Forces, Motion, and Energy Book M

Forces and Motion Chapter 2

Name			
~ I			

Test Date _FRIDAY, 5/9/14__

Chapter 2 – Forces and Motion

Section 1 Gravity and Motion p. 36 - 43

I.	Gravity and Falling Objects
	A. Gravity and Acceleration*Objects released from the same height at the same time will hit the ground
	_at the same time because acceleration due to gravity is the same for all objects
	_at the same time because acceleration due to gravity is the same for all objects
	B. Acceleration Due to Gravity (gravity = 9.8 m/s ²)
	C. Velocity of Fall Objects – * velocity = gravity ● time
	$\Delta v = g \times t$
II.	Air Resistance and Falling Objects
	*A flat sheet of paper will have more <u>air resistance</u> than a crumpled up sheet of
	paper because it has more <u>surface area</u> .
	A. Acceleration Stops at the Terminal Velocity
	*The constant velocity of a falling object when the force of air resistance is equal in
	magnitude and opposite in direction to the force of gravity is called
	terminal velocity
	B. Free Fall Occurs When There Is No Air Resistance
	If gravity is pulling an object down and <u>no other forces</u> are acting on the object, the object is in <u>free fall</u>
	object is in iree ran
III.	Orbiting Objects Are in Free Fall
	*Because of free fall, astronauts <u>float</u> in orbiting spacecrafts.
	A. Two Motions Combine to Cause Orbiting
	*If a spacecraft is orbiting Earth, it is moving <u>forward</u> and it is also in <u>free</u>
	fall

**Know about this diagram for the test! What is happening at each point?

B. Projectile Motion and Gravity

The curved path that an object follows when thrown, launched, or otherwise projected near the Earth's surface is called _____projectile motion______

*circle the examples of projectile motion

Leaping frog ball pitched box sliding on the floor skydiver falling toward Earth

Sliding Kinetic Friction

- IV. Projectile Motion and Gravity
 - A. Horizontal Motion
 - B. Vertical Motion

*When you throw an object, gravity pulls it ____downward____ and gives the object ___vertical ____ motion.

Chapter 2 – Forces and Motion

Section 2 Newton's Laws of Motion p. 44 - 51

I.	Newton's First Law of Motion				
	*An object at rest remains at <mark>rest</mark> , and an object in motion remains in				
	<mark>motion</mark> at constant speed and in a straight line unless acted on by an				
	unbalanced force				
	A. Part 1: Objects at Rest				
	B. Part 2: Objects in Motion				
	C. Friction and Newton's First Law				
	*a moving object that is not acted on by an unbalanced force will stay in				
	motion				
	D. Inertia and Newton's First Law				
	* Inertia is the tendency of an object to <u>resist</u> being moved or, if the object is				
	moving, to resist a <u>change</u> in speed or direction until an outside force acts on the object.				
	_ <mark>force</mark> acts on the object.				
	E. Mass and Inertia				
	* Mass is a measure of <mark>inertia</mark>				
	* An object with a large mass has moreinertia than an object with a				
	small mass. *Kenny cannot move a house!				
	* Circle the object that would have more inertia (1,000 g = 1kg)				
	3,500 g (or 3.5 kg.) 7kg (or 7000 g)				
II.	Newton's Second Law of Motion				
	*The acceleration of an object depends on the _mass of the object and the amount				
	offorce applied. F = m ● a Force = mass x acceleration				
	A. Part 1: Acceleration Depends on Mass				
	Acceleration and Mass are inversely related.				
	*As the mass _ <mark>increases</mark> _ the acceleration of the object <mark>decreases</mark>				

	Acceleration and <u>force</u> are directly related. An object's acceleration will <u>increase</u>
	when the force on the object <mark>increases</mark>
	Which object has the least acceleration?
	 An empty grocery cart pushed hard
	 a full grocery cart pushed lightly
C.	Expressing Newton's Second Law Mathematically F = m x a
III.	Newton's Third Law of Motion
	Whenever one object exerts a force on a second object, the second object exerts an equal and equal force on the first.
	_equalandoppositerorce on the first.
	OR * All forces act in <mark>pairs</mark> .
	 ,
	A. Force Pairs Do Not Act on the Same Object
	B. All Forces Act in Pairs – Action and Reaction
	*Action/Reaction Pairs
	 *An animal's legsexert a force on the Earth allowing it to jump
	 *A batexerts a force on a ball allowing it to sail through the air.
	C. The Effect of a Reaction Can Be Difficult to See
	 *Gravityexerts a force on ball allowing it to hit the ground.

B. Part 2: Acceleration Depends on Force

Chapter 2 Forces and Motion

Section 3 Momentum p. 52 - 55

. Momentum, Mass and Velocity		Momentum, Mass and Velocity
		A quantity defined as the product of the mass and velocity of an object is called
		<mark>momentum</mark>
	A.	Calculating Momentum
		$p = m \times v$
		(momentum equals mass times velocity)
I.		The Law of Conservation of Momentum
		*When a moving object hits another object,some or all of the momentum of the
		first object istransferred to the object that is hit. The momentum before the
		collision is _equal to the momentum after collision.
		ne Law of Conservation of Momentum states that any time objects <mark>collide</mark> , the al amount of momentum stays the <mark>same</mark>
	Α. (Objects Sticking Together
	В. С	Objects Bounding Off Each Other
	C.	Conservation of Momentum and Newton's Third Law