Reporting Category 1 Cell Structure and Function

The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of structure and function of living things.

The Chemistry of Living Things

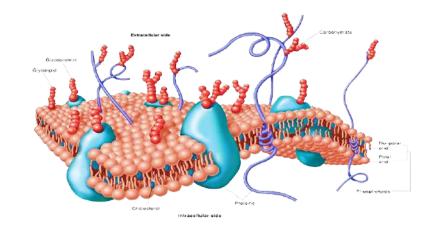
1.	What element makes all things "organic?"	

TEK 9.A - Compare the structure and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

2. Fill in the following table

Macromolecules	Function	Monomer	Shape
Carbohydrates			
Proteins			
Lipids			
Nucleic Acids			

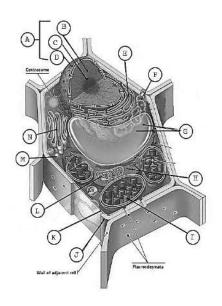
TEK B.A-C - Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that perform specific functions and that viruses are different from


Cell Theory and Organelles

- 3. What are the three parts of cell theory?

The diagram below shows many proteins and other molecules embedded in a cell membrane -

- **4.** What is the function of the **cell membrane**?
- 5. What is the Plasma or cell membrane composed of?

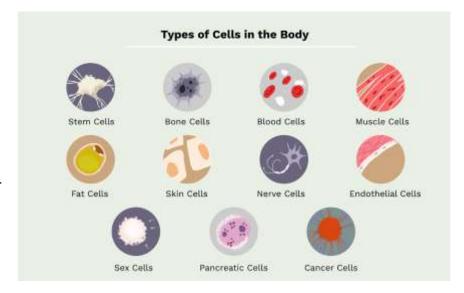


- **6.** What is the function of the types of RNA?
 - mRNA -
 - rRNA -
 - tRNA -

Fill in this chart. Also give the letter or number of the part as seen in the diagrams below.

Cell Part and Letter	Structure Description	Function	Letter/Number
Nucleus			
Plasma Membrane			
Cell wall			
Mitochondria			
Vacuoles			
Chloroplasts			
Ribosomes			

TEK B.4 A - compare and contrast prokaryotic and eukaryotic cells

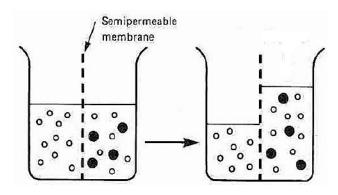

7. Which cell is the plant cell (left or right)?

Which structures are found only in the plant cell?

9. What is the main difference between a prokaryote and eukaryote?

Below are a variety of cells from the human body.

- 10. Label these cells. (red blood cell, sperm cell, white blood cell, muscle cell, nerve cell)
- 11. Which cell is adapted for movement? What structure makes this movement possible?
- **12.** What organelle is very plentiful in these cells in order to provide the energy for movement?



- 13. Which cell is involved in the immune system?
- **14.** Which cell helps in movement of bones?

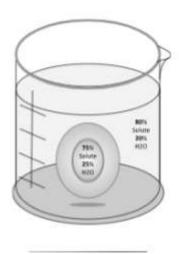
15. Which cell is adapted for transmitting messages?

TEK B.4 B - investigate and explain cellular processes, including homeostasis, energy conversions, transport of molecules, and synthesis of new molecules;

Cellular Transport

Explain what has happened in the diagram to the left.

16. Why did the large dark molecules NOT move to the left?


17. If the dark molecule is starch, where is the starch concentration greatest (left or right)?

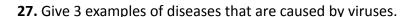
- 18. If the white molecule is water, where is the water concentration greatest at first?
- **19.** In osmosis, water moves from an area of ______ to an area of _____ concentration. (higher/lower)
- **20.** If the dark molecules could move, in what direction would they move? Why?
- **21.** In diffusion, molecules move from an area of ______ to an area of _____ concentration. (higher/lower)
- **22.** Which way water will move in each of the following situations:
 - a. Salt inside the cell 65% and outside the cell 40%. Draw it.

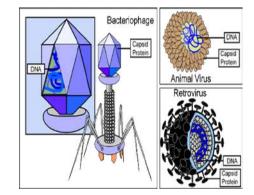
b. Sugar inside the cell 27% and outside 80%. Draw it.

- 23. What is homeostasis?
- 24. Draw an arrow to show the direction of water movement (higher concentration to lower concentration / Solute Sucks!)If any percentages/% are missing, complete them - water or solute. Identify the type of solution: isotonic, hypertonic, or hypotonic

Comparison of active and passive transport

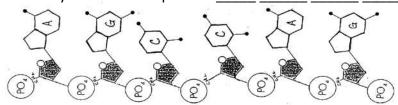
	PASSIVE TRANPORT	ACTIVE TRANSPORT
Requires energy?		
Low to high concentration or high to low concentration?		
Examples <i>@ least 3</i>		


TEK B4.C - compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza.


Viruses:

25. Describe the basic structure of a virus. What is it made of?

26. Viruses have two pathways they can take to reproduce.


DNA / RNA / Proteins

TEK B.5 A, C, & D - describe the stages of the cell cycle, including deoxyribonucleic acid (DNA) replication and mitosis, and the importance of the cell cycle to the growth of organisms; describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation; and recognize that disruptions of the cell cycle lead to diseases such as cancer.

Below is a strand of DNA.

28. DNA in the cells exists as a double helix – what needs to be added to it to make it a double helix?

Give the complementary nucleotide sequence.

23. Describe the structure of Divi	29.	Describe	the	structure	of DNA
---	-----	----------	-----	-----------	--------

a.	What are the black pentagons?
b.	What are the nitrogen bases?
c.	What weak bonds hold the complementary bases together?
d.	What types of organisms have DNA?

Transcription, Translation, Protein Synthesis –

ATT GCC GCC ATG CGT GCC ACC TGT GCA

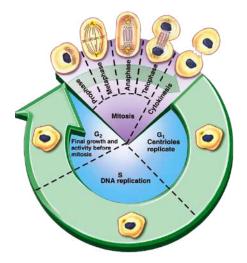
30.	If the strand of DN	IA above undergoes	transcription (DN/	${\sf A} \; \square \; {\sf RNA}$ what ${\sf v}$	will the sequence of
	the mRNA be?				

31. After translation (RNA \square PROTEIN), what would the amino acid sequence be for this section of mRNA? (read from right to left)

First		Seco	nd Letter	494	Third
Letter	U	C	A	G	Letter
	phenylalanine	serine	tyrosine	cysteine	U
U	phenylalanine	serine	tyrosine	cysteine	С
177.0	leucine	serine	stop	stop	A
	leucine	serine	stop	tryptophan	G
	leucine	proline	histidine	arginine	U
C	leucine	proline	histidine	arginine	C
(E)	leucine	proline	glutamine	arginine	A
	leucine	proline	glutamine	arginine	G
	isoleucine	threonine	asparagine	serine	U
A	isoleucine	threonine	asparagine	serine	С
_	isoleucine	threonine	lysine	arginine	A
	(start) methionine	threonine	lysine	arginine	G
	valine	alanine	aspartate	glycine	U
G	valine	alanine	asparlate	glycine	С
	valine	alanine	glutamate	glycine	A
	valine	alanine	glutamate	glycine	G

32. Compare RNA and DNA in the following table.

	RNA	DNA
Sugars		
Bases		
Strands		
Where In Cell		
Function		


33.	What kind	of bond	holds the	amino	acids	together	in the	protein	that is	formed

Cell Cycle

Look at the diagram of the cell cycle.

- **34.** When does the **replication** of **DNA occur**? What is this phase called?
- **35.** What do GI and G2 represent?
- **36.** What stage does the cell spend most of its life in?
- **37.** What is cancer? What causes cancer?

38. Put the following stages of mitosis (cell division) in order. Then Name them.

			1st:	called
(000)			2nd:	called
A	В	c	3rd:	called
			4th:	called
			5th:	called

39. Complete the following Chart of Mitosis and Meiosis.

	MITOSIS	<u>MEIOSIS</u>
Type of reproduction (Asexual or sexual)		
Chromosome number of mother cell (1N=haploid or 2N=diploid)		
Chromosome number of daughter cells (1N=haploid or 2N=diploid)		
Number of cell divisions		
Number of cells produced		

HEBISD	
When does replication happen?	
SOURCES OF VARIATION	
Crossing over	
Random assortment of chromosomes (independent assortment)	
Gene mutations	
Fertilization	

40. What does Diploid mean?

41. What does Haploid mean?

Mutations

Original DNA Sequence: TAC-ACC-TTG-GCG-ACG-ACT

mRNA Sequence: A U G-UG G- A A C-C G C-U G C-U G A_____

Amino Acid Sequence: MET - TRP - ASN - ARG - CYS - Stop

42.		
Mutated DNA Sequence #1:	TAC-ATC-TTG-GCG-ACG	- A C T
What's the mRNA sequence? (Circle the change)	A U G-U A G- A A	C-C G C-U G C-U G A
What will be the amino acid se	MET - Stop	
Will there likely be effects?		
What kind of mutation is this?		

43.

Mutated DNA Sequence #2:	T A C-G A C- C T T-G G C-G A C-G A C-T
What's the mRNA sequence? (Circle the change)	
What will be the amino acid sequence?	
Will there likely be effects?	
What kind of mutation is this?	
44.	
Mutated DNA Sequence #3:	T A C-A C C- T T A- G C G- A C G- A C T
What's the mRNA sequence? (Circle the change)	
What will be the amino acid sequence?	
Will there likely be effects?	
What kind of mutation is this?	
45.	
Mutated DNA Sequence #4: TACACCT	T G G C G A C T A C T
What's the mRNA sequence? (Circle the change)	
What will be the amino acid sequence?	
Will there likely be effects?	
What kind of mutation is this?	

Reporting Category 4

Biological Processes and Systems

The student will demonstrate an understanding of the metabolic processes, energy conversions, and interactions and functions of systems in organisms

TEK B.9 B & C - The student knows the significance of various molecules involved in metabolic processes and energy conversions that occur in living organisms. The student is expected to: compare the reactants and products of photosynthesis and cellular respiration in terms of energy and matter; and identify and investigate the role of enzymes.

Cellular Energetics - Photosynthesis & Cellular Respiration

46. What are the reactants and products for each of these?

Process	Reactant	Product	Locations
Photosynthesis			
Cellular Respiration (Aerobic)			
Cellular Respiration (Anaerobic)			

- **47.** Label each of the equations as *photosynthesis*, *aerobic respiration or anaerobic respiration*. Then label each of the following molecules in these equations (water, glucose, oxygen, carbon dioxide, ethyl alcohol)
 - A) $C_6H_{12}O_6 \square 2C_2H_5OH + 2CO_2$
 - B) $C_6H_{12}O_6 + 6O_2 \square 6CO_2 + 6H_2O$
 - $6H_2O + 6CO_2 \square C_6H_{12}O_6 + 6CO_2$ C)
- 48. Which of the above reactions is photosynthesis?

(A, B or C?)

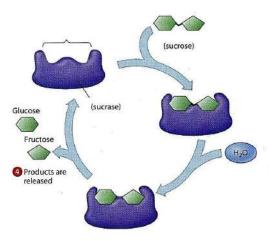
49. W	Vhich of the al	bove reactions is	fermentation	(anaerobic cellular	respiration)?	(A, B c	or C?)
--------------	-----------------	-------------------	--------------	---------------------	---------------	---------	--------

(A, B or C)

52. Which reaction requires light

(A, B or C)

53. What is the light used for?


54. Which organisms (auto, hetero, prokaryote, eukaryotie) carry out process A?

55. Which organisms carry out process B?

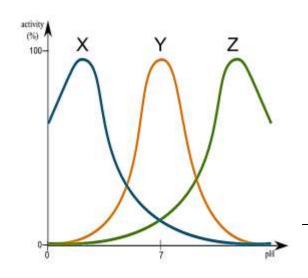
56. Which organisms carry out process C?

57. Which process uses chloroplasts in eukaryotes?

58. Which process uses mitochondria in eukaryotes?

59. What is the <u>function</u> of enzymes in cells? (Or, what is a catalyst?)

60. How do extreme pH and temperature extremes affect enzymes? Graph it (general graph)


61. Label the picture of the following enzymatic reaction: Substrate, Product(s), Enzyme-substrate complex, Enzyme

62. All (save for a few) enzymes end in what suffix?

63. Using the graph at right, at what temperature is the best for this enzyme to work? _____

64. At which numeral (I, II, III, or IV) does this particular start to denature?

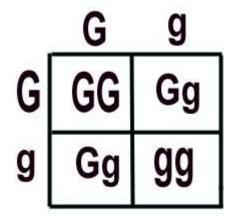
65. Which enzyme (X, Y, or Z) would be used in:

- Acidic Conditions?
- **Basic Conditions?**
- **Neutral Conditions?**
- **66.** What pH is the optimum for activity for X?
 - Y? _____

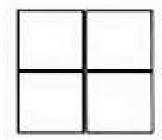
Reporting Category 2

Mechanisms of Genetics

The Student will demonstrate an understanding of the mechanisms of genetics

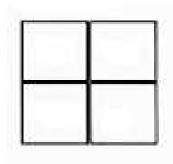

TEK B.6 A-H - The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: identify components of DNA, and describe how information for specifying the traits of an organism is carried in the DNA; recognize that components that make up the genetic code are common to all organisms; recognize that gene expression is a regulated process; predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non-Mendelian inheritance; describe how, genetic modifications, and chromosomal analysis are used to study the genomes of organisms.

Genetics


- **67.** What does it mean when a trait is **dominant**?
- **68.** What does it mean when a trait is **recessive**?

- **69.** In the Punnett square to the left, $G = tall \ and \ q = short$. Give the parents genotypes.
- **70.** Give the phenotype for the parents.
- **71.** What are the genotypes and phenotypes of the offspring?
- **72.** What is the genotypic ratio of the offspring?
- **73.** What is the phenotypic ratio of the offspring?
- **74.** What does it mean if a trait is **codominant**?

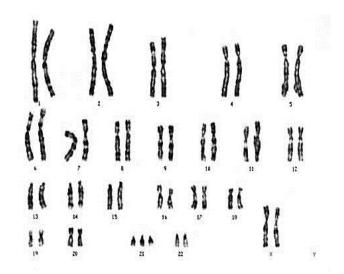
Blood type (Page 178)


75. If a woman with type A blood has a child with a man with type B blood and their first child has type O blood, give the genotypes of the woman and the man and do the cross. (Alleles are I^A, I^B, and i)

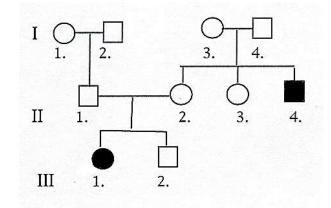
a. What are the odds that they will have a child with type O blood again?

- **b.** What are the odds that they will have a child with homozygous type A blood?
- **c.** What are the odds that they will have a child with type AB blood?

Sex Chromosomes


- 72. What are the sex chromosomes in males? ______ In Females? _____
- **73. Colorblindness & hemophilia** are sex-linked traits. What chromosome location (#) are these genes found? _____

- **a.** Cross a female who is a carrier for hemophilia with a normal male.
 - _____x
- **b.** What are the odds that they will have a **child** with **hemophilia**?
- c. What are the odds that they will have a daughter with hemophilia?
- d. What are the odds that they will have a daughter who is a carrier for hemophilia?
- e. Why are males more likely to show this type of disorder? (Who (mother/father) is likely to give them the bad gene?)


Karyotype

- **74.** What is the gender of the person whose karyotype is shown to the left?
- **75.** What is the disorder that this person has?
- **76.** What are some of the characteristics of this type of disorder?

Pedigrees

- 77. Using A,a, what is the genotype of person II-4?
- **78.** What is the genotype of person I3 (using A or a)?

Double check your learning, solve the following genetics problem:

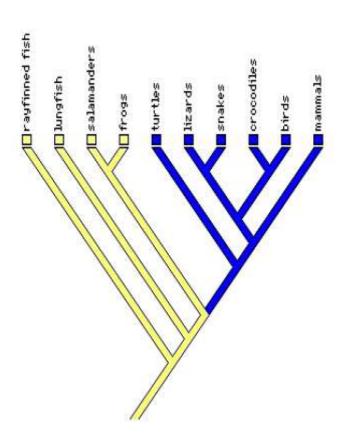
79. A brown mink crossed with a silver-blue mink produced all brown offspring. When these F_1 mink were crossed among themselves they produced 47 brown animals and 15 silver-blue animals (F_2 generation). Determine all the genotypes and phenotypes, and their relative ratios, in the F_1 and F_2 generations.

Reporting Category 3

Biological Evolution and Classification

The student will demonstrate an understanding of the theory of biological evolution and the hierarchical classification of organisms

TEK B.7 A-G - The student knows evolutionary theory is a scientific explanation for the unity and diversity of life. The student is expected to: analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental; analyze and evaluate how natural selection produces change in populations, not individuals; analyze and evaluate how the elements of natural selection, including inherited variation, the potential of a population to produce more offspring than can survive, and a finite supply of environmental resources, result in differential reproductive success; analyze and evaluate the relationship of natural selection to adaptation and to the development of diversity in and among species; analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination.


Biodiversity / Evolution

 	 ~

80.	Natural Selection	oroduces changes in	not	
-----	-------------------	---------------------	-----	--

- **81.** What is a **vestigial structure**? Name a few in humans.
- **82.** What are the Principles in Darwin's theory of evolution by natural selection.
 - lacktrian
 - •
 - •
 - •
- **83.** Define the following:
 - Gradualism -
 - Uniformitarianism -
 - Catastrophism -
 - Punctuated Equilibrium -
- **84.** Populations of organisms have many genetic variations. Where do these come from?
 - **a.** Those organisms with adaptations that better fit them to an environment will survive, reproduce, and pass on their genes. What does it mean to be "**fit**" to an environment?
 - **b.** The next population will have a high frequency of the genes that have been selected for. Why will the frequency of selected genes increase?
 - **c.** What happens when pesticides and antibiotics are used and how does it relate to evolution?
 - **d.** Why is the current classification system continually undergoing change?
 - **e.** What are the three **domains** proposed above the kingdom level?
 - **f.** What is the current EIGHT-level classification system IN ORDER FROM MOST BROAD TO MOST SPECIFIC?

- g. To the left is a phylogenetic tree of some organisms. According to this tree, which pairs of organisms are most closely related?
- **h.** Which organism is most closely related to the <u>ray finned fish</u>?
- i. Which organisms are the mammals most closely related to?

Taxonomy



j. Fill in the following chart with the characteristics of the various kingdoms.

	A RCHAEA	EUBACTERIA	PROTISTA	Fungi	PLANTAE	ANIMALIA
Eukaryotic or prokaryotic						
Multicellular or single-celled						
Sexual or asexual reproduction						
Autotrophic or heterotrophic						

TEDIOD						
Aerobic or anaerobic						
Cell walls or no cell walls						

- **85.** Use the following dichotomous key to identify the tree branch to the left.
 - 1. a. leaf is needle-like....go to 2
 - b. leaf is broad..... go to 5
 - 2. a. needles are shortgo to 3
 - b. needles are long.....go to 4
 - **3.** a. underside of needles green...hemlock
 - b. underside of needles silver ..balsam
 - 4. a. 3 needles in bundle...pitch pine
 - b. 5 needles in bundle....white pine
 - **5.** a. edge of leaf round...go to 6
 - b. edge of leaf serrated...go to 7
 - 6. a. minty odor..... wintergreen
 - b. no minty odor.....laurel

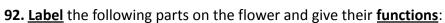
86. What am I?

Animal & Plant Systems

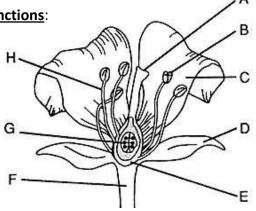
87. Put the following in order from smallest to largest:

Organ systems Organs Tissues

Cells


- 88. What structures produce hormones? What is the function of hormones?
- 89. How do hormones travel throughout a body?
- 90. What is a feedback mechanism?
 - Example of Positive -
 - Example of Negative -

91. What are the major interactions of the body systems -


	Circulatory	Respiratory	Muscular
Digestive	 molecules are broken down so they can be absorbed into the bloodstream carries nutrients throughout the body 	 Epiglottis block the windpipe when swallowing food We need oxygen to burn energy (chemical energy to thermal energy) 	 muscles push down our food (throat, peristalsis) break down food into smaller particles (stomach) help us eliminate waste
Nervous	 heart beat (pumps blood)/ sends blood to and from the heart bring nutrients and oxygen to the cells Tells waste to be eliminated from the body 	 Inhale Oxygen Exhale Carbon Dioxide Oxygen go to the bloodstream, surrounding tissues via gas exchange 	 heart (pumps blood throughout the body) stomach (breaks down food particles) skeletal muscles (pulls on your bones to move, prevent injury)
Skeletal	 Protects the heart Bones produces and stores red blood cells (bone marrow) that the bloodstream takes it to the rest of the body. Stores needed material that the blood also takes to the rest of the body (when needed) 	The bones (ribs) protect the lungs	The bones pull on the skeletal muscles to make the body move.
Muscular	Heart (cardiac muscle)	 Diaphragm 	
Respiratory	The exchange of oxygen and carbon dioxide – blood vessels		 Diaphragm

HEDISD

HEBISD						
Excretory	 Kidneys filters blood (urea, salt, water) 	 Lungs get rid of Carbon Dioxide 	Muscles release urine			
Integumentary	capillaries supply blood to the skin	If you don't get enough air to your skin, it will turn blue	Covers your muscles			
Immune	White blood cells	Cough and sneeze help keeps germs out of your body	 Muscles can be attached: HIV/AIDS Vaccines go into your muscles 			
Endocrine	Hormones are released into the bloodstream	hormones regulate you breathing	 Adrenaline hormones control your muscle growth Release of glucose, so muscles can function. 			
Reproductive	 Carries hormones and nutrients Blood Supply to Fetus 	Supplies Oxygen to the fetus	Muscle Contractions for Menstruation/ childbirth			

- Stigma
- Style
- **Ovary**
- Petal
- Sepal

HFBISD

- Anther
- **Filament**
- Carpel
- **93.** Describe the following **tropisms**
 - Phototropism -
 - Thigmotropism -
 - Gravitropism/Geotropism -
- **94.** Describe the function of the following plant hormones
 - Auxin -
 - Gibbereline -
 - Cytokines -
 - Ethylene -

Reporting Category 5

Interdependence Within Environmental Systems The student will demonstrate an understanding of the interdependence and interactions within an environmental system and their significance

TEK B.11 B-D B.12 A-F - The student knows that biological systems work to achieve and maintain balance. The student is expected to: investigate and analyze how organisms, populations, and communities respond to external factors; summarize the role of microorganisms in both maintaining and disrupting the health of both organisms and ecosystems; and describe how events and processes that occur during ecological succession can change populations and species diversity; interpret relationships, including predation, parasitism, commensalism, mutualism, and competition among organisms; compare variations and adaptations of organisms in different ecosystems; analyze the flow of matter and energy through trophic levels using various models, including food chains, food webs, and ecological pyramids; recognize that long-term survival of species is dependent on changing

resource bases that are limited; describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these cycles; and describe how environmental change can impact ecosystem stability.

Ecology

Relationship	Definition	Example
Mutualism		
Commensalism		
Parasitism		

Predator-Prey Relationships

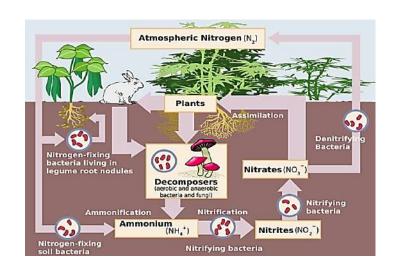
- 96. In the graph below, which organism is the prey
- 97. Which is the predator?
- 98. Which population increases (or falls) first and why?
- 99. Which population increases (or falls) second and why?
- **100.** Why are **predator/prey relationships** important in an ecosystem?

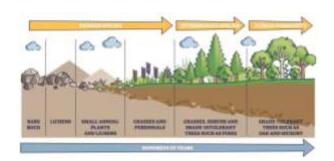
Biotic and Abiotic Factors (Page 340)

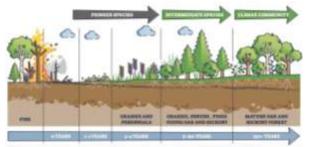
101. List at least 3 biotic factors in an environment.

- 102. List at least 3 abiotic factors in an environment.
- 103. Give an example of how biotic & abiotic factors act together to limit population growth and affect carrying capacity.

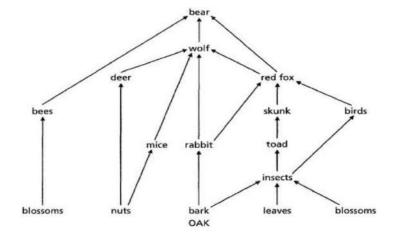
Carbon Cycle

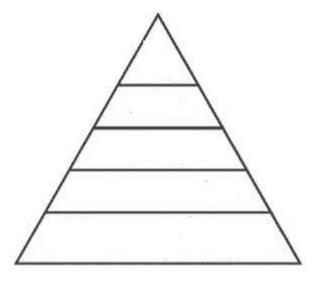

104. Which process/es put carbon dioxide into the atmosphere?


Which process(es) take carbon dioxide out of the atmosphere? 105.


Nitrogen Cycle

- 106. What roll do bacteria play in the nitrogen cycle?
- 107. Where can you find the bacteria in the nitrogen cycle? (2 places)


108. Label the following and describe: Primary vcs Secondary Succession



Food Webs

- 109. What are the **producers** in this food web?
- What are the **primary consumers** (herbivores) in this food web?
- 111. What are the secondary consumers in this food web?

- 112. What are the highest level consumers in this food web?
- **113**. How does **energy** move through a food web? What happens to **matter**?

Label both biomass, energy, and trophic levels

- Where is the most energy in this pyramid? 114.
- 115. Where is the <u>least energy</u> in this pyramid?
- **116**. What happens to energy as it moves through the food chain/web?
- Assume there are 10,000 kcal of energy in the leaves? Estimate the amount of energy in each of the other levels of the energy pyramid.
- 118. What percent of energy is **lost**? _____%
- How much is passed **on**? % 119.
- 120. What is the ultimate source of energy for this food web?

Electronic Game Activties:

• Blooket - LINK

• Kahoot - LINK

• Gimkit - LINK

