Name: _____

1. Solving Equations

https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-variablesexpressions/cc-7th-2-step-equations/v/why-we-do-the-same-thing-to-both-sides-two-stepequations

a) $2x - 16 = 8$	b) $2y - 3 + 5y = 9$	c) $7x + 9 = 13x - 27$
d) $-8w + 34 = 5w - 18$	e) $3(5x + 10) = 180$	f) $\frac{1}{2}(9x + 14) = 59$
g) $3^2 + x^2 = 5^2$	h) $x^2 - 14 = 16$	i) $5y^2 + 18 = 63$

2. Proportions and Fractions: Complete the Tables

Fraction	Decimal	Percent
$\frac{4}{5}$		
	1.05	
		8%

Fraction	Decimal	Percent
	0.015	
$1\frac{7}{8}$		
$\frac{2}{3}$		

3. Solve Each Proportion

https://www.khanacademy.org/math/algebra-basics/core-algebra-linear-equationsinequalities/ratios-core-algebra/v/proportions-2-exercise-examples

4. Simplify each of the following expressions

https://www.khanacademy.org/math/algebra-basics/core-algebra-foundations/square-rootsfor-college/v/understanding-square-roots

<u>https://www.khanacademy.org/math/algebra-basics/core-algebra-exponent-expressions/core-algebra-exponent-properties/v/exponent-properties-4</u>

http://www.regentsprep.org/regents/math/algebra/AV3/Smul_bin.htm

https://www.khanacademy.org/math/algebra-basics/core-algebra-expressions/core-algebramanipulating-expressions/v/combining-like-terms-and-the-distributive-property

$-\sqrt{275}$	3√12	$\sqrt{\frac{36}{25}}$
$2\sqrt{12} - 3\sqrt{75}$	$\sqrt{3}(\sqrt{5}+\sqrt{3})$	$(4a^2bc)(-2b^3c^2)$
$4ab(3a^2-7b)$	(x-7)(x+7)	$(x+3)^2$
$\frac{15x^4y^2z^5}{3x^2z^3}$	5(5+m) - 3(m-6)	(6g - 7)(6g + 7)

5. Area & Perimeter

Find the area and perimeter for each shape. Label ALL units properly! (leave answers for circles in terms of π or rounded to the nearest hundredths)

6. Linear Equations

<u>https://www.khanacademy.org/math/algebra-basics/core-algebra-graphing-lines-slope/core-algebra-graphing-slope-intercept/v/graphing-a-line-in-slope-intercept-form</u>

https://www.khanacademy.org/math/algebra-basics/core-algebra-graphing-lines-slope/corealgebra-slope/v/slope-of-a-line

Graph each line

Find the slope of the line through each pair of points and write an equation for the line through them in point-slope form and slope-intercept form.

coordinates	a) A (-5,3) B (1,-1)	b) A (9,6) B (7,6)
slope		
point-slope form $y - y_1 = m(x - x_1)$		
slope-intercept form y = mx + b		

7. Quadratics and Parabolas

<u>https://www.khanacademy.org/math/algebra/quadratics/graphing-quadratic-functions/v/graphing-a-quadratic-function</u>

Graph the parabola $y = x^2 - 2x - 3$

8. Factor each of the following expressions

a) $4x^2y - 10xy^2$	b) $30a^2b - 60ab^2 + 90a^2b^2$
c) $x^2 + 15x + 56$	d) $x^2 - 8x - 9$

Solve each equation

e) $(y-5)(2y+3) = 0$	f) $x^2 - 11x + 10 = 0$

9. Solve each System of Equations

Elimination: <u>https://www.youtube.com/watch?v=K9IG-aCHCSE</u> Substitution: <u>https://www.youtube.com/watch?v=cwHR_B9zK7k</u>

10. Simplify each Expression

<u>http://www.virtualnerd.com/middle-math/number-algebraic-sense/order-operations/simplify-expression-order-operations</u>

a) $5 + (-9) - 8 + (-4)$	b) -76	c) 8 – 29
d) $(-3) + (-4) + (9)$	e) $-6(-4+3)$	f) $23 + 2(-9 - 7)$
g) $(-5)(3)(-1)(-4)$	h) $-6^2 - 4(-3)^2$	i) $7^2 - 8(2 - 9)$

Evaluate each of the following if x = -5, y = 2, and z = -3.

j) $xy - z$	k) $x^2y + z^3$
1) $x(yz - x^2)$	m) $x + y + z - xyz$

11. Simplify each Rational Expression

https://www.youtube.com/watch?v=-YMVu5nFvzc https://www.youtube.com/watch?v=Znm2F09whmY

a) $\frac{3}{4} + \frac{5}{6} - \frac{2}{3}$	b) $2\frac{1}{5} - 4\frac{1}{3}$	c) $\frac{3}{4}(5+1\frac{1}{2})$
d) $\frac{1}{4} * \frac{4}{5}$	e) $\frac{3}{4} \div \frac{5}{6}$	f) $1\frac{2}{3} \div \frac{5}{6}$

Evaluate if $a = \frac{1}{3}$, b = 2.5, and $c = \frac{4}{7}$

g) $a(b+c)$	h) $a - b \div c$	

GEOMETRY REVIEW/PREVIEW (REFERENCE SHEETS)

You should know the following vocabulary from previous math classes. Please review the terms and definitions.

The three undetermined terms in geometry are: point, line and plane. These are also called the "Building Blocks of Geometry" because everything is based on these 3 ideas. We are able to describe them but not able to define them.

Vocabulary Term	Description/Definition	Diagram	Symbol Explanation	Symbol
Point	A <u>point</u> is the basic unit in geometry. It has no size – infinitely small. It represents locations. Use a dot to represent a point.	•	Name a point by using a capital printed letter.	A
Line	A <u>line</u> is a straight arrangement of points – it is made up of an infinite number of points. It extends infinitely in two directions but has no thickness.		Name a line by using 2 points that are on the line and putting above these 2 letters. The letters may be in any order.	AB BA
Line Segment	A <u>line segment</u> consists of 2 points and all the points between them that lie on the line containing them.		Name a line by using 2 points that are on the line and putting above the 2 letters. The letters may be in any order.	PQ QP
Ray	A <u>ray</u> is a part of a line. It contains one endpoint and all of the points on that line to one side of it.		Always name a ray by two points. First name the endpoint, then name the point that it goes through. Put a ray <u>symbol</u> above the letters: Note: the ray symbol always faces to the right, no matter which way the ray is facing.	$\overline{Q}\overline{P}$
Plane	A <u>plane</u> has length and width but no thickness – it is a flat surface that extends indefinitely.	/ · · /	Name a plane by either 3 points that are on the plane or a capital script letter that can be found in the corner of the plane. Note: you may not name a plane with 3 points that are all on the same line.	CDE CED DEC DEC CDCE EDC CEDC plane M M

Angles

Right Angle: measures exactly 90°	Acute Angle: Measures more than 0° and less than 90°	Obtuse Angle: Measures more than 90° and less than 180°	"Straight Angle": Measures 180°
1			Î
L			

Polygons

# of Sides	Name	# of Sides	Name
3	Triangle	7	Septagon
4	Quadrilateral	8	Octagon
5	Pentagon	9	Nonagon
6	Hexagon	10	Decagon

• There are special kinds of triangles. Triangles may be classified by their angle measures.

Triangles may also be classified by their side lengths.

Shape	Formula		
Square	$A = I \times I = I^2$	Parallelogramhb	A = h × b
Rectangle w	A=I×w	Trapezoid h	$ \begin{array}{c} A = 1/2 \times h \times (b_1 + b_2) \end{array} $
Triangle	A=1/2 × b × h	Circle r	$A = \pi \times r^2$ (π = 3.14 or 22/7)