Science: Biology

Biology		
Unit 3: Ma	atter, Energy, and Organization in Living Systems	
	 Living systems require a continuous input of energy. 	
	 The energy for life is derived primarily from the sun. 	
	 Chemical bonds in molecules contain energy. 	
	 Organisms are designed to obtain, transform, transport, release, 	
Essential	and eliminate the matter and energy used to sustain life.	
Understandings	 Availability of energy limits the distribution of organisms in an 	
	ecosystem.	
	 Matter and energy flow through different levels of organization of 	
	living systems – cells, organs, organisms, communities – and	
	between living systems and the physical environment, chemical	
	elements are recombined in different ways.	
	How do living organisms acquire energy?	
	Where does most energy come from in living systems?	
Essential	Where is energy stored?	
Questions	How is energy and matter cycled through living systems?	
	 How does the availability of energy and matter limit an ecosystem's 	
	productivity and diversity?	
	 All activities require energy. 	
	 Energy comes primarily from the sun. 	
Essential	 Photosynthesis converts sunlight energy in chemical energy. 	
Knowledge	 Chemical energy stored in chemical bonds is released by 	
	respiration.	
	 Chemical energy is obtained and transported in various ways in an 	
	ecosystem.	
	 Matter and energy are recycled and recombined in the ecosystem. 	
	• <u>Terms</u> :	
	 chemical bonds, molecule, macromolecules, enzymes, 	
Vocabulary	chemical reactions, photosynthesis, cellular respiration,	
	ATP, autotroph, heterotroph, trophic levels, water, carbon,	
	nitrogen cycles	
	 Trace the energy flow through biological pyramids. 	
	 Compare how organisms satisfy their nutritional needs. 	
Essential	 Trace the path of energy in a model of photosynthesis. 	
Skills	 Identify how cellular respiration releases energy from food 	
	molecules.	
	 Explain the relationship between photosynthesis and respiration. 	

	Science
	B. The Skills and Traits of Scientific Inquiry and Technological Design
	B1.Skills and Traits of Scientific Inquiry
	Students methodically plan, conduct, analyze data from, and
	communicate results of in-depth scientific investigations,
	including experiments guided by a testable hypothesis.
	a. Identify questions, concepts, and testable hypotheses that
	guide scientific investigations.
	b. Design and safely conduct methodical scientific
	investigations, including experiments with controls.
	c. Use statistics to summarize, describe, analyze, and interpret
	results.
	d. Formulate and revise scientific investigations and models
	using logic and evidence.
	e. Use a variety of tools and technologies to improve
	investigations and communications.
	f. Recognize and analyze alternative explanations and models
	using scientific criteria.
Related	g. Communicate and defend scientific ideas.
Maine Learning	C. The Scientific and Technological Enterprise
Results	C1.Understandings of Inquiry
	Students describe key aspects of scientific investigations: that
	they are guided by scientific principles and knowledge, that they
	are performed to test ideas, and that they are communicated
	and defended publicly.
	a. Describe how hypotheses and past and present knowledge
	guide and influence scientific investigations.
	b. Describe how scientists defend their evidence and
	explanations using logical argument and verifiable results.
	D. The Physical Setting
	D2.Earth
	Students describe and analyze the biological, physical, energy,
	and human influences that shape and alter Earth Systems.
	a. Describe and analyze the effect of solar radiation, ocean
	currents, and atmospheric conditions on the Earth's surface
	and the habitability of Earth.
	c. Describe and analyze the effects of biological and
	geophysical influences on the origin and changing nature of
	Earth Systems.
	d. Describe and analyze the effects of human influences on
	Earth Systems.

	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter
	and energy.
	 Describe the structure of atoms in terms of neutrons,
	protons, and electrons and the role of the atomic structure in
	determining chemical properties.
	b. Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the
	types of bonds it makes with other molecules and its mass,
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	e. Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other
Related	molecules).
Maine Learning	f. Apply an understanding of the factors that affect the rate of
Results	chemical reaction to predictions about the rate of chemical
Results	reactions.
	h. Describe radioactive decay and half-life.
	E. The Living Environment
	E2.Ecosystems
	Students describe and analyze the interactions, cycles, and
	factors that affect short-term and long-term ecosystem stability
	and change.
	a. Explain why ecosystems can be reasonably stable over
	hundreds or thousands of years, even though populations
	may fluctuate.
	b. Describe dynamic equilibrium in ecosystems and factors that
	can, in the long run, lead to change in the normal pattern of
	cyclic fluctuations and apply that knowledge to actual situations.
	c. Explain the concept of carrying capacity and list factors that
	determine the amount of life that any environment can
	support.
	d. Describe the critical role of photosynthesis and how energy
	and the chemical elements that make up molecules are
	transformed in ecosystems and obey basic conservation
	laws.

	E3.Cells
	Students describe structure and function of cells at the
	intracellular and molecular level including differentiation to form
	systems, interactions between cells and their environment, and
	the impact of cellular processes and changes on individuals.
	a. Describe the similarities and differences in the basic
	functions of cell membranes and of the specialized parts
	within cells that allow them to transport materials, capture
	and release energy, build proteins, dispose of waste,
	communicate, and move.
	b. Describe the relationship among DNA, protein molecules,
	and amino acids in carrying out the work of cells and how
	this is similar among all organisms.
	c. Describe the interactions that lead to cell growth and division
	(mitosis) and allow new cells to carry the same information
Related	as the original cell (meiosis).
Maine Learning	d. Describe ways in which cells can malfunction and put an
Results	organism at risk.
	e. Describe the role of regulation and the processes that
	maintain an internal environment amidst changes in the
	external environment.
	f. Describe the process of metabolism that allows a few key
	biomolecules to provide cells with necessary materials to
	perform their functions.
	E5.Evolution
	Students describe the interactions between and among
	species, populations, and environments that lead to natural
	selection and evolution.
	a. Describe the premise of biological evolution, citing evidence
	from the fossil record and evidence based on the
	observation of similarities within the diversity of existing
	organisms.
	b. Describe the origins of life and how the concept of natural
	selection provides a mechanism for evolution that can be
	advantageous or disadvantageous to the next generation.
	d. Relate structural and behavioral adaptations of an organism
	to its survival in the environment.
Sample	 Analyze photosynthetic pigments using paper chromatography
Lessons	 Observe chloroplasts in plant cells
and	 Record the respiration rate using bromothymol blue
Activities	 Analyze food webs
	 Compare and contrast the four macromolecules

Sample	Quiz
Classroom	 Chapter Test
Assessment	 Worksheets
Methods	 Labs
	Publications:
	 <u>Biology</u> - Kenneth Miller and Joseph Levine
Sample	 Biology: The Dynamics of Life - Glencoe
Resources	■ <u>Videos</u> :
	• Cycles of Life
	Other Materials:
	 Lab Supplies