AP CALCULUS BC
“Cheat Sheet”

Differentiation Formulas
. .. d
Important Note: Remember the chain rule whenever you take a derivative! For example, ae” = eldu.

When you look at all these derivatives, remember the chain rule!

1. i(x”):nx”_1 10. i(cscx)z—cscxcotx
dx dx
d 0L o d o\«
2. —(fe)=sg'+egf 1. ——(e")=e
dx dx
3 i(i):u 2. L@y =a*na
dx g g dx
d : : 3. Lnw =1
4 (@) = /(g(x)g'(x) s .
d .
5. ;i(sinx):cosx 14. a(Arcsmx): P
d . d
6. —(cosx)=—sin 15. —(Arctanx) =
dx( *) g dx( retan.x) +x7
7. i(tanx):seczx 16. i(Arccosx)= -l
dx dx 1_x2
d
8. —(cotx)=—csc’x 17. Q:QX du Chain Rule
dx dx dx dx

d
9. —(secx)=secxtanx
dx

Integration Formulas

1. Jadx=ax+C

n+l

2. _[x” dx:x—JrC, n# -1
n+1

3. Jldlen\xHC
X

4. J.ex dx=e"+C

X

5. Ja”dxza—+C
Ina

6. jln xdx=xInx—x+C Note: You can figure this out using uv substitution
7. Jsinxdx =—cosx+C

8. jcosxdx =sinx+C



10.

11.

12.

13.

14.

15.

16.

Note: You can figure out #9 and #10 below using substitution techniques

J-tanx dx = ln\sec x‘ +C or — ln‘cos x‘ +C

Icotx dx = In[sin x|+ C

J-secz xdx=tanx+C

J
J
J
I
f o

secxtanxdx =secx+C
csc’xdx=—cotx+C

cscxcotxdx =—-cscx+C

Arctan(xj+ C
a

= Arcsm[xijC
a —x? a

Formulas and Theorems
Limits and Continuity:

A function ¥ = f(X) is continuous at x = a if

i). f(a) exists

ii). lim  f(x) exists
X —>a

iii). lim = f(a)
X —>a

Otherwise, f'is discontinuous at x = a.

The limit lim f (x) exists if and only if both corresponding one-sided limits exist and are equal —

that is,
lim f(x)=L < 11m 1 f(x)=L= 11m 1 f(x)

X—a

Even and Odd Functions

1. A function y = f(x) isevenif f(—x)= f(x) forevery x in the function’s domain.

Every even function is symmetric about the y-axis.

2. A function y = f(x) is odd if f(—x)=—f(x) forevery x in the function’s domain.

Every odd function is symmetric about the origin.

Intermediate-Value Theorem

A function ) = f(X) that is continuous on a closed interval [a , b] takes on every value

between f(a) and f(D).

Note: If [ is continuous on [a,b] and f(a) and f(b) differ in sign, then the equation

f(x) = 0 has at least one solution in the open interval (a,b).



Limits of Rational Functions as x —> 00

. X
i). lim LACO) = 0 if the degree of f'(x) < the degree of g(x)
x — +o0 8(X)
. x% —2x
Example: llm ——— =0
x>0 x3 43
. )
it). lim is infinite if the degrees of f'(x) > the degree of g(x)
x—>to0
g(x)
. X3 4 2x
Example: lim ———— =0
X —> © x2 -8
S _
1i1). lim is finite if the degree of f'(x) = the degree of g(x)
x—>to0
g(x)
C2x?3x+2 2
Example:  1im 5, YL
X —>0 10x-5x S
Horizontal and Vertical Asymptotes
1. Aline ¥ = b is a horizontal asymptote of the graph ¥ = f(X) if either
lim f(x)=bor Ilim f(x)=b.
X —> o0 X —>— ©
2. Aline X = a is a vertical asymptote of the graph ¥ = f(X) if either
lim f(x)=200 or Ilim =200 .
x—>a’ X—>a
Average and Instantaneous Rate of Change
i). Average Rate of Change: 1If ((0 s yO )and Ql R y1 , are points on the graph of

y = f(x), then the average rate of change of y with respect to x over the interval
SGx) = f(x) _N1= Vo _ Ay

X, — X, x—x, Ax

[XO’xl ] is

ii). Instantaneous Rate of Change: 1If (xo , yo) is a point on the graph of y = f(x), then

the instantaneous rate of change of ) with respectto x at X, is f'(x,).
Definition of Derivative
. x+h) - f(x x)-f(a
f'(x): lim f( ) f( ) or f‘(a)=lim7f( ) f( )
h>0 ke
The latter definition of the derivative is the instantaneous rate of change of f (x) with respect to

X at x=a.
Geometrically, the derivative of a function at a point is the slope of the tangent line to the graph of
the function at that point.



10.

11.

12.

13.

14.

15.

16.

17.

The Number e as a limit (This is cool to know, but not essential)

1"
i). lim [1 + j =e
n — 400 n

1

ii). lim (1+nj” =e
n—>0 1

Rolle’s Theorem (Note: This is simply a special case of the MVT below)

If f is continuous on [a,b] and differentiable on (a,b) such that f(a) = f(b), then there
is at least one number ¢ in the open interval (a, b) such that f'(c)=0.

Mean Value Theorem (MVT)

If f is continuous on [a,b] and differentiable on (a , b), then there is at least one number ¢

f(b)_f(a) =f’(C).
b-a

in (a, b) such that

Extreme-Value Theorem (EVT)
If f is continuous on a closed interval [a,b], then f(x) has both a maximum and minimum

on [a,b].

Intermediate Value Theorem (IVT)

If a continuous function, f, with an interval, [a, b], as its domain, takes values f(a) and f(b) at each
end of the interval, then it also takes any value between f(a) and f(b) at some point within the
interval.

Absolute Mins and Maxs: To find the maximum and minimum values of a function y = f(x),

locate

1. the points where f'(xX) is zero or where f'(x) fails to exist.

2. the end points, if any, on the domain of f(x).

3. Plug those values into f'(x) to see which gives you the max and which gives you this

min values (the x-value is where that value occurs)
Note: These are the only candidates for the value of x where f(Xx) may have a maximum or a
minimum.

Increasing and Decreasing: Let f be differentiable for @ < x < b and continuous for a
as<x<b,

1. If f'(x)>0 forevery x in (a,b), then f is increasing on [a,b].
2. If f'(x)<0 forevery x in (a,b), then f is decreasing on [a,b].
Concavity: Suppose that f"(x) exists on the interval (a,b)

1. If f"(x)>0in (a,b), then f is concave upward in (a,b).

2. If f"(x)<0in (a,b), then f is concave downward in (a,b).

To locate the points of inflection of y = f(x), find the points where f"(x) =0 or where

f"(x) fails to exist. These are the only candidates where f(X) may have a point of inflection.
Then test these points to make sure that [ ”(x) < 0 on one side and f "(x) > () on the other.

If a function is differentiable at point x = @, it is continuous at that point. The converse is false,
in other words, continuity does not imply differentiability.



18. Local Linearity and Linear Approximations
The linear approximation to f'(X) near x = X, is givenby y = f(xo) + f’(xo )(x—x,) for

x sufficiently close to X, .

To estimate the slope of a graph at a point — just draw a tangent line to the graph at that point.
Another way is (by using a graphing calculator) to “zoom in” around the point in question until the
graph “looks” straight. This method almost always works. If we “zoom in” and the graph looks

straight at a point, say (a, f (a )), then the function is locally linear at that point.

The graph of y = ‘x‘ has a sharp corner at x = 0. This corner cannot be smoothed out by

“zooming in” repeatedly. Consequently, the derivative of |x| does not exist at x =0, hence, is not

locally linear at x = 0.

19. Dominance and Comparison of Rates of Change

Logarithm functions grow slower than any power function (X" )

Among power functions, those with higher powers grow faster than those with lower powers.

All power functions grow slower than any exponential function (a", a> 1).

Among exponential functions, those with larger bases grow faster than those with smaller bases.

We say, that as x — oo :

S ()

o . g(x)
1. f(x) grows faster than g(x) if im~——==o0 orif lim =0.
( ) ( ) X% g( X—®© f(X)

If f(x) grows faster than g(x) as x — oo, then g(x) grows slower than f(x) as

X —>00.

X
2. f(x)and g(x) grow at the same rate as x — oo if lim f(( )): L# 0 (L is finite
X—>00 g X
and nonzero).
For example,

. . e
1. e grows faster than x’ as x — oo since lim — =
X—>0 X

4
. . X
2. x* grows faster than Inx as x —» oo since lim—— =0
x> |n X

x? +2x B

3. x*+2x grows at the same rate as x° as x —» oo since lim 1

X—>0 X
To find some of these limits as x — <o, you may use the graphing calculator. Make sure that an
appropriate viewing window is used.



20.

21.

22.

23.

L’Hoépital’s Rule

JS(x) 0 o J'(x)

If lim is of the form — or —,andif lim =
x—a8&X) 0 0 x—>agx)

TRACI BN A €))

x —> a &) x—)ag’(x).

exists, then

Inverse function
1. If f and g are two functions such that f(g(x)) = x for every x in the domain of

g and g(f(x))=x forevery x inthe domain of f, then f and g are inverse
functions of each other.

2. A function f has an inverse if and only if no horizontal line intersects its graph more
than once.
If f is strictly either increasing or decreasing in an interval, then f  has an inverse.

4. If f is differentiable at every point on an interval 1 ,and f'(x)# 0 on I, then
g=f - (x) is differentiable at every point of the interior of the interval f(/) and if
the point (a,b) is on f(x), then the point (b,a)is on g = f ' (x); furthermore

1

‘O 7@

Properties of y = e

1. The exponential function ) = e is the inverse function of y=Inx.
The domain is the set of all real numbers, —o0 < x < 0.
3. The range is the set of all positive numbers, y > 0.
d d
4. —(e*)=e"and — (ef(x))z f'(x)ef(x)
dx dx
s RN 2
6. y= e’ is continuous, increasing, and concave up for all x.
7. lim e’ =40 and lim e’ =0.
X —> 400 xX——
8. elnxzx,forx>0;ln(ex)=xforall X.

Properties of ¥ =Inx
1. The domain of y = Inx is the set of all positive numbers, x > 0.

The range of ¥ = Inx is the set of all real numbers, —00 < y < .

2
3. y =Inx is continuous and increasing everywhere on its domain.
4

In(ah)=1Ina +1Inb.

5. ln(aJ =lna—-Inb.
b

6. Ina” =rina.
7. y=lnx<0if0<x<l1.



24.

8. lim Inx=+4+00 and lim Inx=- o

X =+ x>0t

d S'(x) 4 1
10. E(ln f(x))= 0 and 5(1n(x))_;

Know Left-hand, right-hand, and midpoint Riemann Sums AND how to use trapezoids to

approximate signed area under a curve.

25.

26.

Definition of Definite Integral as the Limit of a Sum

Suppose that a function f'(x) is continuous on the closed interval [a ,b]. Divide the interval into

n equal subintervals, of length Ax = . Choose one number in each subinterval, in other

n
words, xl in the first, x2 in the second, ..., xk inthe k th,..., and xn in the 77 th. Then

b
n
lim > f(x, )Ax= [ o) dx=F®b)-F(a).
n—>ok=1 a

Properties of the Definite Integral

Let f(x) and g(x) be continuous on [a,b].
b

b
). [e-f(x)dx=c[f(x)dx forany constant c.
a

a
a
ii). jf(x) dx=0
a
b

iii). j f(x) dx = —]1 f(x) dx
a b

b c b

iv). J. f(x)dx = I f(x)dx + J. f(x)dx, where f is continuous on an interval
a a c
containing the numbers a, b, and c.

a
v). If f(x) is an odd function, then I f(x)dx=0
—a

a a
vi). If f(x) is an even function, then J. f(x)dx=2 J. f(x)dx

b
vii). If £(x)2 0 on [a,b], then jf(x) dx > 0
a



b b
viii). If g(x)> f(x) on [a,b], then _[g(x) dx > If(x) dx
a a

27. Fundamental Theorem of Calculus:

b b
j f(x)dx = F(b)— F(a), where F'(x) = f(x), or j j F(x)dx = f(x).
a Xa

28. Second Fundamental Theorem of Calculus:
4% d
—[f@dt=fc) o — j f(©) dt=g'(x)f(g(x)-h'(x)f (h(x))
dx 3 dx hx)
29. Velocity, Speed, and Acceleration

1. The velocity of an object tells how fast it is going and in which direction. Velocity is an
instantaneous rate of change. If velocity is positive (graphically above the “x”-axis), then the
object is moving away from its point of origin. If velocity is negative (graphically below the
“x”-axis), then the object is moving back towards its point of origin. If velocity is 0
(graphically the point(s) where it hits the “x”-axis), then the object is not moving at that time.

2. The speed of an object is the absolute value of the velocity,

v(t)‘ . Tt tells how fast it is going

disregarding its direction.

The speed of a particle increases (speeds up) when the velocity and acceleration have the same
signs. The speed decreases (slows down) when the velocity and acceleration have opposite
signs.

3. The acceleration is the instantaneous rate of change of velocity — it is the derivative of the
velocity — that is, a(t)=v'(t). Negative acceleration (deceleration) means that the velocity is
decreasing (i.e. the velocity graph would be going down at that time), and vice-versa for
acceleration increasing. The acceleration gives the rate at which the velocity is changing.

Therefore, if x is the displacement of a moving object and t is time, then:
. . d
i) velocity = v(t)=x"(t)= di)t(

dv d*x

i) acceleration = a(t)=x"(t)=v'(t)= e

iif) v(t)=[a(t)dt
iv) x(t): Iv(t)dt

Note: The average velocity of a particle over the time interval from t; to another time t, is
Change in position S(t)—s(to)

Average Velocity = -
Length of time t—t,

, where s(t) is the position of the particle

1

—-d

b
at time t or Jv (l‘ )dt if given the velocity function.



30.

31.

32.

. b
[reoax.

The average value of f(X) on [a,b] is
b-a g

Area Between Curves
If f and g are continuous functions such that f(x) > g(x) on [a,b], then area between the

b b d
curves is j[f(x) — g(x)]dx or I[top - bottom] dx or I[right —leftldy .
a a 4

Integration using “U-substitution”

Step one: Be sure this new idea applies, i.e. check to see whether the expression looks as though it could
have arisen from a chain rule being applied.

Step two: Off to the side of the original integration problem, write down what you are going to make u
equal to. Often this may be the part of the expression that has the weird exponent.

Step three: Take the derivative of the “u-equals” equation with respect to x

Step four: Look at what you have as u- equals and its derivative and the original expression you were trying
to integrate...those pieces should work in a way that now changes all the variables in the original to either a
u or a du. Now it should be something you can integrate! For definite integrals, be sure to change your
limits if integration to correspond with your new function in terms of u.

33.

Integration By “Parts”
If u=f(x) and v=g(x) and if f'(x) and g'(x) are continuous, then

judxzuv—jvdu.

Note: The goal of the procedure is to choose # and dv so that J.V du is easier to solve

than the original problem.

Suggestion:
When “choosing” #, remember L.I.LA.T.E, where L is the logarithmic function, I is an

inverse trigonometric function, A is an algebraic function, T is a trigonometric function, and E is
the exponential function. Just choose u as the first expression in L.I.A.T.E (and dv will be the

remaining part of the integrand). For example, when integrating Ix Inx dx , choose u = In x
since L comes first in L.ILA.T.E, and dv = x dx. When integrating fxex dx , choose u = x,

since X is an algebraic function, and A comes before E in L.LA.T.E, and dv = eXdx . One
more example, when integrating J. x Arctan(x) dx , let u = Arctan(x), since I comes before
Ain L.LA.T.E, and dv = x dx.



34. Integration using partial fraction decomposition
When integrating a rational function, first see if U-sub works or, if not, determine whether it’s in
the form of an inverse trig integral. If neither of these work, you may re-write the function as a
sum of fractions. Important: Be sure to first do polynomial long division if possible. See the
example below:
z+11

dz+ll 4 1

2—2—-6 -3 =24

f 3z+11 4 1
,/xz—x—tidx f:r.—s _:r+2dz

=4In|z - 3| — Injz + 2| e

n:al

then the integral is actually quite simple.,

35. Improper Integral
b

J. f(x) dx is an improper integral if

f becomes infinite at one or more points of the interval of integration, or

a
1.
2. one or both of the limits of integration is infinite, or
3. both (1) and (2) hold.

36. Volume of Solids of Revolution (rectangles drawn perpendicular to the axis of revolution)
e Revolving around a horizontal line (y=# or x-axis) where a < x < b :

Axis of Revolution below the region being revolved:

b
V=n J(top function — a.r.)2 - (bottom function — a.r.)2 dx

Axis of Revolution above the region being revolved:
b

V=mn I(bottom function — a.r.)2 - (top function — a.r.)2 dx

e Revolving around a vertical line (x=# or y-axis) where ¢ < y< d :

Axis of Revolution is left of the region being revolved:
d

V=n I(right function — a.r.)2 — (left function — a.r.)2 dy

Axis of Revolution is right of the region being revolved:

d
V=n I(left function — a.r.)z - (right function — a.r.)2 dy

37. Volume of Solids with Known Cross Sections

b

1. For cross sections of area A(X), taken perpendicular to the x-axis, volume = jA(x) dx .
a

Cross-sections {if only one function is used then just use that function, if it is between two functions use

top-bottom} mostly all the same only varying by a constant, with the only exception being the rectangular
cross-sections:



Note: You don’t need to memorize these; just think about how you’d find the area of each cross-section and

g0 from there...but here are some common ones.

38.

e Square cross-sections:
b
. R
V= I(top function —bottom functzon) dx
e Isosceles Right Triangle cross-sections (leg in the xy plane):
17 . .
V= 5 J. (top function —bottom functton) dx
a
e Semi-circular cross-sections:
T f . . 2
V= S J. (top function —bottom functton) dx
a

e Rectangular cross-sections (height function or value must be given or articulated
somehow — notice no “square” on the {top — bottom} part):

b
V= J.(top function —bottom function)y(height function / value)dx

b
2. For cross sections of area  A()), taken perpendicular to the y-axis, volume = IA( y)dy.
a

Solving Differential Equations: Graphically and Numerically
Slope Fields

At every point (x, y) a differential equation of the form j—y = f(x, y) gives the slope of the
X

member of the family of solutions that contains that point. A slope field is a graphical
representation of this family of curves. At each point in the plane, a short segment is drawn whose
slope is equal to the value of the derivative at that point. These segments are tangent to the
solution’s graph at the point.

The slope field allows you to sketch the graph of the solution curve even though you do not have
its equation. This is done by starting at any point (usually the point given by the initial condition),
and moving from one point to the next in the direction indicated by the segments of the slope field.

Know how to solve separable differential equations.

Know how to use the given differential equation and its derivative (i.e. the 2" derivative) to describe the
slope and concavity of a function or determine whether a point is a max or min.

Euler’s Method

Euler’s Method is a way of approximating points on the solution of a differential equation

d . . o .
d—y =f (x, y). The calculation uses the tangent line approximation to move from one point to the
X

next. That is, starting with the given point (x,, y, ) — the initial condition, the point
(x, +Ax, y, + £'(x,, y, )Ax ) approximates a nearby point on the solution graph. This

aproximation may then be used as the starting point to calculate a third point and so on. The
accuracy of the method decreases with large values of Ax. The error increases as each successive
point is used to find the next. Calculator programs are available for doing this calculation.



Logistics
1. Rate is jointly proportional to its size and the difference between a fixed positive number (L)
and its size.

i—i/ = ky(l —%j OR % =ky (M — y)which yields

y =—————— through separation of variables
1+Ce™

2. limy=L; L= carrying capacity (Maximum); horizontal asymptote

t—o
3. y-coordinate of inflection point is E , 1.e. when it is growing the fastest (or max rate).

39. Definition of Arc Length
If the function given by ¥ = f(X) represents a smooth curve on the interval [a, b], then the arc

b
length of f* between aand b is given by s = J\ll + [f’(x) dx .
a

40. Parametric Form of the Derivative
If a smooth curve C is given by the parametric equations x = f(x) and y = g(¢), then the

slope of the curve C at (x, ) is @ = dl - @’ dx
dx dt dt dt

2
Note: The second derivative, "y = d[dy} = d[dy} + @ .
A2 dxldx] dt|ldc| dt




41.

42.

Arc Length in Parametric Form
If a smooth curve C is given by x = f(t) and y = g(¢) and these functions have continuous

first derivatives with respect to ¢ for @ < ¢ < b, and if the point P(x, ) traces the curve

exactly once as ¢ moves from # = a to ¢ = b, then the length of the curve is given by

; :i (2’;]2 +(dy)2dt - iJ[f'(r)]z g Par.

dt

speed = \/[f'(t)]2 + [g'(t)]z

Polar Coordinates

1. Cartesian vs. Polar Coordinates. The polar coordinates (7,0 ) are related to the Cartesian

coordinates (x, V) as follows:

x=rcosf and y=rsinO

tan® =2 and x2 +y2 =2
X

2. To find the points of intersection of two polar curves, find (7,0 ) satisfying the first equation
for which some points (7,0 +2nm) or (7,0 +7 + 2nm) satisfy the second equation.

Check separately to see if the origin lies on both curves, i.e. if 7 can be 0. Sketch the curves.
3. Areain Polar Coordinates: If f is continuous and nonnegative on the interval E}, B ], then

the area of the region bounded by the graph of 7 = f(0 ) between the radial lines 0 =«
and 0 = is given by

p p
_1 _1y,2
A_zi[f(e)]zde_zir a9

4. Derivative of Polar function: Given 1= f (9), to find the derivative, use parametric

equations.

x=rcos®=f(0)cos® and y=rsinO=/(0)sin6.

dy d%@ _ f(8)cosb+ f'(0)sinb

Then —

e dxg o~/ (8)sin0+f'(6)cosH

B 2
5.  Arc Length in Polar Form: s = J. I‘2 + (g) do
4 do



43.

Sequences and Series

1. Ifasequence {a n }has alimit L, that s, nh—r)noo ay = L, then the sequence is said to

converge to L. If there is no limit, the series diverges. If the sequence {a n } converges,

then its limit is unique. Keep in mind that

l n
. Inn . . X
lim —=0; lim x™ =1; lim ¥n=1; lim = =0. These limits
n—o 5 n—>00 n—»00 n—o |
are useful and arise frequently.
00 o0 a
2. The harmonic series Z — diverges; the geometric series Z ar” converges to
n=l " n=0 1-r
if ‘r‘ <1 and diverges if ‘r‘ >land a# 0.
0
, 1 . , ,
3. The p-series Z —p converges if p>1 and divergesif p<1.
n=l N
00 0
4. Limit Comparison Test: Let Z ay and z bn be a series of nonnegative terms, with
n=l n=l

. b
ap # O for all sufficiently large 7, and suppose that lim M — ¢>0. Then the two
n—»o0 an

series either both converge or both diverge.

00
5. Alternating Series: Let Z ay be a series such that
n=l1
i) the series is alternating
ii) ‘anH <|ay, | forall n,and
iii lim a, =0
) n—oo N

Then the series converges.

Alternating Series Remainder: The remainder RN is less than (or equal to) the first

neglected term

‘RN‘ < aN+1

6. The n-th Term Test for Divergence: If lima_ # 0, then the series diverges.

n—ow

Note that the converse is false, that is, if lima_ =0, the series may or may not converge.
n—owo




7. A series Zan is absolutely convergent if the series Z‘an‘ converges. If Zan

converges, but Z ‘a n ‘ does not converge, then the series is conditionally convergent. Keep

) 0
in mind that if Z |a n | converges, then Z ay converges.
n=l| n=l1

00
8. Comparison Test: If 0 < ay < bn for all sufficiently large n, and an converges,
n=l

o0 00 00
then Zan converges. If ZCI,,, diverges, then an diverges.
n=1 n=1 n=1

9. Integral Test: If f(x) is a positive, continuous, and decreasing function on [l,oo) and let

00 o0
a; = f(n). Then the series Zan will converge if the improper integral j f(x)dx
n=l 1
o0 00
converges. If the improper integral J f(x) dx diverges, then the infinite series Za n
1 n=l

diverges.

10. Ratio Test: Let z ay be a series with nonzero terms.

a
i) If lim “ntll , then the series converges absolutely.
n
a
ii) i lim [ > 1, then the series is divergent.
n—>x 4
n
“p+l

iii) If lim =1, then the test is inconclusive (and another test

must be used).

11. Power Series: A power series is a series of the form
0
n_ 2 n
Zocnx =co T epX X Fatopx £ or

o0
ch(x—a)n =< +cl()c—a)+c2(x—a)2 +...+cn(x—a)n + ... in which the
n=0

center a and the coefficients CO R Cl R CZ 5-++Cpp 5.-. are constants. The set of all numbers x

for which the power series converges is called the interval of convergence.




12. Taylor Series: Let f* be a function with derivatives of all orders throughout some intervale

containing @ as an interior point. Then the Taylor series generated by f at a is

Z f(k) (a) f"( ) f(”)'(a)

The remaining terms after the term containing the nth derivative can be expressed as a
remainder to Taylor’s Theorem:

L (n) " 17 n (n+l)
f(x)=f(a)+21:f (@)(x=a)" + Ry (x) where Ry(x) = [(x=0)" £ ()
a

2 (x- a) = f(a)+ f'(a)(x—a)+——(x— a) (x—a)" +...

"V a-a !
(n+1)!

Lagrange’s form of the remainder: | f(x)— P (x) I=| Ryx |=

,where a <c < x.
The series will converge for all values of x for which the remainder approaches zero as
X —> .

Alternating Series Remainder: To find the maximum error between a partial sum and the
actual sum of a convergent alternating series, simply look at the first term that was left out. In
other words, if you’re finding the partial sum of the first 15 terms, then the maximum error is
equal to the 16 term.

13. Frequently Used Series and their Interval of Convergence
Note: DO memorize these!! It will save time!

1 2 n & n
1—:1+x+x fot+xt+. = Zx <1
— X .
n o0 n
P I S ZX— x| < oo
2! n! =0
3 5 2n+l1 0 n_2n+l
-1
sinx=x-* 4 gt Xy oy EXT
31 2n+1)! = @2n+l)
2 4 2n 0 2n
-1
cosle—x—+x——...+(—1)nx—+...: Z & x| <
=0

2 4 (2n)!



O NN kWD =

—_
— O

_.
N

sin?0 +cos’0 =1

13.
1+tan’0 =sec’O
1+cot’® =csc’0 14,
sin(-0) = —sinH
cos(—0) = cosO s,
tan(—0) = —tan0
sin(A + B) =sin Acos B +sin Bcos A 16
sin(A — B) =sin Acos B —sin Bcos 4
cos(A+ B) =cos Acos B —sin Asin B 17

Trigonometric Formulas

cos(4— B) =cos Acos B +sin Asin B

. sin20 = 2sin0O cosO

sin©® 1
tan0 = =
cosO cotBO
cotd = 0956 = !
sin@ tan0
secO =
cos0O
1
. csch =—
sin0®

. cos’0 :;(l+00526)

) 1
c0s20 = cos’0 —sin?0 = 2c0s20 —1=1— 23N’ 0 =5(1_C0529)

Note: Trig identities are useful for your future but not necessary on the AP
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