Bonding, and Lewis Dot Structures

Chapter 8

Dubai

Debyes

Debyes are a unit of charge separation, within chemical bonds

- μ=Qr
- Magnetic moment=charge separation * distance
- 1 Debye = 3.34 * 10⁻³⁰ coulomb*meters
- Charge/electron=1.60*10⁻¹⁹ coulombs
- See sample exercise 8.5

Lewis Dot Diagram Method

- Write the element symbol.
- Use dots to show the <u>valence electrons</u> (alone or in pairs) around the symbol.
- Sodium would be Na with one dot.
- Chlorine would be CI with seven dots.
- Our previous reaction of sodium with chlorine would be written as

Lewis Dot Diagrams (Practice)

Element	Electron Configuration	Lewis Dot Diagram
Li	[He]2s ¹	
Be	[He]2s ²	
В	[He]2s ² 2p ¹	
С	[He]2s ² 2p ²	
N	[He]2s ² 2p ³	
0	[He]2s ² 2p ⁴	
F	[He]2s ² 2p ⁵	
Ne	[He]2s ² 2p ⁶	
Al	[Ne]3s ² 3p ¹	
Р	[Ne]3s ² 3p ³	

Practice doing this! Remember, show only the valence electrons.

Check the validity of the proposed Lewis structure

- Total number of valence electrons must be the same in the compound and the isolated elements
- Total number of unbonded pairs must be the same around each element center
- Every electron must be part of a pair (either a shared pair or an unshared pair)
- If unpaired electrons remain in adjacent elements, after the formation of single bonds, consider the possibility that a double or triple bond might form

Strengths and weaknesses of Lewis Dot model

Strengths

- Allows you to predict which elements form bonds with which elements in a chemical compound
- Allows you to predict the formation of double and triple bonds

Weaknesses

- Electrons are shown as point charges, when they should be difuse clouds
- Bond angles are all shown as 90°, which is inaccurate

Practice Drawing Lewis structures for the following:

- KI
- CHCl₃
- C₃H₈
- C₂H₄

Remember, Lewis Dots structures are just models, and there are numerous exceptions

- Elements in Group 2, and Group 3 don't have an octet of electrons.
- Elements in periods 4 and beyond had d electrons, more than a full octet.
- The most stable compounds always have an even number of electrons. But there are exceptions (like NO) with a lone unpaired electron in one of the shells.
- Some compounds (like benzene) can not be drawn with a single lewis dot structure. A pair of resonance structures must be shown.