Calculator Problems

AP Calculus

Name

Use your calculator to solve each problem below!

1) A particle moves along a straight line with velocity given by $v(t) = 7 - (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3?

(D) 6.086

(E) 18.087

The first derivative of the function f is defined by $f'(x) = \sin(x^3 - x)$ for $0 \le x \le 2$. On what interval(s) is f increasing?

(A) $1 \le x \le 1.445$

(C) $1.445 \le x \le 1.875$

(E) $0 \le x \le 1$ and $1.691 \le x \le 2$

3) The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)?

(A) One

- (B) Two
- (C) Three
- (D) Four

(E) Five

Be sure 2 washin enough y-values!

A particle moves along the x-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = 3 + 4.1 \cos(0.9t)$. What is the acceleration of the particle at time t = 4?

(A) -2.016

(B) -0.677

(D) 1.814

(E) 2.978

$$V'(t) = \alpha(t)$$

5) Let f be the function with derivative given by $f'(x) = \sin(x^2 + 1)$. How many relative extrema does f have on the interval 2 < x < 4?

(A) One

(B) Two

(C) Three

(D) Four

(E) Five

6) The function f has first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the inflection point of the graph of f?

(A) 1.008

- (B) 0.473
- (C) 0
- (D) -0.278
- (E) The graph of f has no inflection point.

7) The graph of $y = e^{\tan x} - 2$ crosses the x-axis at one point in the interval [0, 1]. What is the slope of the graph at this point?

(A) 0.606

- (B) 2
- (C) 2.242

(E) 3.747

- $\frac{d}{dx}(4)$ = 2.96091...
- 8) If $f'(x) = \sqrt{x^4 + 1} + x^3 3x$, then f has a local maximum at x =

(A) -2.314

(B) -1.332

- (D) 0.829
- (E) 1.234

down

- 9) For -1.5 < x < 1.5, let f be a function with first derivative given by $f'(x) = e^{\left(x^4 2x^2 + t\right)} 2$. Which of the following are all intervals on which the graph of f is concave down? when stope of f' is neg.
 - (A) (-0.418, 0.418) only

(B) (-1,1)

(C) (-1.354, -0.409) and (0.409, 1.354)

(D) (-1.5, -1) and (0, 1)

(E) (-1.5, -1.354), (-0.409, 0), and (1.354, 1.5)

