Biology 10

Chapter 12: DNA p 338-353

Objectives

- Summarize the relationship between genes and DNA
- Describe the overall structure of the DNA molecule.

What Carries Genes?

- _____ determined that chromosomes carried the genetic material
- Chromosomes are made of _____ and _____, so the debate was on as to which carried the genetic information.
- Early guesses were that it was the _____, and not the _____

Early DNA Experiments

- Frederick Griffith
- _____ experiment
- determined that dead bacteria could still pass on some factor to living bacteria
 - transformation:

Griffith's Experiment (see fig 12-1, p339) Avery and DNA

• Oswald Avery in 1944 duplicated Griffith's work and determined that it was DNA that was causing the bacteria to transform

Hershey-Chase Experiment

• Basically found that it was the viral DNA that was entering the cell and causing the cell to produce more viruses

•Role of DNA

- •DNA has three important jobs
 - •1) ______ information: it has the information needed to make every single protein in your body, which in turn influence all of your traits

•2) information: DNA needs to be able to copy itself so that future cells will have all the required information

•3) <u>information</u>: DNA needs to be passed on completely from parent cell to daughter cell

Structure of DNA (Ch 12-2)

- monomer of DNA is _____
- each nucleotide consists of:
 - _____ (deoxyribose)
 - _____ group
- 4 types of nitrogenous bases
 - purines- have a ______ structure
 - adenine and guanine • pyrimadines- have a ______ structure
 - cytosine and thymine
 - You can use the fact that pyrimadine, cytosine, and thymine all have the in them to remember)
- Nucleotides join together to form long strands
- Two strands then bind together and twist, forming a _________
 double-helix model discovered by _______ and _______ in 1953
 - one of most important discoveries in science
- The two strands are joined together by _____ between the nitrogenous bases
- each bond consists of one purine and one pyrimadine
 - This allows the two strands to always remain the same distance apart (three ring width)
 - _____ binds with _____
 - _____binds with _____
 - The two strands match up, but face in opposite directions
 - termed _____, strands are _____

Replication of DNA (Chapter 12-2)

- **replication** the process by which
- each strand serves as a template for new strands
 - Replication is **semiconservative**, as each new strand of DNA contains
- 1st step- _____ through an enzyme called **DNA** helicase
- 2nd step- unpaired bases react with nucleotides floating freely in the nucleoplasm

- 3rd step- enzyme called ______ "zips up" the new DNA strands
- Replication in eukaryotes takes place _____ (about 6000)
- Replication in prokaryotes only takes place ______, and works its way towards the ends (only 1 chromosome!)
 The nature of the binding between nucleotides helps ensure accuracy

- usually only about one error per ______ nucleotides
 Several enzymes also help detect and repair errors in replication
 Errors in DNA replication do occur, and are called ______