Now try Exercise 31.

Absolute, Relative, and Percentage Change
As we move from a to a nearby point a � dx, we can describe the change in f in three
ways:

Figure 4.54 When dr is small compared
with a, as it is when dr � 0.1 and a � 10,
the differential dA � 2pa dr gives a good
estimate of �A. (Example 8)

dr �  0.1

a � 10

�A ≈ dA � 2�a  dr

True Estimated

Absolute change �f � f �a � dx� � f �a� df � f 	�a� dx

Relative change 

f
�
�a

f
�


 

f
d
�a
f
�




Percentage change 

f
�
�a

f
�


 � 100 

f
d
�a
f
�


 � 100

EXAMPLE 9   Changing Tires

Inflating a bicycle tire changes its radius from 12 inches to 13 inches. Use differentials
to estimate the absolute change, the relative change, and the percentage change in the
perimeter of the tire.

SOLUTION

Perimeter P � 2pr, so �P � dP � 2pdr � 2p(1) � 2p � 6.28.

The absolute change is approximately 6.3 inches.

The relative change (when P(12) � 24p) is approximately 2p/24p � 0.08.

The percentage change is approximately 8 percent. Now try Exercise 35.

Another way to interpret the change in f (x) resulting from a change in x is the effect that
an error in estimating x has on the estimation of f (x). We illustrate this in Example 10. 

EXAMPLE 10   Estimating the Earth’s Surface Area

Suppose the earth were a perfect sphere and we determined its radius to be 3959 � 0.1
miles. What effect would the tolerance of �0.1 mi have on our estimate of the earth’s
surface area?

continued

Why It’s Easy to Estimate Change
in Perimeter

Note that the true change in Example 9

is P (13) � P (12) � 26p� 24p � 2p,

so the differential estimate in this case

is perfectly accurate! Why? Since P �
2pr is a linear function of r, the lin-

earization of P is the same as P itself. It

is useful to keep in mind that local lin-

earity is what makes estimation by dif-

ferentials work.
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SOLUTION

The surface area of a sphere of radius r is  S � 4pr2.  The uncertainty in the calculation
of S that arises from measuring r with a tolerance of dr miles is 

dS � 8pr dr.

With  r � 3959  and  dr � 0.1, our estimate of S could be off by as much as

dS � 8p�3959��0.1� � 9950 mi2,

to the nearest square mile, which is about the area of the state of Maryland.

Now try Exercise 41.

EXAMPLE 11   Determining Tolerance

About how accurately should we measure the radius r of a sphere to calculate the sur-
face area  S � 4pr2 within 1% of its true value?

SOLUTION

We want any inaccuracy in our measurement to be small enough to make the correspon-
ding increment �S in the surface area satisfy the inequality

	�S	 � 

1
1
00

S � 


4
1
p

0
r
0

2


 .

We replace �S in this inequality by its approximation 

dS � (

d
d
S
r

) dr � 8pr dr.

This gives 

	8pr dr 	 � 

4
1
p

0
r
0

2


 , or 	dr 	 � 

8p

1
r


 • 

4
1
p

0
r
0

2


 � 

1
2


 • 

10

r
0


 � 0.005r.

We should measure r with an error dr that is no more than 0.5% of the true value.

Now try Exercise 49.

EXAMPLE 12   Unclogging Arteries

In the late 1830s, the French physiologist Jean Poiseuille (“pwa-ZOY”) discovered the
formula we use today to predict how much the radius of a partially clogged artery has to
be expanded to restore normal flow. His formula,

V � kr 4,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How will a
10% increase in r affect V ?

SOLUTION

The differentials of r and V are related by the equation

dV � 

d
d
V
r

 dr � 4kr 3 dr.

The relative change in V is



d
V
V

 � 


4k
k
r
r

3

4
dr


 � 4

d
r
r

 .

The relative change in V is 4 times the relative change in r, so a 10% increase in r will
produce a 40% increase in the flow. Now try Exercise 51.

Angiography

An opaque dye is injected into a par-

tially blocked artery to make the inside

visible under X-rays. This reveals the lo-

cation and severity of the blockage.

Opaque
dye

Blockage

Angioplasty

A balloon-tipped catheter is inflated in-

side the artery to widen it at the block-

age site.

 Inflatable
balloon on
 catheter
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242 Chapter 4 Applications of Derivatives

Sensitivity to Change
The equation df � f 	�x� dx tells how sensitive the output of f is to a change in input at dif-
ferent values of x. The larger the value of f 	 at x, the greater the effect of a given change dx.

EXAMPLE 13   Finding Depth of a Well

You want to calculate the depth of a well from the equation  s � 16t2 by timing how
long it takes a heavy stone you drop to splash into the water below. How sensitive will
your calculations be to a 0.1 sec error in measuring the time?

SOLUTION

The size of ds in the equation

ds � 32t dt

depends on how big t is. If t � 2 sec, the error caused by  dt � 0.1  is only

ds � 32�2��0.1� � 6.4 ft.

Three seconds later at t � 5 sec, the error caused by the same dt is

ds � 32�5��0.1� � 16 ft. Now try Exercise 53.

In Exercises 1 and 2, find  dy�dx.

1. y � sin �x2 � 1� 2. y � 

x �

x �

co
1
s x




In Exercises 3 and 4, solve the equation graphically.

3. xe�x � 1 � 0 x � �0.567 4. x3 � 3x � 1 � 0

In Exercises 5 and 6, let f �x� � xe�x � 1.  Write an equation for the
line tangent to f at  x � c.

5. c � 0 y � x � 1 6. c � �1 y � 2ex � e � 1

7. Find where the tangent line in (a) Exercise 5 and (b) Exercise 6
crosses the x-axis. (a) x � �1 (b) x � �


e
2
�

e
1


 � �0.684

8. Let g�x� be the function whose graph is the tangent line to the
graph of f �x� � x3 � 4x � 1 at  x � 1. Complete the table.

In Exercises 9 and 10, graph  y � f �x� and its tangent line at x � c.

9. c � 1.5, f �x� � sin x

10.
��3� �� x�, x � 3

c � 4, f �x� � {�x��� 3�, x � 3

x ⏐ f �x� ⏐ g�x�
0.7 ⏐ �1.457 ⏐ �1.7

0.8 ⏐ �1.688 ⏐ �1.8

0.9 ⏐ �1.871 ⏐ �1.9

1 ⏐ �2 ⏐ �2

1.1 ⏐ �2.069 ⏐ �2.1

1.2 ⏐ �2.072 ⏐ �2.2

1.3 ⏐ �2.003 ⏐ �2.3

Quick Review 4.5 (For help, go to Sections 3.3, 3.6, and 3.9.)

Section 4.5 Exercises

In Exercises 1–6, (a) find the linearization L�x� of f �x� at  x � a.
(b) How accurate is the approximation  L�a � 0.1� � f �a � 0.1�? 
See the comparisons following Example 1.

1. f �x� � x3 � 2x � 3, a � 2

2. f �x� � �x�2��� 9�, a � �4

3. f �x� � x � 

1
x


 , a � 1

4. f �x� � ln �x � 1�, a � 0

5. f �x� � tan x, a � p 6. f �x� � cos�1 x, a � 0

7. Show that the linearization of f �x� � �1 � x�k at  x � 0  is
L�x� � 1 � kx.

8. Use the linearization  �1 � x�k � 1 � kx  to approximate the
following. State how accurate your approximation is.

(a) (1.002)100 (b) �3 1�.0�0�9�

In Exercises 9 and 10, use the linear approximation  �1 � x�k � 1 � kx
to find an approximation for the function f �x� for values of x near zero.

9. (a) f �x� � �1 � x�6 (b) f �x� � 

1 �

2
x


    (c) f �x� � 

�1�

1

�� x�



2x cos (x2 � 1)

x � �0.322

1 � cos x � (x � 1) sin x





(x � 1)2

� 1.2, ⏐1.002100 � 1.2⏐ � 10�1

1 � 6x
2 � 2x 1 � 


2
x




� 1.003, ⏐�3
1.009� � 1.003⏐� 10�5
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10. (a) f �x� � �4 � 3x�1/3 (b) f �x� � �2� �� x�2�

(c) f �x� � 3�(1 � 

2 �

1
x


 )
2

In Exercises 11–14, approximate the root by using a linearization
centered at an appropriate nearby number.

11. �101� 12. �3
26�

13. �3
998� 14. �80�

In Exercises 15–18, use Newton’s method to estimate all 
real solutions of the equation. Make your answers accurate 
to 6 decimal places.

15. x3 � x � 1 � 0 x � 0.682328 16. x4 � x � 3 � 0

17. x2 � 2x � 1 � sin x 18. x4 � 2 � 0 x � � 1.189207

In Exercises 19–26, (a) find dy, and (b) evaluate dy for the given
value of x and dx.

19. y � x3 � 3x, x � 2, dx � 0.05

20. y � 

1 �

2x
x2
 , x � �2, dx � 0.1

21. y � x2 ln x, x � 1, dx � 0.01

22. y � x�1� �� x�2�, x � 0, dx � �0.2

23. y � esin x, x � p, dx � �0.1

24. y � 3 csc (1 � 

3
x


 ), x � 1, dx � 0.1

25. y � xy � x � 0, x � 0, dx � 0.01

26. 2y � x2 � xy, x � 2, dx � �0.05

In Exercises 27–30, find the differential.

27. d(�1�x2�)

28. d(e5x � x5) (5e5x � 5x4) dx

29. d(arctan 4x) 

1 �

4
16x2
dx

30. d(8x � x8) (8x ln 8 � 8x7)dx

In Exercises 31–34, the function f changes value when x changes
from a to a � dx. Find

(a) the true change  � f � f �a � dx� � f �a�.

(b) the estimated change  df � f 	�a� dx.

(c) the approximation error 	� f � df 	.

31. f �x� � x2 � 2x, a � 0, dx � 0.1 (a) 0.21 (b) 0.2 (c) 0.01

32. f �x� � x3 � x, a � 1, dx � 0.1 (a) 0.231 (b) 0.2 (c) 0.031

33. f �x� � x�1, a � 0.5, dx � 0.05 (a) �

1
2
1

 (b) �


1
5


 (c) 

5
1
5



34. f �x� � x4, a � 1, dx � 0.01

In Exercises 35–40, write a differential formula that estimates the
given change in volume or surface area. Then use the formula to
estimate the change when the dependent variable changes from 10 cm
to 10.05 cm.

35. Volume The change in the volume  V � �4�3�pr 3 of a sphere
when the radius changes from a to  a � dr

36. Surface Area The change in the surface area  S � 4pr2

of a sphere when the radius changes from a to  a � dr

37. Volume The change in the volume  V � x3 of a cube when the
edge lengths change from a to  a � dx ΔV � 3a2 dx � 15 cm3

38. Surface Area The change in the surface area  S � 6x2 of 
a cube when the edge lengths change from a to  a � dx

39. Volume The change in the volume  V � pr2h of a right
circular cylinder when the radius changes from a to  a � dr and
the height does not change ΔV � 2�ah dr � �h cm3

40. Surface Area The change in the lateral surface area  
S � 2prh of a right circular cylinder when the height changes
from a to  a � dh and the radius does not change

In Exercises 41–44, use differentials to estimate the maximum error
in measurement resulting from the tolerance of error in the dependent
variable. Express answers to the nearest tenth, since that is the
precision used to express the tolerance.

41. The area of a circle with radius 10 � 0.1 in.

42. The volume of a sphere with radius 8 � 0.3 in.

43. The volume of a cube with side 15 � 0.2 cm.

x

y

O � dx

( , f( ))

dx

�f � f(  � dx) � f( )

Tangent

y � f(x)

df � f '(a

a

a a

a

aa
)dx

r

V � –�r3, S � 4�r24
3

x

x

x

V � x3, S � 6x 2

V � �r2h, S � 2�rh

r

h

11. y � 10 � 0.05(x � 10), so y � 10.05
12. y � 3 � (1/27)(x � 27), so y � 3 � 1/27 � 2.9�6�2�

13. y � 10 � (1/300)(x � 1000), so y � 10 � 1/150 � 9.993�
14. y � 9 � (1/18)(x � 81), so y � 9 � 1/18 � 8.94�

x � �1.452627, 1.164035

x � 0.386237, 1.961569

� dx
x



�1 � x2�

(a) 0.04060401 (b) 0.04 (c) 0.00060401

ΔV � 4�a2 dr � 20� cm3

ΔA � 8�a dr � 4� cm2

ΔS � 12a dx � 6 cm2

ΔA � 2�r dh � 0.1� r cm2

2� (10)(0.1) � 6.3 in2

4� (8)2 (0.3) � 241 in2

3(15)2 (0.2) � 135 cm2

(a) �2��1 � 

x
4

2

� (b) 41/3 �1 � 


4

x

�

(c) 1 � 

6 �

2
3x
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44. The area of an equilateral triangle with side 20 � 0.5 cm.

45. Linear Approximation Let f be a function with f �0� � 1
and f ��x� � cos �x2 �.

(a) Find the linearization of f at  x � 0. x � 1

(b) Estimate the value of f at  x � 0.1. f (0.1) � 1.1

(c) Writing to Learn Do you think the actual value of f
at  x � 0.1  is greater than or less than the estimate in part (b)?
Explain. The actual value is less than 1.1, since the derivative is 

46. Expanding Circle The radius of a circle is increased from
2.00 to 2.02 m.

(a) Estimate the resulting change in area. 0.08� � 0.2513

(b) Estimate as a percentage of the circle’s original area. 2%

47. Growing Tree The diameter of a tree was 10 in. During the
following year, the circumference increased 2 in. About how
much did the tree’s diameter increase? the tree’s cross section
area?

48. Percentage Error The edge of a cube is measured as 
10 cm with an error of 1%. The cube’s volume is to be
calculated from this measurement. Estimate the percentage error
in the volume calculation. 3%

49. Tolerance About how accurately should you measure the side
of a square to be sure of calculating the area to within 2% of its
true value? The side should be measured to within 1%.

50. Tolerance (a) About how accurately must the interior diameter
of a 10-m high cylindrical storage tank be measured to calculate
the tank’s volume to within 1% of its true value? Within 0.5%

(b) About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount? Within 5%

51. Minting Coins A manufacturer contracts to mint coins for the
federal government. The coins must weigh within 0.1% of their
ideal weight, so the volume must be within 0.1% of the ideal
volume. Assuming the thickness of the coins does not change,
what is the percentage change in the volume of the coin that
would result from a 0.1% increase in the radius?

52. Tolerance The height and radius of a right circular cylinder
are equal, so the cylinder’s volume is  V � ph3.  The volume is
to be calculated with an error of no more than 1% of the true
value. Find approximately the greatest error that can be tolerated
in the measurement of h, expressed as a percentage of h.

53. Estimating Volume You can estimate the volume of a sphere
by measuring its circumference with a tape measure, dividing by
2p to get the radius, then using the radius in the volume
formula. Find how sensitive your volume estimate is to a 1/8 in.
error in the circumference measurement by filling in the table
below for spheres of the given sizes. Use differentials when
filling in the last column.

Sphere Type True Radius Tape Error Radius Error Volume Error

Orange 2 in. 1/8 in.

Melon 4 in. 1/8 in.

Beach Ball 7 in. 1/8 in.

54. Estimating Surface Area Change the heading in the last
column of the table in Exercise 53 to “Surface Area Error” and
find how sensitive the measure of surface area is to a 1/8 in.
error in estimating the circumference of the sphere.

55. The Effect of Flight Maneuvers on the Heart The
amount of work done by the heart’s main pumping chamber, the
left ventricle, is given by the equation

W � PV � �
V

2
d

g
v2

� ,

where W is the work per unit time, P is the average blood
pressure, V is the volume of blood pumped out during the unit
of time, d (“delta”) is the density of the blood, v is the average
velocity of the exiting blood, and g is the acceleration of
gravity.

When P, V, d, and v remain constant, W becomes a function 
of g, and the equation takes the simplified form

W � a � �
b
g

� �a, b constant�.

As a member of NASA’s medical team, you want to know how
sensitive W is to apparent changes in g caused by flight
maneuvers, and this depends on the initial value of g. As part of
your investigation, you decide to compare the effect on W of a
given change dg on the moon, where g � 5.2 ft�sec2, with the
effect the same change dg would have on Earth, where  g � 32
ft�sec2.  Use the simplified equation above to find the ratio of
dWmoon to dWEarth. About 37.87 to 1

56. Measuring Acceleration of Gravity When the length L
of a clock pendulum is held constant by controlling its
temperature, the pendulum’s period T depends on the
acceleration of gravity g. The period will therefore vary slightly
as the clock is moved from place to place on the earth’s surface,
depending on the change in g. By keeping track of �T, we can
estimate the variation in g from the equation  T � 2p�L �g�1�2

that relates T, g, and L.

(a) With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

(b) Writing to Learn If g increases, will T increase or
decrease? Will a pendulum clock speed up or slow down?
Explain.

(c) A clock with a 100-cm pendulum is moved from a location
where g � 980 cm�sec2 to a new location. This increases the
period by dT � 0.001 sec. Find dg and estimate the value of g at
the new location. dg � �0.9765, so g � 979.0235

(�3�/2)(20)(0.5) � 8.7 cm2

decreasing over the interval [0, 0.1].

47. The diameter grew �
�

2
� � 0.6366 in. The cross section area grew about 10 in2.

51. V � �r2h (where h is constant), so �
d
V
V
� � �

2�

�

r
r
h
2h
dr

� � 2�
d
r
r
� � 0.2%

52. The height should be measured to within �
1

3
�% 

dT � ��L1/2g�3/2 dg

If g increases, T decreases and the clock speeds up. This can
be seen from the fact that dT and dg have opposite signs.
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Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

57. True or False Newton’s method will not find the zero of
f (x) � x�(x2 � 1) if the first guess is greater than 1. Justify your
answer.

58. True or False If u and v are differentiable functions, then
d(uv) � du dv. Justify your answer. False. By the product rule,

59. Multiple Choice What is the linearization of f (x) � ex

at x � 1? B

(A) y � e (B) y � ex (C) y � ex

(D) y � x � e (E) y � e(x � 1)

60. Multiple Choice If y � tan x, x � p, and dx � 0.5, what
does dy equal? A

(A) �0.25 (B) �0.5 (C) 0 (D) 0.5 (E) 0.25

61. Multiple Choice If Newton’s method is used to find the zero
of f (x) � x � x3 � 2, what is the third estimate if the first
estimate is 1? D

(A) �

3
4


 (B) 

3
2


 (C) 

8
5


 (D) 

1
1
8
1

 (E) 3

62. Multiple Choice If the linearization of y � �3
x� at x � 64 is

used to approximate �3
66�, what is the percentage error? A

(A) 0.01% (B) 0.04% (C) 0.4% (D) 1% (E) 4%

Explorations
63. Newton’s Method Suppose your first guess in using

Newton’s method is lucky in the sense that x1 is a root of
f �x� � 0. What happens to x2 and later approximations?

64. Oscillation Show that if h � 0, applying Newton’s method to

�x�, x � 0
f �x� � {���x�, x � 0

leads to  x2 � �h if  x1 � h, and to  x2 � h if  x1 � �h.
Draw a picture that shows what is going on.

65. Approximations that Get Worse and Worse Apply
Newton’s method to f �x� � x1�3 with  x1 � 1, and calculate x2,
x3, x4, and x5. Find a formula for 	xn 	. What happens to 	xn 	 as
n→�? Draw a picture that shows what is going on.

66. Quadratic Approximations

(a) Let  Q�x� � b0 � b1�x � a� � b2�x � a�2 be a quadratic
approximation to f �x� at  x � a with the properties:

iii. Q�a� � f �a�,

iii. Q	�a� � f 	�a�,

iii. Q��a� � f ��a�.

Determine the coefficients b0, b1, and b2.

(b) Find the quadratic approximation to f �x� � 1��1 � x�
at  x � 0.

(c) Graph f �x� � 1��1 � x� and its quadratic approximation at
x � 0.  Then zoom in on the two graphs at the point �0, 1�.
Comment on what you see.

(d) Find the quadratic approximation to  g�x� � 1�x at  x � 1.
Graph g and its quadratic approximation together. Comment on
what you see.

(e) Find the quadratic approximation to  h�x� � �1� �� x� at
x � 0.  Graph h and its quadratic approximation together.
Comment on what you see.

(f) What are the linearizations of f, g, and h at the respective
points in parts (b), (d), and (e)?

67. Multiples of Pi Store any number as X in your calculator.
Then enter the command X�tan(X)→X and press the ENTER
key repeatedly until the displayed value stops changing. The
result is always an integral multiple of p. Why is this so? [Hint:
These are zeros of the sine function.]

Extending the Ideas
68. Formulas for Differentials Verify the following formulas.

(a) d�c� � 0  (c a constant)

(b) d�cu� � c du (c a constant)

(c) d�u � v� � du � dv

(d) d�u • v� � u dv � v du

(e) d ( 

u
v


 ) � 

v du

v
�

2
u dv




(f) d�un � � nun�1 du

69. Linearization Show that the approximation of tan x by its
linearization at the origin must improve as x→0 by showing that 

lim
x→0



tan

x
x


 � 1.

70. The Linearization is the Best Linear Approximation
Suppose that  y � f �x� is differentiable at  x � a and that
g�x� � m�x � a� � c (m and c constants). If the error  
E�x� � f �x� � g�x� were small enough near  x � a, we might
think of using g as a linear approximation of f instead of the
linearization  L �x� � f �a� � f 	�a��x � a�.  Show that 
if we impose on g the conditions

ii. E�a� � 0, The error is zero at x � a.

ii. lim
x→a



x
E
�

�x�
a


 � 0,

then  g�x� � f �a� � f 	�a��x � a�.  Thus, the linearization gives
the only linear approximation whose error is both zero at  x � a
and negligible in comparison with �x � a�.

71. Writing to Learn Find the linearization of  
f �x� � �x��� 1� � sin x at  x � 0.  How is it related to the
individual linearizations for �x��� 1� and sin x?

The error is negligible when
compared with �x � a�.

x
a

The linearization, L(x):
y � f(a) � f '(a)(x � a)

y � f (x)

(a, f (a))

Some other linear
approximation, g(x):
y � m(x � a) � c

57. True. A look at the graph reveals the problem. The graph decreases after 
x � 1 toward a horizontal asymptote of x � 0, so the x-intercepts of the
tangent lines keep getting bigger without approaching a zero. 

d(uv) � u dv � v du.

63. If f 	(x1)  0, then x2 and all later approximations are equal to x1.

Just multiply the corresponding
derivative formulas by dx.

The linearization is 1 � 

3
2
x

. It is the sum of the two individual linearizations.
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Related Rates

Related Rate Equations
Suppose that a particle P�x, y� is moving along a curve C in the plane so that its coordi-
nates x and y are differentiable functions of time t. If D is the distance from the origin to P,
then using the Chain Rule we can find an equation that relates dD�dt, dx�dt, and dy�dt.

D � �x�2��� y�2�



d
d
D
t

 � 


1
2


 �x2 � y2��1�2 (2x

d
d
x
t

 � 2y


d
d
y
t

)

Any equation involving two or more variables that are differentiable functions of time t
can be used to find an equation that relates their corresponding rates.

EXAMPLE 1   Finding Related Rate Equations

(a) Assume that the radius r of a sphere is a differentiable function of t and let V be the
volume of the sphere. Find an equation that relates dV/dt and dr/dt.

(b) Assume that the radius r and height h of a cone are differentiable functions of t and
let V be the volume of the cone. Find an equation that relates dV�dt, dr�dt, and dh�dt.

SOLUTION 

(a) V � 

4
3


 pr3 Volume formula for a sphere



d
d
V
t

 � 4pr2 


d
d
r
t



(b) V � 

p

3

 r2h Cone volume formula



d
d
V
t

 � 


p

3

 (r2 • 


d
d
h
t

 � 2r 


d
d
r
t

 • h) � 


p

3

 (r2 


d
d
h
t

 � 2rh


d
d
r
t

)

Now try Exercise 3.

Solution Strategy
What has always distinguished calculus from algebra is its ability to deal with variables that
change over time. Example 1 illustrates how easy it is to move from a formula relating static
variables to a formula that relates their rates of change: simply differentiate the formula im-
plicitly with respect to t. This introduces an important category of problems called related
rate problems that still constitutes one of the most important applications of calculus. 

We introduce a strategy for solving related rate problems, similar to the strategy we in-
troduced for max-min problems earlier in this chapter. 

246 Chapter 4 Applications of Derivatives

4.6

What you’ll learn about

• Related Rate Equations

• Solution Strategy

• Simulating Related Motion

. . . and why 

Related rate problems are at the
heart of Newtonian mechanics; it
was essentially to solve such
problems that calculus was 
invented.

Strategy for Solving Related Rate Problems

1. Understand the problem. In particular, identify the variable whose rate of
change you seek and the variable (or variables) whose rate of change you know. 

2. Develop a mathematical model of the problem. Draw a picture (many of these
problems involve geometric figures) and label the parts that are important to the
problem. Be sure to distinguish constant quantities from variables that change
over time. Only constant quantities can be assigned numerical values at the start. 

continued
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We illustrate the strategy in Example 2.

EXAMPLE 2   A Rising Balloon

A hot-air balloon rising straight up from a level field is tracked by a range finder 500
feet from the lift-off point. At the moment the range finder’s elevation angle is p/4, the
angle is increasing at the rate of 0.14 radians per minute. How fast is the balloon rising
at that moment?

SOLUTION

We will carefully identify the six steps of the strategy in this first example. 

Step 1: Let h be the height of the balloon and let u be the elevation angle. 

We seek: dh/dt

We know: du/dt � 0.14 rad/min

Step 2: We draw a picture (Figure 4.55). We label the horizontal distance “500 ft” be-
cause it does not change over time. We label the height “h” and the angle of el-
evation “u.” Notice that we do not label the angle “p/4,” as that would freeze
the picture. 

Step 3: We need a formula that relates h and u. Since 

5
h
00

 � tan u, we get 

h � 500 tan u. 

Step 4: Differentiate implicitly:



d
d
t

(h) � 


d
d
t

(500 tan u) 



d
d
h
t

 � 500 sec2 u 


d
d
u

t



Step 5: Let  du/dt � 0.14 and let u � p/4. (Note that it is now safe to specify our mo-
ment in time.)



d
d
h
t

 � 500 sec2 �


p

4

� (0.14) � 500(�2�)2 (0.14) � 140.

Step 6: At the moment in question, the balloon is rising at the rate of 140 ft/min. 

Now try Exercise 11.

EXAMPLE 3   A Highway Chase

A police cruiser, approaching a right-angled intersection from the north, is chasing a speed-
ing car that has turned the corner and is now moving straight east. When the cruiser is 0.6
mi north of the intersection and the car is 0.8 mi to the east, the police determine with radar
that the distance between them and the car is increasing at 20 mph. If the cruiser is moving
at 60 mph at the instant of measurement, what is the speed of the car?

continued

3. Write an equation relating the variable whose rate of change you seek with
the variable(s) whose rate of change you know. The formula is often geometric,
but it could come from a scientific application. 

4. Differentiate both sides of the equation implicitly with respect to time t. Be
sure to follow all the differentiation rules. The Chain Rule will be especially crit-
ical, as you will be differentiating with respect to the parameter t. 

5. Substitute values for any quantities that depend on time. Notice that it is only
safe to do this after the differentiation step. Substituting too soon “freezes the pic-
ture” and makes changeable variables behave like constants, with zero derivatives. 

6. Interpret the solution. Translate your mathematical result into the problem set-
ting (with appropriate units) and decide whether the result makes sense. 

Figure 4.55 The picture shows how h
and u are related geometrically. We seek
dh/dt when u� p/4 and du/dt � 0.14
rad/min. (Example 2) 

h

500 ft
Range finder

Balloon

θ 

Unit Analysis in Example 2

A careful analysis of the units in Exam-

ple 2 gives 

dh/dt � (500 ft)(�2�)2 (0.14  rad/min)

� 140 ft � rad/min. 

Remember that radian measure is actu-

ally dimensionless, adaptable to what-

ever unit is applied to the “unit” circle.

The linear units in Example 2 are meas-

ured in feet, so “ft � rad ” is simply “ft.” 
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SOLUTION

We carry out the steps of the strategy. 

Let x be the distance of the speeding car from the intersection, let y be the distance
of the police cruiser from the intersection, and let z be the distance between the car
and the cruiser. Distances x and z are increasing, but distance y is decreasing; so
dy/dt is negative. 

We seek: dx/dt

We know: dz/dt � 20 mph and  dy/dt � �60 mph

A sketch (Figure 4.56) shows that x, y, and z form three sides of a right triangle. We
need to relate those three variables, so we use the Pythagorean Theorem:

x2 � y2 � z2

Differentiating  implicitly with respect to t, we get 

2x 

d
d
x
t

 � 2y 


d
d
y
t

 � 2z 


d
d
z
t

, which reduces to x 


d
d
x
t

 � y


d
d
y
t

 � z 


d
d
z
t

.

We now substitute the numerical values for x, y, dz/dt, dy/dt, and z (which equals �x2 � y2� ):

(0.8) 

d
d
x
t

 � (0.6)(�60) � �(0.8)2�� (0.6�)2�(20)

(0.8) 

d
d
x
t

 � 36 � (1)(20)



d
d
x
t

 � 70

At the moment in question, the car’s speed is 70 mph. Now try Exercise 13.

EXAMPLE 4   Filling a Conical Tank

Water runs into a conical tank at the rate of 9 ft3�min. The tank stands point down and
has a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the
water is 6 ft deep?

SOLUTION 1

We carry out the steps of the strategy. Figure 4.57 shows a partially filled conical tank.
The tank itself does not change over time; what we are interested in is the changing
cone of water inside the tank. Let V be the volume, r the radius, and h the height of the
cone of water. 

We seek: dh/dt

We know: dV/dt = 9 ft3/min

We need to relate V and h. The volume of the cone of water is V � 

1
3


 pr 2h, but this 
formula also involves the variable r, whose rate of change is not given. We need to 
either find dr/dt (see Solution 2) or eliminate r from the equation, which we can do by
using the similar triangles in Figure 4.57 to relate r and h:



h
r


 � 

1
5
0

, or simply r � 


h
2


.

Therefore,

V � 

1
3


p �

h
2


�
2

h � 

1
p

2

 h3.

continued 
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Figure 4.56 A sketch showing the vari-
ables in Example 3. We know dy/dt and
dz/dt, and  we seek dx/dt. The variables x,
y, and z are related by the Pythagorean
Theorem: x2 � y2 � z2. 

y

x

z

Figure 4.57 In Example 4, the cone of
water is increasing in volume inside the
reservoir. We know dV/dt and we seek
dh/dt. Similar triangles enable us to relate
V directly to h. 

h 10 ft

5 ft

r
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Differentiate with respect to t:



d
d
V
t

 � 


1
p

2

 • 3h2 


d
d
h
t

 � 


p

4

 h2 


d
d
h
t

.

Let h � 6 and dV/dt � 9; then solve for dh/dt:

9 � 

p

4

(6)2 


d
d
h
t





d
d
h
t

 � 

p

1

 � 0.32

At the moment in question, the water level is rising at 0.32 ft/min.

SOLUTION 2

The similar triangle relationship 

r � 

h
2


 also implies that 

d
d
r
t

 � 


1
2


 

d
d
h
t



and that r � 3 when h � 6. So, we could have left all three variables in the formula 

V � 

1
3


�r2h and proceeded as follows:



d
d
V
t

 � 


1
3


p�2r 

d
d
r
t

h�r2 


d
d
h
t

�

� 

1
3


p�2r�

1
2


  

d
d
h
t

�h�r2 


d
d
h
t

�

9 � 

1
3


p�2(3)�

1
2


  

d
d
h
t

�(6)�(3)2 


d
d
h
t

�

9 � 9p 

d
d
h
t





d
d
h
t

 � 


p

1

 

This is obviously more complicated than the one-variable approach. In general, it is com-
putationally easier to simplify expressions as much as possible before you differentiate.

Now try Exercise 17.

Simulating Related Motion
Parametric mode on a grapher can be used to simulate the motion of moving objects when
the motion of each can be expressed as a function of time. In a classic related rate prob-
lem, the top end of a ladder slides vertically down a wall as the bottom end is pulled hori-
zontally away from the wall at a steady rate. Exploration 1 shows how you can use your
grapher to simulate the related movements of the two ends of the ladder. 

The Sliding Ladder

A 10-foot ladder leans against a vertical wall. The base of the ladder is pulled away
from the wall at a constant rate of 2 ft/sec. 

1. Explain why the motion of the two ends of the ladder can be represented by the
parametric equations given on the next page. continued  

EXPLORATION 1
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Figure 4.58 This 5-step program (with the viewing window set as shown) will animate the ladder
in Exploration 1. Be sure any functions in the “Y�” register are turned off. Run the program and the
ladder appears against the wall; push ENTER to start the bottom moving away from the wall. 

For an enhanced picture, you can insert the commands “:Pt-On(2,2���(100�(2A)2),2)”
and “:Pt-On(2�2A,2,2)” on either side of the middle line of the program. 

PROGRAM
  For (A, 0, 5, .25)

ClrDraw
Line(2,2+   (100–

(2A)2), 2+2A, 2)
If A=0  Pause
End

: LADDER
: 
:
:

:
:

√

WINDOW
Xmin=2
Xmax=20
Xscl=0
Ymin=1
Ymax=13
Yscl=0
Xres=1

:

X1T � 2T

Y1T � 0

X2T � 0

Y2T � �102 ��(2T)2�

2. What minimum and maximum values of T make sense in this problem? 

3. Put your grapher in parametric and simultaneous modes. Enter the parametric
equations and change the graphing style to “0” (the little ball) if your grapher
has this feature. Set Tmin�0, Tmax�5, Tstep�5/20, Xmin��1,
Xmax�17, Xscl�0, Ymin��1, Ymax�11, and Yscl�0. You can speed up
the action by making the denominator in the Tstep smaller or slow it down by
making it larger.

4. Press GRAPH and watch the two ends of the ladder move as time changes. Do
both ends seem to move at a constant rate?

5. To see the simulation again, enter “ClrDraw” from the DRAW menu. 

6. If y represents the vertical height of the top of the ladder and x the distance of
the bottom from the wall, relate y and x and find dy�dt in terms of x and y. (Re-
member that dx�dt � 2.) 

7. Find dy�dt when t � 3 and interpret its meaning. Why is it negative?

8. In theory, how fast is the top of the ladder moving as it hits the ground?

Figure 4.58 shows you how to write a calculator program that animates the falling lad-
der as a line segment.

Quick Review 4.6 (For help, go to Sections 1.1, 1.4, and 3.7.)

In Exercises 1 and 2, find the distance between the points
A and B.

1. A�0, 5�, B�7, 0� �74� 2. A�0, a�, B�b, 0� �a2 � b�2�

In Exercises 3–6, find dy�dx.

3. 2xy � y2 � x � y 

2x

1
�

�

2y
2
�

y
1




4. x sin y � 1 � xy �

x
y
�

�

x
s
c
in
os

y
y




5. x2 � tan y 2x cos2y 6. ln �x � y� � 2x 2x � 2y � 1

In Exercises 7 and 8, find a parametrization for the line segment with
endpoints A and B.

7. A��2, 1�, B�4, �3� 8. A�0, �4�, B�5, 0�

In Exercises 9 and 10, let  x � 2 cos t, y � 2 sin t.  Find a parameter
interval that produces the indicated portion of the graph.

9. The portion in the second and third quadrants, including the
points on the axes.

10. The portion in the fourth quadrant, including the points on the axes.

8. One possible answer: x � 5t, y � �4 � 4t, 0 � t � 1.

One possible answer: p/2 � t � 3p/2

One possible answer: 3p/2 � t �2p

7. One possible answer: x � � 2 � 6t, y � 1 � 4t, 0 � t � 1.
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Section 4.6 Exercises

In Exercises 1–41, assume all variables are differentiable functions
of t.

1. Area The radius r and area A of a circle are related by the
equation A � pr2.  Write an equation that relates dA�dt
to dr�dt. �

d
d
A
t
� � 2pr �

d
d
r
t
�

2. Surface Area The radius r and surface area S of a sphere are
related by the equation  S � 4pr2.  Write an equation that
relates  dS�dt to  dr�dt. �

d
d
S
t
� � 8pr �

d
d
r
t
�

3. Volume The radius r, height h, and volume V of a right
circular cylinder are related by the equation  V � pr2h.

(a) How is  dV�dt related to dh�dt if r is constant?

(b) How is  dV�dt related to  dr�dt if h is constant?

(c) How is  dV�dt related to  dr�dt and  dh�dt if neither r nor h
is constant?

4. Electrical Power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current 
I (amperes) by the equation  P � RI 2.

(a) How is  dP�dt related to  dR�dt and  dI�dt?

(b) How is  dR�dt related to  dI�dt  if P is constant?

5. Diagonals If x, y, and z are lengths of the edges of a
rectangular box, the common length of the box’s diagonals is
s � �x2 � y�2 � z2�. How is ds�dt related to  dx �dt, dy�dt, and
dz �dt? See below.

6. Area If a and b are the lengths of two sides of a triangle, and u
the measure of the included angle, the area A of the triangle is
A � �1�2� ab sin u. How is dA�dt related to da�dt, db�dt, and
du�dt?

7. Changing Voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation V � IR. Suppose that V is
increasing at the rate of 1 volt�sec while I is decreasing at the
rate of 1�3 amp�sec. Let t denote time in sec.

(a) What is the value of  dV�dt?

(b) What is the value of  dI�dt?

(c) Write an equation that relates  dR�dt to  dV�dt and  dI�dt.

(d) Writing to Learn Find the rate at which R is changing
when V � 12 volts and I � 2 amp. Is R increasing, or
decreasing? Explain.

8. Heating a Plate When a circular plate of metal is heated 
in an oven, its radius increases at the rate of 0.01 cm�sec. 
At what rate is the plate’s area increasing when the radius 
is 50 cm? p cm2/sec

9. Changing Dimensions in a Rectangle The length � of a
rectangle is decreasing at the rate of 2 cm�sec while the width w
is increasing at the rate of 2 cm�sec. When � � 12 cm and 
w � 5 cm, find the rates of change of See page 255.

(a) the area, (b) the perimeter, and 

(c) the length of a diagonal of the rectangle.

(d) Writing to Learn Which of these quantities are
decreasing, and which are increasing? Explain.

10. Changing Dimensions in a Rectangular Box Suppose
that the edge lengths x, y, and z of a closed rectangular box are
changing at the following rates:

�
d
d
x
t
� � 1 m�sec, �

d
d
y
t
� � �2 m�sec, �

d
d
z
t
� � 1 m�sec.

Find the rates at which the box’s (a) volume, (b) surface area,
and (c) diagonal length  s � �x�2��� y�2��� z�2� are changing at the
instant when  x � 4, y � 3, and  z � 2.

11. Inflating Balloon A spherical balloon is inflated with helium
at the rate of 100p ft3�min. 

(a) How fast is the balloon’s radius increasing at the instant the
radius is 5 ft? 1 ft/min

(b) How fast is the surface area increasing at that instant?

12. Growing Raindrop Suppose that a droplet of mist is a perfect
sphere and that, through condensation, the droplet picks up
moisture at a rate proportional to its surface area. Show that
under these circumstances the droplet’s radius increases at a
constant rate. See page 255.

13. Air Traffic Control An airplane is flying at an altitude of 
7 mi and passes directly over a radar antenna as shown 
in the figure. When the plane is 10 mi from the antenna 
�s � 10�, the radar detects that the distance s is changing at the
rate of 300 mph. What is the speed of the airplane at 
that moment?

�
d
d
x
t
� � mph � 420.08 mph

14. Flying a Kite Inge flies a kite at a height of 300 ft, the wind
carrying the kite horizontally away at a rate of 25 ft �sec. How
fast must she let out the string when the kite is 500 ft away from
her? 20 ft/sec

15. Boring a Cylinder The mechanics at Lincoln Automotive are
reboring a 6-in. deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume
increasing when the bore (diameter) is 3.800 in.?

3000
�
�51�

V+ –

R

I

y

x

x

s7 mi

�
d
d
V
t
� � pr2 �

d
d
h
t
�

�
d
d
V
t
� � 2prh �

d
d
r
t
�

�
d
d
V
t
� � pr 2 �

d
d
h
t
� �2prh �

d
d
r
t
�

4. (a) �
d
d
P
t
� � 2RI �

d
d
I
t
� � I2 �

d
d
R
t
� (b) 0 � 2RI �

d
d
I
t
� � I2 �

d
d
R
t
�, or, �

d
d
R
t
� � ���

2
I
R
����

d
d
I
t
�� � ���

2

I

P
3����

d

d

I

t
��

�
d
d
A
t
� � �

1
2

� �b sin 	 �
d
d
a
t
� � a sin 	 �

d
d
b
t
� � ab cos 	 �

d
d
	

t
��

(a) 1 volt/sec

(b) ��
1
3

� amp/sec

(c) �
d
d
V
t
� � I �

d
d
R
t
� � R �

d
d
I
t
�

(d) �
d
d
R
t
� � �

3
2

� ohms/sec. R is 

increasing since �
d
d
R
t
� is positive.

(a) 2 m3/sec (b) 0 m2/sec
(c) 0 m/sec

40p ft2/min

�
2
1
5
9
0
p

0
� � 0.0239 in3/min

5. �
d
d
s
t
� �

x �
d
d
x
t
� � y �

d
d
y
t
� � z �

d
d
z
t
�

���
�x2 � y�2 � z2�
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16. Growing Sand Pile Sand falls from a conveyor belt at the
rate of 10 m3�min onto the top of a conical pile. The height of
the pile is always three-eighths of the base diameter. How fast
are the (a) height and (b) radius changing when the pile is 4 m
high? Give your answer in cm�min.

17. Draining Conical Reservoir Water is flowing at the rate of
50 m3�min from a concrete conical reservoir (vertex down) of
base radius 45 m and height 6 m. (a) How fast is the water level
falling when the water is 5 m deep? (b) How fast is the radius of
the water’s surface changing at that moment? Give your answer
in cm�min.

18. Draining Hemispherical Reservoir Water is flowing at the
rate of 6 m3�min from a reservoir shaped like a hemispherical bowl
of radius 13 m, shown here in profile. Answer the following
questions given that the volume of water in a hemispherical bowl of
radius R is  V � �p�3�y2�3R � y� when the water is y units deep.

(a) At what rate is the water level changing when the water is 
8 m deep?

(b) What is the radius r of the water’s surface when the water is
y m deep? r � �169 �� (13 �� y)2� � �26y �� y2�

(c) At what rate is the radius r changing when the water is 
8 m deep?

19. Sliding Ladder A 13-ft ladder is leaning against a house (see
figure) when its base starts to slide away. By the time the base is
12 ft from the house, the base is moving at the rate of 5 ft �sec.

20. Filling a Trough A trough is 15 ft long and 4 ft across the top
as shown in the figure. Its ends are isosceles triangles with
height 3 ft. Water runs into the trough at the rate of  2.5 ft3�min.
How fast is the water level rising when it is 2 ft deep? 


1
1
6

 ft/min

21. Hauling in a Dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow
as shown in the figure. The rope is hauled in at the rate of 2
ft �sec.

(a) How fast is the boat approaching 
the dock when 10 ft of rope are out? 


5
2


 ft/sec

(b) At what rate is angle �
changing at that moment?

22. Rising Balloon A balloon is rising vertically above a level,
straight road at a constant rate of 1 ft �sec. Just when the balloon
is 65 ft above the ground, a bicycle moving at a constant rate of
17 ft �sec passes under it. How fast is the distance between the
bicycle and balloon increasing 3 sec later (see figure)? 11 ft/sec

In Exercises 23 and 24, a particle is moving along the curve 
y � f �x�.

23. Let  y � f �x� � 

1 �

10
x2
 .

If  dx�dt � 3 cm�sec, find  dy�dt at the point where 

(a) x � �2. (b) x � 0. (c) x � 20.

24. Let  y � f �x� � x3 � 4x.

If dx�dt � �2 cm�sec, find  dy�dt at the point where 

(a) x � �3. (b) x � 1. (c) x � 4.

r

y

13 m

Water level

Center of sphere

x
x(t)0

u

y(t)

y

13-ft ladder

2 ft
3 ft

15 ft

2.5 ft3/min

4 ft

Ring at edge
of dock

6

u

'

x(t)

s (t)

y(t)

y

x
0

(a) How fast is the top of the ladder sliding down the wall 
at that moment? 12 ft/sec

(b) At what rate is the area of the triangle formed by the ladder,
wall, and ground changing at that moment? �


11
2
9


 ft2/sec

(c) At what rate is the angle u between the ladder and the ground
changing at that moment? �1 radian/sec

(a) 

1
3
1
2
2
p

5

 � 11.19 cm/min (b) 


3
8
7
p

5

 � 14.92 cm/min

(a) 

9
3
p

2

 � 1.13 cm/min (b) �


3
8
p

0

 � �8.49 cm/min

�

24

1
p

 � �0.01326 m/min or �


6
2
p

5

 � �1.326 cm/min

�

28

5
8p

 � �0.00553 m/min or �


7
1
2
2
p

5

 � �0.553 cm/min

�

2
3
0

 radian/sec

(a) �46 cm/sec (b) 2 cm/sec (c) �88 cm/sec

(a) 

2
5
4

 cm/sec   (b) 0 cm/sec

(c) �

16

1
0
2
,
0
8
0
01


 � �0.00746 cm/sec
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25. Particle Motion A particle moves along the parabola y � x2

in the first quadrant in such a way that its x-coordinate (in
meters) increases at a constant rate of 10 m�sec. How fast is the
angle of inclination u of theline joining the particle to the origin
changing when x � 3? 1 radian/sec

26. Particle Motion A particle moves from right to left 
along the parabolic curve  y � ���x� in such a way that its 
x-coordinate (in meters) decreases at the rate of 8 m�sec. How
fast is the angle of inclination u of the line joining the particle to
the origin changing when  x � �4? 


2
5


 radian/sec

27. Melting Ice A spherical iron ball is coated with a layer 
of ice of uniform thickness. If the ice melts at the rate of 
8 mL�min, how fast is the outer surface area of ice decreasing
when the outer diameter (ball plus ice) is 20 cm? 1.6 cm2/min

28. Particle Motion A particle P�x, y� is moving in the co-
ordinate plane in such a way that  dx�dt � �1 m�sec and 
dy�dt � �5 m�sec. How fast is the particle’s distance from 
the origin changing as it passes through the point �5, 12�?

29. Moving Shadow A man 6 ft tall walks at the rate of 
5 ft �sec toward a streetlight that is 16 ft above the ground. 
At what rate is the length of his shadow changing when he 
is 10 ft from the base of the light? �3 ft/sec

30. Moving Shadow A light shines from the top of a pole 
50 ft high. A ball is dropped from the same height from a 
point 30 ft away from the light as shown below. How fast is 
the ball’s shadow moving along the ground 1�2 sec later?
(Assume the ball falls a distance  s � 16t2 in t sec.) �1500 ft/sec

31. Moving Race Car You are videotaping a race from a 
stand 132 ft from the track, following a car that is moving 
at 180 mph (264 ft �sec) as shown in the figure. About how fast
will your camera angle u be changing when the car is right in
front of you? a half second later?

32. Speed Trap A highway patrol airplane flies 3 mi above a level,
straight road at a constant rate of 120 mph. The pilot sees an
oncoming car and with radar determines that at the instant the
line-of-sight distance from plane to car is 5 mi the line-of-sight
distance is decreasing at the rate of 160 mph. Find the car’s speed
along the highway. 80 mph

33. Building’s Shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long as shown in the figure. At the moment in
question, the angle u the sun makes with the ground is
increasing at the rate of 0.27°�min. At what rate is the shadow
length decreasing? Express your answer in in.�min, to the
nearest tenth. (Remember to use radians.) 7.1 in./min

34. Walkers A and B are walking on straight streets that meet 
at right angles. A approaches the intersection at 2 m�sec and 
B moves away from the intersection at 1 m�sec as shown in the
figure. At what rate is the angle u changing when A is 10 m 
from the intersection and B is 20 m from the intersection?
Express your answer in degrees per second to the nearest 
degree. �6 deg/sec

35. Moving Ships Two ships are steaming away from a point O
along routes that make a 120° angle. Ship A moves at 
14 knots (nautical miles per hour; a nautical mile is 2000 yards).
Ship B moves at 21 knots. How fast are the ships moving apart
when  OA � 5  and  OB � 3  nautical miles? 29.5 knots

x

Light

30 x(t)

1/2 sec later

Shadow

Ball at time t � 0

NOT TO SCALE

0

50-ft
pole

Race Car

132'

Camera

θ

NOT TO SCALE

Plane

x(t)
Car

0
x

3 mi
s(t)

80'




60'

O



A

B

�5 m/sec

In front: 2 radians/sec;
Half second later: 1 radian/sec
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Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

36. True or False If the radius of a circle is expanding at a
constant rate, then its circumference is increasing at a constant
rate. Justify your answer.

37. True or False If the radius of a circle is expanding at a
constant rate, then its area is increasing at a constant rate. Justify
your answer.

38. Multiple Choice If the volume of a cube is increasing at 24
in3/ min and each edge of the cube is increasing at 2 in./min,
what is the length of each edge of the cube? A

(A) 2 in. (B) 2�2� in. (C) �3
12� in. (D) 4 in. (E) 8 in.

39. Multiple Choice If the volume of a cube is increasing at 
24 in3/ min and the surface area of the cube is increasing at 
12 in2/ min, what is the length of each edge of the cube? E

(A) 2 in. (B) 2�2� in. (C) �3
12� in. (D) 4 in. (E) 8 in.

40. Multiple Choice A particle is moving around the unit circle
(the circle of radius 1 centered at the origin). At the point (0.6,
0.8) the particle has horizontal velocity dx/dt � 3. What is its
vertical velocity dy/dt at that point? C

(A) �3.875 (B) �3.75 (C) �2.25 (D) 3.75 (E) 3.875

41. Multiple Choice A cylindrical rubber cord is stretched at a
constant rate of 2 cm per second. Assuming its volume does not
change, how fast is its radius shrinking when its length is 100 cm
and its radius is 1 cm? B

(A) 0 cm/sec (B) 0.01 cm/sec (C) 0.02 cm/sec   
(D) 2 cm/sec (E) 3.979 cm/sec

Explorations
42. Making Coffee Coffee is draining from a conical filter into a

cylindrical coffeepot at the rate of 10 in3�min.

43. Cost, Revenue, and Profit A company can manufacture 
x items at a cost of c�x� dollars, a sales revenue of r �x� dollars,
and a profit of  p�x� � r �x� � c�x� dollars (all amounts in
thousands). Find  dc�dt, dr�dt, and  dp�dt for the following
values of x and  dx�dt.

(a) r �x� � 9x, c�x� � x3 � 6x2 � 15x,
and  dx�dt � 0.1  when  x � 2.

(b) r �x� � 70x, c�x� � x3 � 6x2 � 45�x,
and  dx�dt � 0.05  when  x � 1.5.

44. Group Activity Cardiac Output In the late 1860s, Adolf
Fick, a professor of physiology in the Faculty of Medicine in
Würtzberg, Germany, developed one of the methods we use
today for measuring how much blood your heart pumps in a
minute. Your cardiac output as you read this sentence is
probably about 7 liters a minute. At rest it is likely to be a bit
under 6 L�min. If you are a trained marathon runner running a
marathon, your cardiac output can be as high as 30 L�min.

Your cardiac output can be calculated with the formula

y � �
Q
D

� ,

where Q is the number of milliliters of CO2 you exhale 
in a minute and D is the difference between the CO2
concentration (mL�L) in the blood pumped to the lungs and the
CO2 concentration in the blood returning from the lungs. With
Q � 233 mL�min  and  D � 97 � 56 � 41 mL�L,

y � � 5.68 L�min,

fairly close to the 6 L�min that most people have at basal
(resting) conditions. (Data courtesy of J. Kenneth Herd, M.D.,
Quillan College of Medicine, East Tennessee State University.)

Suppose that when  Q � 233  and  D � 41, we also know that
D is decreasing at the rate of 2 units a minute but that 
Q remains unchanged. What is happening to the cardiac output?

Extending the Ideas
45. Motion along a Circle A wheel of radius 2 ft makes 

8 revolutions about its center every second.

(a) Explain how the parametric equations

x � 2 cos u, y � 2 sin u

can be used to represent the motion of the wheel. 

(b) Express u as a function of time t.

(c) Find the rate of horizontal movement and the rate of vertical
movement of a point on the edge of the wheel when it is at the
position given by u � p�4, p�2, and p.

46. Ferris Wheel A Ferris wheel with radius 30 ft makes one
revolution every 10 sec.

(a) Assume that the center of the Ferris wheel is located at the
point �0, 40�, and write parametric equations to model its
motion. [Hint: See Exercise 45.]

(b) At t � 0 the point P on the Ferris wheel is located at �30, 40�.
Find the rate of horizontal movement, and the rate of vertical
movement of the point P when t � 5 sec and t � 8 sec.

233 mL�min
��

41 mL�L

6"

6"

How fast
is this
level falling?

How fast
is this
level rising?

6"

(a) How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

(b) How fast is the level in the cone falling at that moment?

36. True. Since �
d
d
C
t
� � 2p �

d
d
r
t
�, a constant �

d
d
r
t
� results in a constant �

d
d
C
t
�. 37. False. Since �

d
d
A
t
� � 2pr �

d
d
r
t
�, the value of �

d
d
A
t
� depends on r.

�
d
d
y
t
� � �

1

4

6

6

8

6

1
� � 0.277 L/min2

�
d
d
c
t
� � 0.3  �

d
d
r
t
� � 0.9  �

d
d
p
t
� � 0.6

�
d
d
c
t
� � �1.5625 

�
d
d
r
t
� � 3.5 �

d
d
p
t
� � 5.0625

(a) �
9
1
p

0
� � 0.354 in./min

(b) �
5
8
p
� � 0.509 in./min
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47. Industrial Production (a) Economists often use the
expression “rate of growth” in relative rather than absolute
terms. For example, let  u � f �t� be the number of people in
the labor force at time t in a given industry. (We treat this
function as though it were differentiable even though it is an
integer-valued step function.) 9% per year

Let  v � g �t� be the average production per person in the labor
force at time t. The total production is then  y � uv.  
If the labor force is growing at the rate of 4% per year �du�dt �
0.04u� and the production per worker is growing at the rate of
5% per year �dv�dt � 0.05v�, find the rate of growth of the total
production, y.

(b) Suppose that the labor force in part (a) is decreasing at the
rate of 2% per year while the production per person is increasing
at the rate of 3% per year. Is the total production increasing, or
is it decreasing, and at what rate? Increasing at 1% per year

Quick Quiz for AP* Preparation: Sections 4.4–4.6

You may use a graphing calculator to solve the following
problems.

1. Multiple Choice If Newton's method is used to approximate
the real root of x3 � 2x � 1 � 0, what would the third approxi-
mation, x3, be if the first approximation is x1 � 1?   B

(A) 0.453 (B) 0.465 (C) 0.495 (D) 0.600 (E) 1.977

2. Multiple Choice The sides of a right triangle with legs x and
y and hypotenuse z increase in such a way that dz�dt � 1 and
dx�dt � 3 dy�dt. At the instant when x � 4 and y � 3, what is
dx�dt ?   B

(A) 

1
3


 (B) 1 (C) 2 (D) �5� (E) 5

3. Multiple Choice An observer 70 meters south of a railroad
crossing watches an eastbound train traveling at 60 meters per
second. At how many meters per second is the train moving
away from the observer 4 seconds after it passes through the in-
tersection?   A

(A) 57.60 (B) 57.88 (C) 59.20 (D) 60.00 (E) 67.40

4. Free Response (a) Approximate �26� by using the linearization
of y � �x� at the point (25, 5). Show the computation that leads
to your conclusion. 

(b) Approximate �26� by using a first guess of 5 and one iter-
ation of Newton's method to approximate the zero of  x2 � 26.
Show the computation that leads to your conclusion.

(c) Approximate �3
26� by using an appropriate linearization.

Show the computation that leads to your conclusion. 

Chapter 4 Key Terms

absolute change (p. 240)
absolute maximum value (p. 187)
absolute minimum value (p. 187)
antiderivative (p. 200)
antidifferentiation (p. 200)
arithmetic mean (p. 204)
average cost (p. 224)
center of linear approximation (p. 233)
concave down (p. 207)
concave up (p. 207)
concavity test (p. 208)
critical point (p. 190)
decreasing function (p. 198)
differential (p. 237)
differential estimate of change (p. 239)
differential of a function (p. 239)

extrema (p. 187)
Extreme Value Theorem (p. 188)
first derivative test (p. 205)
first derivative test for local extrema (p. 205)
geometric mean (p. 204)
global maximum value (p. 177)
global minimum value (p. 177)
increasing function (p. 198)
linear approximation (p. 233)
linearization (p. 233)
local linearity (p. 233)
local maximum value (p. 189)
local minimum value (p. 189)
logistic curve (p. 210)
logistic regression (p. 211)
marginal analysis (p. 223)

marginal cost and revenue (p. 223)
Mean Value Theorem (p. 196)
monotonic function (p. 198)
Newton’s method (p. 235)
optimization (p. 219)
percentage change (p. 240)
point of inflection (p. 208)
profit (p. 223)
quadratic approximation (p. 245)
related rates (p. 246)
relative change (p. 240)
relative extrema (p. 189)
Rolle’s Theorem (p. 196)
second derivative test 

for local extrema (p. 211)
standard linear approximation (p. 233)

9. (a) 

d
d
A
t

 � 14 cm2/sec (b) 


d
d
P
t

 � 0 cm/sec

(c) 

d
d
D
t

 � �


1
1
4
3

 cm/sec

(d) The area is increasing, because its derivative is positive.
The perimeter is not changing, because its derivative is zero.
The diagonal length is decreasing, because its derivative is negative.

12. V � 

4
3


pr 3, so 

d
d
V
t

 � 4pr 2 


d
d
r
t

. But S � 4pr 2, so we are given that 



d
d
V
t

 � kS � 4kpr 2. Substituting, 4kpr 2 � 4pr 2 


d

d

r

t

 which gives 


d
d
r
t

 � k.
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The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, use analytic methods to find the global extreme
values of the function on the interval and state where they occur.

1. y � x�2� �� x�, �2 � x � 2

2. y � x3 � 9x2 � 21x � 11, �� � x � � No global extrema

In Exercises 3 and 4, use analytic methods. Find the intervals on
which the function is See page 260.

(a) increasing, (b) decreasing,

(c) concave up, (d) concave down.

Then find any

(e) local extreme values, (f) inflection points.

3. y � x2e1�x2 4. y � x�4� �� x�2�

In Exercises 5–16, find the intervals on which the function is

(a) increasing, (b) decreasing,

(c) concave up, (d) concave down.

Then find any

(e) local extreme values, (f) inflection points.

5. y � 1 � x � x2 � x4 6. y � ex�1 � x

7. y � 

�4 1�

1

�� x�2�

 8. y � 


x3 �

x
1




9. y � cos�1 x 10. y � 

x2 � 2

x
x � 3



11. y � ln 	x 	, �2 � x � 2, x  0

12. y � sin 3x � cos 4x, 0 � x � 2p

13.
e�x, x � 0

y � {4x � x3, x � 0

14. y � �x5 � 

7
3


 x3 � 5x2 � 4x � 2

15. y � x4 �5�2 � x�

16. y �

In Exercises 17 and 18, use the derivative of the function  
y � f �x� to find the points at which f has a 

(a) local maximum, (b) local minimum, or

(c) point of inflection.

17. y	 � 6�x � 1��x � 2�2 18. y	� 6�x � 1��x � 2�

In Exercises 19–22, find all possible functions with the given
derivative.

19. f 	�x� � x�5� e�x 20. f 	�x� � sec x tan x

21. f 	�x� � 

2
x


 � x2 � 1, x � 0 22. f 	�x� � �x� � 

�

1

x�



5 � 4x � 4x2 � x3





x � 2

In Exercises 23 and 24, find the function with the given derivative
whose graph passes through the point P.

23. f 	�x� � sin x � cos x, P�p, 3� f (x) ��cos x � sin x � 2

24. f 	�x� � x1�3 � x2 � x � 1, P�1, 0�

In Exercises 25 and 26, the velocity v or acceleration a of a particle is
given. Find the particle’s position s at time t.

25. v � 9.8t � 5, s � 10 when t � 0 s(t) � 4.9t2 + 5t + 10

26. a � 32, v � 20 and s � 5 when t � 0

In Exercises 27–30, find the linearization  L�x� of f �x� at  x � a.

27. f �x� � tan x, a � �p�4 28. f �x� � sec x, a � p�4

29. f �x� � 

1 �

1
tan x

 , a � 0 30. f �x� � ex � sin x, a � 0

In Exercises 31–34, use the graph to answer the questions.

31. Identify any global extreme values of f and the values 
of x at which they occur. Global minimum value of 


1
2


 at x � 2

Figure for Exercise 31 Figure for Exercise 32

32. At which of the five points on the graph of  y � f �x�
shown here 

(a) are y	 and y� both negative? T

(b) is y	 negative and y� positive? P

33. Estimate the intervals on which the function  y � f �x� is 
(a) increasing; (b) decreasing. (c) Estimate any local extreme
values of the function and where they occur.

34. Here is the graph of the fruit fly population from Section 2.4,
Example 2. On approximately what day did the population’s
growth rate change from increasing to decreasing?

Chapter 4 Review Exercises

y

x

 (1, 1)

2,    1
2

O

y � f (x)

x

y

R

O

Q

T

S

P
y � f (x)

y

x

 (–3, 1)

 (2, 3)

–1

–2

y � f '(x)

1. Maximum: 

4�

9
6�


 at x � 

4
3


; minimum: �4 at x � �2

(a) None (b) At x � �1 (c) At x � 0 and x � 2

(a) At x � �1 (b) At x � 2 (c) At x � 

1
2




f (x) � �

1
4


x�4 �e�x � C f (x) � sec x � C

f (x) � 2 ln x � 

1
3


x3 � x � C f (x) � 

2
3


x3/2 � 2x1/2 � C

f (x) � 

3
4


x4/3 � 

x
3

3

 � 


x
2

2

 � x �


3
1
1
2



s(t) � 16t2 + 20t + 5

See page 260.

L(x) � �x � 1 L(x) � 2x � 1

See page 260.

(a) (0, 2] (b) [�3, 0)
(c) Local maxima at (�3, 1) and (2, 3)

The 24th day

See page 260. See page 260.
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Review Exercises 257

35. Connecting f and f	 The graph of f 	 is shown in 
Exercise 33. Sketch a possible graph of f given that it is
continuous with domain ��3, 2� and f ��3� � 0.

36. Connecting f, f	, and f � The function f is continuous on 
�0, 3� and satisfies the following.

(a) Find the absolute extrema of f and where they occur.

(b) Find any points of inflection.

(c) Sketch a possible graph of f.

37. Mean Value Theorem Let f �x� � x ln x.

(a) Writing to Learn Show that f satisfies the hypotheses of
the Mean Value Theorem on the interval �a, b� � �0.5, 3�.

(b) Find the value(s) of c in �a, b� for which c � 1.579

f 	�c� � 

f �b

b
� �

�

f
a
�a�


 .

(c) Write an equation for the secant line AB where  
A � �a, f �a�� and  B � �b, f �b��. y � 1.457x � 1.075

(d) Write an equation for the tangent line that is parallel to the
secant line AB. y � 1.457x � 1.579

38. Motion along a Line A particle is moving along a line with
position function  s�t� � 3 � 4t � 3t2 � t3.  Find the 
(a) velocity and (b) acceleration, and (c) describe the motion of
the particle for  t � 0. See page 260.

39. Approximating Functions Let f be a function with
f 	�x� � sin x2 and f �0� � �1. See page 260.

(a) Find the linearization of f at  x � 0.

(b) Approximate the value of f at  x � 0.1.

(c) Writing to Learn Is the actual value of f at  x � 0.1
greater than or less than the approximation in (b)?

x ⏐ 0 � x � 1 ⏐ 1 � x � 2 ⏐ 2 � x � 3
f ⏐ � ⏐ � ⏐ �
f 	 ⏐ � ⏐ � ⏐ �
f � ⏐ � ⏐ � ⏐ �

x ⏐ 0 ⏐ 1 ⏐ 2 ⏐ 3
f ⏐ 0 ⏐ �2 ⏐ 0 ⏐ 3
f 	 ⏐ �3 ⏐ 0 ⏐ does not exist ⏐ 4
f � ⏐ 0 ⏐ 1 ⏐ does not exist ⏐ 0

40. Differentials Let  y � x2e�x.  Find (a) dy and (b) evaluate dy
for  x � 1  and  dx � 0.01.

41. Table 4.5 shows the growth of the population of Tennessee from
the 1850 census to the 1910 census. The table gives the
population growth beyond the baseline number from the 1840
census, which was 829,210.
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Table 4.5 Population Growth 
of Tennessee

Years since Growth Beyond
1840 1840 Population

10 173,507
20 280,591
30 429,310
40 713,149
50 938,308
60 1,191,406
70 1,355,579

Source: Bureau of the Census, U.S. Chamber of
Commerce

(a) Find the logistic regression for the data.

(b) Graph the data in a scatter plot and superimpose the
regression curve.

(c) Use the regression equation to predict the Tennessee
population in the 1920 census. Be sure to add the baseline 1840
number. (The actual 1920 census value was 2,337,885.)

(d) In what year during the period was the Tennessee population
growing the fastest? What significant behavior does the graph of
the regression equation exhibit at that point?

(e) What does the regression equation indicate about the
population of Tennessee in the long run?

(f) Writing to Learn In fact, the population of Tennessee had
already passed the long-run value predicted by this regression
curve by 1930. By 2000 it had surpassed the prediction by more
than 3 million people! What historical circumstances could have
made the early regression so unreliable?

42. Newton’s Method Use Newton’s method to estimate all real
solutions to  2 cos x � �1� �� x� � 0.  State your answers
accurate to 6 decimal places. x � 0.828361

43. Rocket Launch A rocket lifts off the surface of Earth with a
constant acceleration of 20 m�sec2. How fast will the rocket be
going 1 min later? 1200 m/sec

44. Launching on Mars The acceleration of gravity near the
surface of Mars is 3.72 m�sec2. If a rock is blasted straight up
from the surface with an initial velocity of 93 m�sec (about 208
mph), how high does it go? 1162.5 m

45. Area of Sector If the perimeter of the circular sector shown
here is fixed at 100 ft, what values of r and s will give the sector
the greatest area? r � 25 ft and s � 50 ft

37. (a) f (x) is continuous on [0.5, 3] and differentiable on (0.5, 3).

(a) dy � (2x � x2)e�1 dx (b) dy � 0.00368

See above.
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258 Chapter 4 Applications of Derivatives

46. Area of Triangle An isosceles triangle has its vertex at the
origin and its base parallel to the x-axis with the vertices above
the axis on the curve  y � 27 � x2.  Find the largest area the
triangle can have. 54 square units

47. Storage Bin Find the dimensions of the largest open-top
storage bin with a square base and vertical sides that can be
made from 108 ft2 of sheet steel. (Neglect the thickness of the
steel and assume that there is no waste.) Base is 6 ft by 6 ft,

48. Designing a Vat You are to design an open-top rectangular
stainless-steel vat. It is to have a square base and a volume of
32 ft 3; to be welded from quarter-inch plate, and weigh no
more than necessary. What dimensions do you 
recommend? Base is 4 ft by 4 ft, height � 2 ft

49. Inscribing a Cylinder Find the height and radius of the
largest right circular cylinder that can be put into a sphere 
of radius �3� as described in the figure. Height � 2, radius � �2�

50. Cone in a Cone The figure shows two right circular cones,
one upside down inside the other. The two bases are parallel,
and the vertex of the smaller cone lies at the center of the larger
cone’s base. What values of r and h will give the smaller cone
the largest possible volume? r � h � 4 ft

51. Box with Lid Repeat Exercise 18 of Section 4.4 but this time
remove the two equal squares from the corners of a 15-in. side.

52. Inscribing a Rectangle A rectangle is inscribed under one
arch of  y � 8 cos �0.3x� with its base on the x-axis and its upper
two vertices on the curve symmetric about the y-axis. What is
the largest area the rectangle can have? 29.925 square units

53. Oil Refinery A drilling rig 12 mi offshore is to be connected
by a pipe to a refinery onshore, 20 mi down the coast from the
rig as shown in the figure. If underwater pipe costs $40,000 per
mile and land-based pipe costs $30,000 per mile, what values of
x and y give the least expensive connection?

54. Designing an Athletic Field An athletic field is to be 
built in the shape of a rectangle x units long capped by
semicircular regions of radius r at the two ends. The field is to
be bounded by a 400-m running track. What values of x and r
will give the rectangle the largest possible area?

55. Manufacturing Tires Your company can manufacture 
x hundred grade A tires and y hundred grade B tires a day, where
0 � x � 4 and 276 grade A and 553 grade B tires

y � 

40

5
�

�

1
x
0x


 .

Your profit on a grade A tire is twice your profit on a grade 
B tire. What is the most profitable number of each kind to make?

56. Particle Motion The positions of two particles on the 
s-axis are  s1 � cos t and  s2 � cos �t � p�4�.
(a) What is the farthest apart the particles ever get? 0.765 units

(b) When do the particles collide? When t � 

7
8
p

 � 2.749 (plus 

57. Open-top Box An open-top rectangular box is constructed
from a 10- by 16-in. piece of cardboard by cutting squares of
equal side length from the corners and folding up the sides. Find
analytically the dimensions of the box of largest volume and the
maximum volume. Support your answers graphically.

58. Changing Area The radius of a circle is changing at the rate
of �2�p m�sec.  At what rate is the circle’s area changing
when  r � 10 m? �40 m2/sec

h

r

√⎯3

r

6'
h

12'

x

Refinery

12 mi

Rig

20 � y

20 mi

y

height � 3 ft

x � � 18.142 mi and y � � 13.607 mi
36


�7�

48


�7�

x � 100 m and r � 

1
p

00

 m

multiples of p if they keep going)

57. Dimensions: base is 6 in. by 12 in., height � 2 in.;
maximum volume � 144 in3
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59. Particle Motion The coordinates of a particle moving in 
the plane are differentiable functions of time t with  
dx�dt � �1 m�sec  and  dy�dt � �5 m�sec.  How fast is 
the particle approaching the origin as it passes through the 
point �5, 12�? 5 m/sec

60. Changing Cube The volume of a cube is increasing at the
rate of 1200 cm3�min at the instant its edges are 20 cm long. 
At what rate are the edges changing at that instant?

61. Particle Motion A point moves smoothly along the curve
y � x3�2 in the first quadrant in such a way that its distance
from the origin increases at the constant rate of 11 units per
second. Find dx�dt when  x � 3. 


d
d
x
t

 � 4 units/second

62. Draining Water Water drains from the conical tank shown in
the figure at the rate of 5 ft3�min.

(a) What is the relation between the variables h and r?

(b) How fast is the water level dropping when h � 6 ft?

63. Stringing Telephone Cable As telephone cable is pulled
from a large spool to be strung from the telephone poles along a
street, it unwinds from the spool in layers of constant radius as
suggested in the figure. If the truck pulling the cable moves at a
constant rate of 6 ft�sec, use the equation s � r� to find how fast
(in rad�sec) the spool is turning when the layer of radius 
1.2 ft is being unwound. 5 radians/sec

64. Throwing Dirt You sling a shovelful of dirt up from the
bottom of a 17-ft hole with an initial velocity of 32 ft �sec. 
Is that enough speed to get the dirt out of the hole, or had you
better duck? Not enough speed. Duck!

65. Estimating Change Write a formula that estimates the
change that occurs in the volume of a right circular cone (see
figure) when the radius changes from a to  a � dr and the
height does not change. dV � 


2p
3
ah

 dr

66. Controlling Error

(a) How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with an
error of no more than 2%? Within 1%

(b) Suppose the edge is measured with the accuracy required in
part (a). About how accurately can the cube’s volume be
calculated from the edge measurement? To find out, estimate the
percentage error in the volume calculation that might result from
using the edge measurement. Within 3%

67. Compounding Error The circumference of the equator 
of a sphere is measured as 10 cm with a possible error of 
0.4 cm. This measurement is then used to calculate the radius.
The radius is then used to calculate the surface area and volume
of the sphere. Estimate the percentage errors in the calculated
values of (a) the radius, (b) the surface area, and (c) the volume.

68. Finding Height To find the height of a lamppost (see figure),
you stand a 6-ft pole 20 ft from the lamp and measure the length
a of its shadow, finding it to be 15 ft, give or take an inch.
Calculate the height of the lamppost using the value  a � 15,
and estimate the possible error in the result.

r

4'

h

10'

Exit rate: 5 ft3/min

1.2'

V �    �r2h1–
3

h

r

h

6 ft

20 ft
a

Increasing 1 cm/min

(a) h � 

5
2
r





1
1
4
2
4
5
p


 � 0.276 ft/min

67. (a) Within 4% (b) Within 8% (c) Within 12%

Height � 14 feet, estimated error � �

4
2
5

 feet
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AP Examination Preparation
You should solve the following problems without using a 
calculator. 

70. The accompanying figure shows the graph of the derivative of
a function f. The domain of f is the closed interval [�3, 3].

(a) For what values of x in the open interval (�3, 3) does f
have a relative maximum? Justify your answer.

(b) For what values of x in the open interval (�3, 3) does f
have a relative minimum? Justify your answer.

(c) For what values of x is the graph of f concave up? 
Justify your answer.

(d) Suppose f(�3) � 0. Sketch a possible graph of f on the
domain [�3, 3].

260 Chapter 4 Applications of Derivatives

71. The volume V of a cone (V � 

1
3


pr2h) is increasing at the
rate of 4p cubic inches per second. At the instant when the
radius of the cone is 2 inches, its volume is 8p cubic inches
and the radius is increasing at 1/3 inch per second. 

(a) At the instant when the radius of the cone is 2 inches,
what is the rate of change of the area of its base?

(b) At the instant when the radius of the cone is 2 inches,
what is the rate of change of its height h?

(c) At the instant when the radius of the cone is 2 inches,
what is the instantaneous rate of change of the area of its
base with respect to its height h?

72. A piece of wire 60 inches long is cut into six sections, two of
length a and four of length b. Each of the two sections of
length a is bent into the form of a circle and the circles are
then joined by the four sections of length b to make a frame
for a model of a right circular cylinder, as shown in the
accompanying figure. 

(a) Find the values of a and b that will make the cylinder of
maximum volume.

(b) Use differential calculus to justify your answer in part (a).

x

y

3–3 –2 –1 1 2

69. Decreasing Function Show that the function y � sin2 x � 3x
decreases on every interval in its domain.

3. (a) [�1, 0) and [1, �)
(b) (��, �1] and (0, 1]
(c) (��, 0) and (0, �)
(d) None
(e) Local minima at (1, e) and (�1, e)
(f ) None

4. (a) [��2�, �2�]

(b) [�2, ��2�] and [�2�, 2]

(c) (�2, 0) (d) (0, 2)

(e) Local max: (�2, 0) and (�2�, 2); 

local min: (2, 0) and (��2�, �2)

27. L(x) � 2x � 

p

2

 �1

28. L(x) � �2�x � 

p�

4
2�


 � �2�

38. (a) v(t) � � 3t2 � 6t � 4
(b) a(t) � �6t � 6
(c) The particle starts at position 3 moving in the positive direction, but de-

celerating. At approximately t � 0.528, it reaches position 4.128 and
changes direction, beginning to move in the negative direction. After
that, it continues to accelerate while moving in the negative direction.

39. (a) L(x) � �1
(b) Using the linearization, f (0.1) � �1
(c) Greater than the approximation in (b), since f	(x) is actually positive over

the interval (0, 0.1) and the estimate is based on the derivative being 0.

69. 

d
d
y
x

 � 2 sin x cos x – 3.

Since sin x and cos x are both between 1 and �1,

2 sin x cos x is never greater than 2, and therefore 

d
d
y
x

 � 2 � 3 � �1 

for all values of x.

71. The volume V of a cone �V � 

1

3

pr2h� is increasing at the rate of 4p cubic

inches per second. At the instant when the radius of the cone is 2 inches, its
volume is 8p cubic inches and the radius is increasing at 1/3 inch per sec-
ond.

(a) A= pr2, so � 

d

d

A

t

 � 2pr 


d

d

r

t

 � 2p(2)�


1

3

� � 


4

3

p

 in2/sec.

(b) V � 

1

3

 pr2h, so 


d

d

V

t

 � 


1

3

 �2pr 


d

d

r

t

 h � pr2 


d

d

h

t

�. Plugging in the known

values, we have 4p � 

1

3

 �2p � 2 � 


1

3

 � 6 � p � 22 � 


d

d

h

t

�. From this 

we get 

d

d

h

t

 � 1 in/sec.

(c) 

d

d

A

h

 � 


d

d

A

h /

/

d

d

t

t

 � 


4p

1

/3

 � 


4

3

p

 in2/in.
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