Biology 10

Chapter 19-3 p 553-558 "Earth's Early History"

Objectives

- Describe the hypotheses scientists have about early Earth, and the origin of life.
- Describe the theory of how eukaryotic cells formed.
- Explain the evolutionary significance of sexual reproduction.

Chemical Evolution

- chemical evolution- theory that states the first life forms evolved from organic molecules
- requires several conditions
 - 1) absence of free oxygen
 - energy
 - 3) proper chemicals present
 - 4) time
- According to evidence gathered, these four conditions existed early in Earth's history

Early Earth's Atmosphere

- atmosphere contained CO₂, H₂O, N₂, H₂, some NH₃, H₂S, and HCN
 - satisfies conditions 1 and 3
 - early atmosphere was probably pinkishorange!
- As Earth cooled, water vapor condensed in the atmosphere, and torrential rainfalls appeared
 - formed oceans- salt due to erosion of land
 - Iots of iron in the water, oceans were probably brown!

Energy Requirement

- Energy existed in several forms—satisfied condition 2
- solar radiation (much more UV than present —no ozone layer!)
- volcanic activity
- thunderstorms

Time Requirement

Earth estimated to be 4.6 billion years old
 satisfies condition 4

First Organic Molecules

- 1950's- Urey and Miller designed an apparatus which simulated atmospheric conditions of early Earth
 - after zapping "atmosphere" with electricity, amino acids and other organic molecules formed
 - subsequent experiments with different mixtures of gasses have yielded a great variety of organic molecules, including cytosine and uracil
 - Belief is that more complex organic molecules (polymers) may have been formed on rock or clay substrates at the bottom of the ocean

© 2011 Pearson Education, Inc.

Formation of Microspheres

- Experiments with proteinoid microspheres clusters of organic polymers, indicate that groups of polymers organize into tiny spheres
- can divide, store energy, and are selectively permeable
 - hypotheses suggest may have formed living cells 3.8 billion years ago

Evolution of RNA and DNA

- Scientists still aren't sure, but hypothesize that RNA formed first
- RNA has the ability to
 - store information
 - 2) direct protein synthesis
 - 3) catalyze DNA synthesis reactions
- Since DNA is more stable, it may have formed in order to store information more reliably
- Lots of questions left to answer here!

First cells

- Fossil evidence indicate cells arose 3.8 billion years ago
- First cells were prokaryotic anaerobes- do not use oxygen for metabolism
- also heterotrophic, fermenting organic molecules (sugars, amino acids, nucleic acids) as food

First cells

- stromatolites- columns of fossilized prokaryotic cells
 3.5 billion years old
 - Next, some cells evolved the ability to harness sunlight for energy (became autotrophs)
 - produced free oxygen, which reacted with iron in the water to form rust bands
 - turned the water from brown to blue
 - eventually began to collect in the atmosphere
 - formed ozone layer, protecting Earth from UV radiation
 - free oxygen also poisoned many of the first cells, but others were able to adapt and use the oxygen for metabolism (respiration)

Eukaryotic cells

- occurred between 2 and 1.5 billion years ago
- endosymbiont theory- suggests that the first eukaryotic cells arose as a result of symbiosis between primitive eukaryotic cells and the prokaryotic cells within
- prokaryotic cells ingested or invaded by heterotrophic cells, but not destroyed
- some could use oxygen to produce ATP, eventually evolved into mitochondria
- Iater, photosynthetic prokaryotes were ingested, and evolved into chloroplasts
- Evidence:
 - chloroplasts and mitochondria resemble prokaryotic cells
 - contain their own nucleic acids, prokaryotic ribosomes, and can conduct independent protein synthesis

Endosymbiotic Theory Image

Evolution of Sexual Reproduction

- After eukaryotic cells evolved, sexual reproduction evolved
- HUGE step in evolutionary history!
 - sexual reproduction greatly increases variety in individuals
 - without it, you only have mutations to introduce new variants
 - gives natural selection more "raw material" to work on
 - increases the chances a species will survive, as natural variations may be more fit for their changing environments

Evolution of Multicellularity

- Occurred shortly after evolution of sexual reproduction
- Being multicellular was another HUGE advantage!
 - easier to find food, cells working together!
 - easier to avoid predation, you're bigger now!
- Led to rapid adaptive radiation, greater diversity