Bonding, and Lewis Dot Structures Chapter 8 #### Dubai #### Debyes # Debyes are a unit of charge separation, within chemical bonds - μ=Qr - Magnetic moment=charge separation * distance - 1 Debye = 3.34 * 10⁻³⁰ coulomb*meters - Charge/electron=1.60*10⁻¹⁹ coulombs - See sample exercise 8.5 ## Lewis Dot Diagram Method - Write the element symbol. - Use dots to show the <u>valence electrons</u> (alone or in pairs) around the symbol. - Sodium would be Na with one dot. - Chlorine would be CI with seven dots. - Our previous reaction of sodium with chlorine would be written as # Lewis Dot Diagrams (Practice) | Element | Electron Configuration | Lewis Dot
Diagram | |---------|-------------------------------------|----------------------| | Li | [He]2s ¹ | | | Be | [He]2s ² | | | В | [He]2s ² 2p ¹ | | | С | [He]2s ² 2p ² | | | N | [He]2s ² 2p ³ | | | 0 | [He]2s ² 2p ⁴ | | | F | [He]2s ² 2p ⁵ | | | Ne | [He]2s ² 2p ⁶ | | | Al | [Ne]3s ² 3p ¹ | | | Р | [Ne]3s ² 3p ³ | | Practice doing this! Remember, show only the valence electrons. ### Check the validity of the proposed Lewis structure - Total number of valence electrons must be the same in the compound and the isolated elements - Total number of unbonded pairs must be the same around each element center - Every electron must be part of a pair (either a shared pair or an unshared pair) - If unpaired electrons remain in adjacent elements, after the formation of single bonds, consider the possibility that a double or triple bond might form ### Strengths and weaknesses of Lewis Dot model #### Strengths - Allows you to predict which elements form bonds with which elements in a chemical compound - Allows you to predict the formation of double and triple bonds #### Weaknesses - Electrons are shown as point charges, when they should be difuse clouds - Bond angles are all shown as 90°, which is inaccurate #### Practice Drawing Lewis structures for the following: - KI - CHCl₃ - C₃H₈ - C₂H₄ # Remember, Lewis Dots structures are just models, and there are numerous exceptions - Elements in Group 2, and Group 3 don't have an octet of electrons. - Elements in periods 4 and beyond had d electrons, more than a full octet. - The most stable compounds always have an even number of electrons. But there are exceptions (like NO) with a lone unpaired electron in one of the shells. - Some compounds (like benzene) can not be drawn with a single lewis dot structure. A pair of resonance structures must be shown.