ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

SCIENCE

AP PHYSICS I: ALGEBRA BASED

Board of Education

Mr. Vito Gallucio, President Mr. Christopher Emigholz, Vice President

Ms. Jane Luciano

Ms. Lisa Temple

Mr. Richard Young

Mr. Scott Veisz

Ms. Maxine Fox

Ms. Tanya Lehmann

Mr. Jai Gulati

Mr. Brian Betze, Superintendent

Dr. Kimberly Tew, Assistant Superintendent

Curriculum Writing Committee Anupama Benegal

Supervisors Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE:

Course Philosophy

The goal of the course is to help students develop a deep understanding of the foundational principles that shape classical mechanics. By confronting complex physical situations or scenarios, the course is designed to enable students to develop the ability to reason about physical phenomena using important scientific practices, such as explaining relationships, applying and justifying the use of mathematical routines, designing experiments, analyzing data, and making connections across multiple topics within the course.

Course Description

AP Physics I is an algebra-based, introductory college-level physics course. It is the first course in our AP Physics program, and is a prerequisite for AP Physics II. The prerequisite for this course is Algebra II and the corequisite is Geometry. The course is founded on the six big ideas, and these allow students to create meaningful connections among concepts. They are often abstract concepts or themes that become threads that run throughout the course. Revisiting the big ideas and applying them in a variety of contexts allows students to develop deeper conceptual understanding. The big ideas are:

- 1. Systems Objects and systems have properties such as mass and charge. Systems may have internal structure.
- 2. Fields Fields existing in space can be used to explain interactions.
- 3. Force Interactions The interactions of an object with other objects can be described by forces.
- 4. Change Interactions between systems can result in changes in those systems.
- 5. Conservation Changes that occur as a result of interactions are constrained by conservation laws.

Core and Supplemental Instructional Materials

Core Materials	Supplemental Materials		
 AP Physics I: Algebra-Based Course and Exam Description AP Classroom (College Board) PSI Curriculum (NJCTL) College Physics (online text) by OpenStax 	 nTIPERS (Newtonian Tasks Inspired by Physics Education Research) Phet.Colorado.edu Simulation Labs The Physics Classroom Flipping Physics 		

Social Emotional Learning Connections

Below are the five core SEL Competencies as outlined by CASEL, and examples of how each may be addressed within this curriculum

Self-awareness: The ability to accurately recognize one's emotions and thoughts and their influence on behavior. This includes accurately assessing one's strengths and limitations and possessing a well-grounded sense of confidence and optimism.

Example 1: Students assess their own strengths and abilities to determine how best to prepare for exams.

Example 2: Students recognize that there is a learning curve, and that success requires hard work and perseverance.

Self-management: The ability to regulate one's emotions, thoughts, and behaviors effectively in different situations. This includes managing stress, controlling impulses, motivating oneself, and setting and working toward achieving personal and academic goals.

Example 1: Students will learn to manage their stress during high stakes assessments such as unit tests.

Example 2: By implementation of skills learned during PEI, students will learn to motivate themselves and control their impulses.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students from different backgrounds and cultures learn to work collaboratively on labs and projects to benefit the whole group.

Example 2: Students recognize the problems faced by people from third world countries, and recognize the power of scientific thinking in solving many of these problems.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1: Students work in collaboration with other students, offering and accepting constructive criticism, and providing support when needed.

Example 2: Students from different backgrounds and cultures work together on projects that could someday benefit mankind.

Responsible decision-making: The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of self and others.

Example 1: Students are careful never to submit another person's work as their own.

Example 2: While collaborating on a group project, each student contributes equally to the work.

Integration of 21st Century Themes and Skills

NJSLS-CLKS 9.4: Life Literacies and Key Skills				
Creativity and Innovation	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 4, 5			
	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
Critical Thinking and Problem Solving	Can be found in unit: 1 - 7			
Digital Citizenship	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: n/a			
Global and Cultural Awareness	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 4			
Information and Media Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 5			
Technology Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 1-7			

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist . . . using technologies that haven't been invented . . . in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Career Awareness and Planning Standards 9.2				
• 9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.	Example: Students decide to take the AP Physics I Exam based on their performance in this course, and on whether they will earn college credit.			
• 9.2.12.CAP.2: Develop college and career readiness skills by participating in opportunities such as structured learning experiences, apprenticeships, and dual enrollment programs.	Example: A student who is successful in AP Physics I returns as a Teaching Assistant, working alongside the teacher in running laboratory activities and providing support to students.			

Robbinsville Public Schools Scope, Sequence, Pacing and Assessment

AP Physics I: Algebra Based

Unit Title	Unit Understandings and Goals	Recommended Duration/ Pacing	Assessments
Kinematics	 All forces share certain common characteristics when considered by observers in inertial reference frames. The acceleration of the center of mass of a system is related to the net force exerted on the system, where α = ΣF/m. 	9-10 blocks	Formative · Quizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs Summative · Kinematics Unit Test Common Benchmark Assessments (mid/end of course) · AP Physics I Exam, Final Exam
			Alternative Assessments (projects, etc when appropriate) Projectile Motion Lab with report in CER format
Dynamics	 The internal structure of a system determines many properties of the system. A gravitational field is caused by an object with mass. At the macroscopic level, forces can be categorized as either long-range (action-at a-distance) forces or contact forces. Objects and systems have properties of 	10-11 blocks	Formative · Quizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs Summative · Dynamics Unit Test Common Benchmark Assessments (mid/end of course) · AP Physics I Exam, Final Exam
	inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles. • All forces share certain common characteristics when considered by observers in inertial reference frames.		Alternative Assessments (projects, etc when appropriate) Labs with reports in CER format: Finding an experimental value for g, Fan Cart Lab, Hooke's Law Lab.

	 Classically, the acceleration of an object interacting with other objects can be predicted by using a = ΣF/m. The acceleration of the center of mass of a system is related to the net force exerted on the system, where a = ΣF/m. 		
Uniform Circular Motion/Universal Gravitation	 A field associates a value of some physical quantity with every point in space. Field models are useful for describing interactions that occur at a distance (long-range forces), as well as a variety of other physical phenomena. Certain types of forces are considered fundamental. At the macroscopic level, forces can be categorized as either long-range (action-at a-distance) forces or contact forces. A gravitational field is caused by an object with mass. Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles. 	4-5 blocks	Formative Ouizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs Summative Circular Motion/Universal Gravitation Unit Test Common Benchmark Assessments (mid/end of course) AP Physics I Exam, Final Exam Alternative Assessments (projects, etc when appropriate) Lab: Determine an experimental value for 'g' using the provided apparatus. Lab report submitted in CER format.
Energy	 Certain quantities are conserved, in the sense that the changes of those quantities in a given system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems. A force exerted on an object can change the kinetic energy of the object. Interactions with other objects or systems can change the total energy of a system. The energy of a system is conserved. 	10-11 blocks	Formative · Quizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs Summative · Energy Unit Test Common Benchmark Assessments (mid/end of course) · AP Physics I Exam, Final Exam Alternative Assessments (projects, etc when appropriate) · Energy Escape room · Lab with CER: Determining the coefficient of friction between a block and a ramp
Momentum	 A force exerted on an object can change the momentum of the object. Interactions with other objects or systems can change the total linear momentum of a system. 	7-8 blocks	Formative · Quizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs

	 Certain quantities are conserved, in the sense that the changes of those quantities in a given system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems. The linear momentum of a system is conserved. 		Summative • Momentum Unit Test Common Benchmark Assessments (mid/end of course) • AP Physics I Exam, Final Exam Alternative Assessments (projects, etc when appropriate) • Accident Reconstruction Project • Airbag Effectiveness Analysis
Simple Harmonic Motion	 Classically, the acceleration of an object interacting with other objects can be predicted by using a = ΣF/m. The energy of a system is conserved. 	2-3 blocks	Formative · Quizzes, AP Classroom Progress Checks (Multiple Choice and Free-Response Problem Sets), AP Physics I Workbook assignments, Inquiry-Based Labs Summative · Simple Harmonic Motion Unit Test Common Benchmark Assessments (mid/end of course) · AP Physics I Exam, Final Exam Alternative Assessments (projects, etc when appropriate) · Pendulum Lab with lab report in CER format
Rotational Motion	 All forces share certain common characteristics when considered by observers in inertial reference frames. A force exerted on an object can cause a torque on that object. A net torque exerted on a system by other objects or systems will change the angular momentum of the system. The angular momentum of a system is conserved. 	8-9 blocks	Formative

Unit 1: Kinematics

s:

- All forces share certain common characteristics when considered by observers in inertial reference frames.
- The acceleration of the center of mass of a system is related to the net force exerted on the system, where $a = \frac{\Sigma F}{m}$.

Essential Questions:

- How and why are vectors used to analyze motion?
- What is the difference between speed and velocity? Why is this difference important?
- What are the relationships between position, velocity, and acceleration?
- How can position, velocity, and acceleration in one and two dimensions be described quantitatively, qualitatively, and graphically?

Interdisciplinary Connections

High School Mathematics (NJSLS Geometry: Similarity, Right Triangles, and Trigonometry G-SRT-C. Define trigonometric ratios and solve problems involving right triangles.

Example: Students use trigonometry to resolve velocity vectors into their vertical and horizontal components in order to solve problems involving projectiles.

ELA 11-12: NJSLSA.R7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. Example: Students translate between graphs, equations, and verbal claims when describing the motion of an object.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 1.1:	How and why are	Express the motion of an object using narrative,	Solve problems specifically by first	AP Physics I	Multiple Choice
Position,	vectors used to	mathematical, and graphical representations.	writing out all variables present,	Workbook (College	Questions on Google
Velocity and	analyze motion?		determining the appropriate equation	Board)	forms
Acceleration		Design an experimental investigation of the	to use, solving the equation for the		
	What is the difference	motion of an object.	variable needed, inserting numbers	Presentation Slides	Ranking Tasks
Science	between speed,		into the equation, and finally		(nTIPERS)
Practice: 1.5,	velocity, and why is	Analyze experimental data describing the	performing calculations with a	Flipping Physics	
2.1, 2.2, 4.2,	this difference	motion of an object and be able to express the	scientific calculator.		AP Physics I workbook
5.1	important?	results of the analysis using narrative,		nTIPERS	assignments
	_	mathematical, and graphical representations.	Apply the qualitative definition of		
NJSLS:	What are the		acceleration (speeding up, or slowing		Lab Reports
This unit	components of		down, and/or changing direction) to		
provides the	projectile motion?		determine if an object is accelerating.		Self-scored
background					Free-Response
and skills			Determine velocity by taking the slope		Questions on AP
required for			of a position-time graph, and		Classroom

the following units 9.4.12.CT.2. How do we mathematically pre projectile's path? How do we use the kinematic equation predict a projectile path?	s to	determine acceleration from the slope of a velocity-time graph, as well as the displacement by calculating the area under the curve. Correlate negative and positive slopes with positive and negative velocities and accelerations.		
Topic 1.2: Representations of Motion Science Practice: 1.2, 1.4, 2.2, 2.3, 6.4 NJSLS: This unit provides the background and skills required for the following units. 9.4.12.CT.2 9.4.12.TL.2 What are the relationships betwer position, velocity and acceleration? How can position, velocity and acceleration? How can position, velocity and acceleration? velocity and acceleration? How can position, velocity and acceleration? velocity and acceleration? yelocity and acceleration? How can position, velocity and acceleration?	motion of the system qualitatively and semi-quantitatively. Make predictions about the motion of a system based on the fact that acceleration is equal to the change in velocity per unit time,	Design an experiment and analyze data describing the motion of an object. Graph the motion of a projectile along the horizontal axis and the vertical axis. Generate a position time graph of an object in motion, and then convert it to velocity-time and acceleration-time graphs. Describe the motion of an object from its position-time graph	AP Physics I Workbook (College Board) Presentation Slides Flipping Physics nTIPERS AP Classroom	Kinematics Unit Test Progress Check MCQs and FRQs on AP Classroom Ranking Tasks from nTIPERS

Unit 2: Dynamics

Enduring Understandings:

- The internal structure of a system determines many properties of the system.
- A gravitational field is caused by an object with mass.
- At the macroscopic level, forces can be categorized as either long-range (action-at a-distance) forces or contact forces.
- Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles.
- All forces share certain common characteristics when considered by observers in inertial reference frames.
- Classically, the acceleration of an object interacting with other objects can be predicted by using $a = \frac{\Sigma F}{m}$.
- The acceleration of the center of mass of a system is related to the net force exerted on the system, where $a = \frac{\Sigma F}{m}$.

Essential Questions:

- How can the properties of internal and gravitational mass be experimentally verified to be the same?
- How do you decide what to believe about scientific claims?
- How does something we cannot see determine how an object behaves?
- How do objects with mass respond when placed in a gravitational field?
- Why is the acceleration due to gravity constant on Earth's surface?
- Are different kinds of forces really different?
- How can Newton's laws of motion be used to predict the behavior of objects?
- Why does the same push change the motion of a shopping cart more than the motion of a car?

Interdisciplinary Connections

High School Mathematics NJSLS Standards for Mathematical Practice: Make sense of problems and persevere in solving them.

Example: Students will analyze givens, constraints, relationships, and goals while solving complex problems using Newton's Second Law.

ELA 11-12: NJSLSA.W1. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.

Example: Students will use valid reasoning and evidence while conducting laboratory investigations and writing lab reports.

-	Topical Questions pecific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 2.1:	How do you decide	Create representations and models of natural or	Model verbally or visually the	AP Physics I	Multiple Choice
Systems	what to believe about	man-made phenomena and systems in the	properties of a system based on its	Workbook (College	Questions on Google
	scientific claims?	domain.	substructure and relate this to changes	Board)	forms
SP 1.1, 1.7			in the system properties over time as		
	How does something	Connect phenomena and models across spatial	external variables are changed.	Presentation Slides	Ranking Tasks
	we cannot see	and temporal scales.			(nTIPERS)
NJSLS:	determine how an			Flipping Physics	
HS-PS2-1	object behaves?				AP Physics I workbook
9.4.12.CT.2				nTIPERS	assignments
9.4.12.TL.2					_

					Lab Reports
					Self-scored Free-Response Questions on AP Classroom
Topic 2.2: The Gravitational Field Science	How can the properties of internal and gravitational mass be experimentally verified to be the same?	The student can apply mathematical routines to quantities that describe natural phenomena. The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings	Apply F=mg to calculate the gravitational force on an object with mass m in a gravitational field of strength g in the context of the effects of a net force on objects and systems.	AP Physics I Workbook (College Board) Presentation Slides	Multiple Choice Questions on Google forms Ranking Tasks (nTIPERS)
Practice: 2.2, 7.2 NJSLS: HS-PS2-1	How do objects with mass respond when placed in a gravitational field?	and/or big ideas.		NJCTL Practice Problem Set	AP Physics I workbook assignments Lab Reports
HS-PS2-4 9.4.12.CT.2 9.4.12.TL.2	Why is the acceleration due to gravity constant on Earth's surface?				Self-scored Free-Response Questions on AP Classroom
Topic 2.3: Contact Forces	Are different kinds of forces really different? How can Newton's laws	The student can justify claims with evidence. The student can construct explanations of phenomena based on evidence produced	Students can make claims about various contact forces (e.g. friction) between objects based on the microscopic cause of these forces.	AP Physics I Workbook (College Board)	Multiple Choice Questions on Google forms
Science Practice: 6.1, 6.2	of motion be used to predict the behavior of objects?	through scientific practices.	Students will explain contact forces (tension, friction, normal, buoyant, spring) as arising from interatomic	Presentation Slides nTIPERS	Ranking Tasks (nTIPERS) AP Physics I workbook
NJSLS: HS-PS2-1 HS-PS2-6 9.4.12.CT.2	Why does the same push change the motion of a shopping cart more than the motion of a		electric forces and that they therefore have certain directions.		assignments Lab Reports Self-scored
9.4.12.TL.2	car?				Free-Response Questions on AP Classroom
Topic 2.4: Newton's First Law Science Practice: 4.2	How can Newton's laws of motion be used to predict the behavior of objects?	The student can design a plan for collecting data to answer a particular scientific question.	Design an experiment for collecting data to determine the relationship between the net force exerted on an object, its inertial mass, and its acceleration.	PASCO carts and frictionless tracks, hooked masses, frictionless pulley	Multiple Choice Questions on Google forms Ranking Tasks (nTIPERS)

NJSLS: HS-PS2-1 9.4.12.CT.2 9.4.12.TL.2			Design a plan for collecting data to measure gravitational mass and inertial mass and to distinguish between the two experiments.	AP Physics I Workbook (College Board) Presentation Slides	AP Physics I workbook assignments Lab Reports
				nTIPERS Flipping Physics	Self-scored Free-Response Questions on AP Classroom
Topic 2.5: Newton's Third Law and Free-Body Diagrams Science Practice: 1.1, 1.4, 6.1, 6.2, 6.4, 7.2 NJSLS: HS-PS2-1 9.4.12.CT.2 9.4.12.TL.2	How can Newton's laws of motion be used to predict the behavior of objects?	The student can create representations and models of natural or man-made phenomena and systems in the domain. The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can justify claims with evidence. The student can construct explanations of phenomena based on evidence produced through scientific practices. The student can make claims and predictions about natural phenomena based on scientific theories and models. The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.	Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Analyze a scenario and make claims (develop arguments, justify assertions) about the forces exerted on an object by other objects for different types of forces or components of forces. Challenge a claim that an object can exert a force on itself. Describe a force as an interaction between two objects, and identify both objects for any force. Construct explanations of physical situations involving the interaction of bodies using Newton's third law and the representation of action-reaction pairs of forces. Use Newton's third law to make claims and predictions about the	AP Physics I Workbook (College Board) Presentation Slides Flipping Physics nTIPERS	Multiple Choice Questions on Google forms Ranking Tasks (nTIPERS) AP Physics I workbook assignments Lab Reports Self-scored Free-Response Questions on AP Classroom
			action-reaction pairs of forces when two objects interact. Analyze situations involving interactions among several objects by using free-body diagrams that include		

	T	1		T	1
			the application of Newton's third law to identify forces.		
Topic 2.6:	How can Newton's laws	The student can create representations and	Predict the motion of an object subject	AP Physics I	Multiple Choice
Newton's	of motion be used to	models of natural or man-made phenomena and	to forces exerted by several objects	Workbook (College	Questions on Google
Second Law	predict the behavior of	systems in the domain.	using an application of Newton's	Board)	forms
	objects?		second law in a variety of physical	,	
Science	,	The student can use representations and models	situations, with acceleration in one	Presentation Slides	Ranking Tasks
Practice: 1.4,	Why does the same	to analyze situations or solve problems	dimension.		(nTIPERS)
1.5, 2.2, 4.2,	push change the motion	qualitatively and quantitatively.		Flipping Physics	
5.1, 6.4, 7.2	of a shopping cart more		Design a plan to collect and analyze	11 0 7	AP Physics I workbook
, , , , , ,	than the motion of a	The student can re-express key elements of	data for motion (static, constant, or	nTIPERS	assignments
NJSLS:	car?	natural phenomena across multiple	accelerating) from force measurement,		
HS-PS2-1		representations in the domain.	and carry out an analysis to determine	Fan Cart Lab	Lab Reports
9.4.12.CT.2			the relationship between the net force		
9.4.12.TL.2		The student can apply mathematical routines to	and the vector sum of the individual	Whiteboard/Markers	Self-scored
		quantities that describe natural phenomena.	forces.	for constructing	Free-Response
				free-body diagrams	Questions on AP
		The student can design a plan for collecting data	Re-express a free-body diagram into a		Classroom
		to answer a particular scientific question.	mathematical representation, and solve	NJCTL Problem Sets	
			the mathematical representation for	9	
		The student can analyze data to identify	the acceleration of the object.		
		patterns or relationships.	,		
		r	Create and use free-body diagrams to		
		The student can make claims and predictions	analyze physical situations to solve		
		about natural phenomena based on scientific	problems with motion qualitatively and		
		theories and models.	quantitatively.		
		The student can connect concepts in and across			
		domain(s) to generalize or extrapolate in and/or			
		across enduring understandings and/or big			
		ideas.			
Topic 2.7:	How can Newton's laws	The student can describe representations and	Use representations of the center of	AP Physics I	Multiple Choice
Applications	of motion be used to	models of natural or man-made phenomena and	mass of an isolated two-object system	Workbook (College	Questions on Google
of Newton's	predict the behavior of	systems in the domain.	to analyze the motion of the system	Board)	forms
Second Law	objects?		qualitatively and semi-quantitatively.		
		The student can use representations and models		Presentation Slides	Ranking Tasks
Science	Why does the same	to analyze situations or solve problems	Evaluate, using given data, whether all		(nTIPERS)
Practice: 1.2,	push change the motion	qualitatively and quantitatively.	the forces on a system or all the parts	Flipping Physics	
1.4, 2.2, 2.3,	of a shopping cart more		of a system have been identified.		AP Physics I workbook
5.3, 6.4	than the motion of a	The student can apply mathematical routines to		nTIPERS	assignments
	car?	quantities that describe natural phenomena.			
NJSLS:					Lab Reports
HS-PS2-1					

HS-ETS1-2 9.4.12.CT.2 9.4.12.TL.2	The student can estimate quantities that describe natural phenomena. The student can evaluate the evidence provided by data sets in relation to a particular scientific question. The student can make claims and predictions about natural phenomena based on scientific theories and models		Self-scored Free-Response Questions on AP Classroom

Unit 3: Uniform Circular Motion/Universal Gravitation

Enduring Understandings:

- A field associates a value of some physical quantity with every point in space. Field models are useful for describing interactions that occur at a distance (long-range forces), as well as a variety of other physical phenomena.
- Certain types of forces are considered fundamental.
- At the macroscopic level, forces can be categorized as either long-range (action-at a-distance) forces or contact forces. A gravitational field is caused by an object with mass.
- Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles.

Essential Questions:

What is the difference between microscopic and macroscopic forces? How does changing the mass of an object affect the gravitational force?

Why is a refrigerator hard to push in space?

Why do we feel pulled toward Earth but not toward a pencil?

How can the acceleration due to gravity be modified?

What is the difference between inertial mass and gravitational mass?

How can Newton's laws of motion be used to predict the behavior of objects?

How can we use forces to predict the behavior of objects and keep us safe?

How is the acceleration of the center of mass of a system related to the net force exerted on the system?

Why is it more difficult to stop a fully loaded dump truck than a small passenger car?

Interdisciplinary Connections

High School Mathematics NJSLS Vector and Matrix Properties N-VM B. Perform operations on vectors: Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

Example: Students use vector addition to calculate net force.

ELA 11-12: NJSLSA.W1. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.

Example: Students will use valid reasoning and evidence while conducting laboratory investigations and writing lab reports.

	opical Questions rific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 3.1/3.2 Vector Fields and Fundamental Forces	What is the difference between microscopic and macroscopic forces?	The student can connect phenomena and models across spatial and temporal scales.	Articulate situations when the gravitational force is the dominant force and when the electromagnetic, weak, and strong forces can be ignored.	Presentation Slides	Think, Pair, Share

Science					
Practice: 7.1					
NJSLS:					
HS-PS2-1					
9.4.12.CT.2					
9.4.12.TL.2					
Topic 3.3	How can Newton's	The student can apply mathematical routines to	Use Newton's law of gravitation to	AP Physics I	
Gravitational	laws of motion be	quantities that describe natural phenomena.	calculate the gravitational force that	Workbook (College	
and Electric	used to predict the		two objects exert on each other and	Board)	
Forces	behavior of	The student can connect concepts in and across	use that force in contexts other than		
	objects?	domain(s) to generalize or extrapolate in and/or	orbital motion.	Presentation Slides	
Science	ŕ	across enduring understandings and/or big ideas.			
Practice: 2.2,	How does		Use Newton's law of gravitation to	nTIPERS	
7.2	changing the mass		calculate the gravitational force		
	of an object affect		between two objects and use that force	PHET simulation lab	
NJSLS:	the gravitational		in contexts involving orbital motion		
HS-PS2-1	force?		(for circular orbital motion only in		
HS-ESS1-4			Physics 1).		
9.4.12.CT.2					
9.4.12.TL.2					
Topic 3.4	How can Newton's	The student can apply mathematical routines to	Apply F=mg to calculate the	AP Physics I	
Gravitational	laws of motion be	quantities that describe natural phenomena.	gravitational force on an object with	Workbook (College	
Field/Accele	used to predict the		mass m in a gravitational field of	Board)	
ration Due	behavior of	The student can connect concepts in and across	strength g in the context of the effects	,	
to Gravity on	objects?	domain(s) to generalize or extrapolate in and/or	of a net force on objects and systems.	Presentation Slides	
Different	,	across enduring understandings and/or big ideas.	, , , ,		
Planets	How does		$\int_{\Lambda} \int_{\Omega} \int_{\Omega} Gm$	nTIPERS	
	changing the mass		Apply $g = \frac{Gm}{r^2}$ to calculate the		
Science	of an object affect		gravitational field due to an object	PSI Physics Problem	
Practice: 2.2,	the gravitational		with mass m, where the field is a	Sets (NJCTL)	
7.2	force?		vector directed toward the center of		
			the object of mass m.		
NJSLS:	Why do we feel		, '		
HS-PS2-4	pulled toward		Approximate a numerical value of the		
HS-ESS1-4	Earth but not		gravitational field (g) near the		
9.4.12.CT.2	toward a pencil?		surfaceof an object from its radius and		
9.4.12.TL.2	L		mass relative to those of Earth or		
	How can the		other reference objects.		
	acceleration due to		ĺ , , , , , , , , , , , , , , , , , , ,		
	gravity be				
	modified?				
			1		

Topic 3.5 Inertial vs. Gravitational Mass Science Practice: 4.2 NJSLS: HS-PS2-1 9.4.12.CT.2	What is the difference between inertial mass and gravitational mass?	The student can design a plan for collecting data to answer a particular scientific question.	Design a plan for collecting data to measure gravitational mass and to measure inertial mass and to distinguish between the two experiments.	Scale Set of known masses Unknown mass Inertial Balance	Lab Report in CER format Quiz
9.4.12.TL.2 Topic 3.6 Centripetal Acceleration and Centripetal Force Science Practice: 5.3 NJSLS: HS-PS2-1 9.4.12.CT.2 9.4.12.TL.2	How can we use forces to predict the behavior of objects and keep us safe? How is the acceleration of the center of mass of a system related to the net force exerted on the system?	The students can evaluate the evidence provided by data sets in relation to a particular scientific question.	Evaluate, using given data, whether all the forces on a system or whether all the parts of a system have been identified.	AP Physics I Workbook (College Board) Presentation Slides nTIPERS	
Topic 3.7 Free-Body Diagrams for Objects in Uniform Circular Motion Science Practice: 1.1, 1.4, 1.5, 2.2, 4.2, 5.1 NJSLS: HS-PS2-1 HS-PS2-4 9.4.12.CT.2	How can we use forces to predict the behavior of objects and keep us safe? How is the acceleration of the center of mass of a system related to the net force exerted on the system?	The student can create representations and models of natural or man-made phenomena and systems in the domain. The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question.	Design a plan to collect and analyze data for motion (static, constant, or accelerating) from force measurements, and carry out an analysis to determine the relationship between the net force and the vector sum of the individual forces. Re-express a free-body diagram representation into a mathematical representation, and solve the mathematical representation for the acceleration of the object. Create and use free-body diagrams to analyze physical situations to solve	AP Physics I Workbook (College Board) Presentation Slides nTIPERS	Do Now/Exit Slips Circular Motion/Gravitation Progress Checks on AP Classroom

9.4.12.TL.2		The student can analyze data to identify patterns or relationships.*	problems with motion qualitatively and quantitatively.		
Topic 3.8 Applications of Circular Motion and Gravitation Science Practice: 1.1, 1.4, 1.5, 2.1, 2.2, 4.2, 5.1, 6.2, 6.4, 7.2 NJSLS: HS-PS2-1 HS-PS2-4 9.4.12.CT.2 9.4.12.TL.2	How can Newton's laws of motion be used to predict the behavior of objects? How can we use forces to predict the behavior of objects and keep us safe? How is the acceleration of the center of mass of a system related to the net force exerted on the system? Why is it more difficult to stop a fully loaded dump truck than a small passenger car?	The student can use representations and models of natural or man-made phenomena and systems in the domain. The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question. The student can analyze data to identify patterns or relationships. The student can construct explanations of phenomena based on evidence produced through scientific practices. The student can make claims and predictions about natural phenomena based on scientific theories and models. The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.	Express the motion of an object using narrative, mathematical, and graphical representations. Design an experimental investigation of the motion of an object. Analyze experimental data describing the motion of an object and express the results of the analysis using narrative, mathematical, and graphical representations. Represent forces in diagrams or mathematically, using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Analyze a scenario and make claims (develop arguments, justify assertions) about the forces exerted on an object by other objects for different types of forces or components of forces. Describe a force as an interaction between two objects and identify both objects for any force. Construct explanations of physical situations involving the interaction of bodies using Newton's third law and the representation of action-reaction pairs of forces. Use Newton's third law to make claims and predictions about the action-reaction pairs of forces when two objects interact.	Circular Motion Lab Set of hooked masses Plastic tube, string, rubber stopper timer PSI Physics Problem set	Lab Report in CER format Lab Quiz Circular Motion/Graviatation Unit Test

	Analyze situations involving interactions among several objects by using free-body diagrams that include	
	the application of Newton's third law	
	to identify forces.	

Unit 4: Energy

Endusina	Understandings	
Enguring	Understandings	:

- Certain quantities are conserved, in the sense that the changes of those quantities in a given system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.
- A force exerted on an object can change the kinetic energy of the object.
- Interactions with other objects or systems can change the total energy of a system.
- The energy of a system is conserved.

Essential Questions:

- How does pushing something give it energy?
- How is energy exchanged and transformed within or between systems?
- How does the choice of system influence how energy is stored or how work is done?
- How does energy conservation allow the riders in the back car of a rollercoaster to have a thrilling ride?
- How can the idea of potential energy be used to describe the work done to move celestial bodies?
- How is energy transferred between objects or systems?
- How does the law of conservation of energy govern the interactions between objects and systems?

Interdisciplinary Connections

ELA 11-12 NJSLSA.W7. Conduct short as well as more sustained research projects, utilizing an inquiry-based research process, based on focused questions, demonstrating understanding of the subject under investigation.

Example: Students conduct inquiry-based research to find an experimental value for the coefficient of kinetic friction between a wooden block and the ramp upon which it slides.

High School Mathematics NJSLS Vector and Matrix Quantities N-VM A. Represent and model with vector quantities.

Example: Students will solve problems involving velocity, force and other quantities that can be represented by vectors.

	/ Topical Questions Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 4.1:	How is energy exchanged	The student can make claims and predictions	Define open and closed systems for	Presentation Slides	Classroom Discussion
Open and	and transformed within or	about natural phenomena based on scientific	everyday situations and apply		
Closed	between systems?	theories and models.	conservation concepts for energy,		Think-Pair-Share
Systems:			charge, and linear momentum to those		
Energy		The student can connect concepts in and	situations.		Do Now/Exit Slip
		across domain(s) to generalize or extrapolate			

Science Practice: 6.4, 7.2		in and/or across enduring understandings and/or big ideas.			
NJSLS: 9.4.12.CT.2 9.4.12.TL.2					
Topic 4.2: Work and Mechanical Energy Science Practice: 1.4, 2.1, 2.2, 6.4, 7.2 NJSLS HS-PS3-1 HS-PS3-2 9.4.12.CT.2 9.4.12.TL.2	How does pushing something give it energy? How is energy exchanged and transformed within or between systems? How does the choice of system influence how energy is stored or how work is done?	The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can make claims and predictions about natural phenomena based on scientific theories and models. The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.	Make predictions about the changes in kinetic energy of an object based on considerations of the direction of the net force on the object as the object moves. Use net force and velocity vectors to determine qualitatively whether the kinetic energy of an object would increase, decrease, or remain unchanged. Use force and velocity vectors to determine qualitatively or quantitatively the net force exerted on an object and qualitatively whether the kinetic energy of that object would increase, decrease, or remain unchanged. Apply mathematical routines to determine the change in kinetic energy of an object given the forces on the object and the displacement of the object. Calculate the total energy of a system and justify the mathematical routines used in the calculation of componenttypes of energy within the system whose sum is the total energy. Predict changes in the total energy of	AP Physics I Workbook (College Board) Presentation Slides nTIPERS PSI Physics Problem Sets Flipping Physics	Quiz Progress Check on AP Classroom
			a system due to changes in position		

			and speed of objects or frictional		
			interactions within the system.		
			Make predictions about the changes		
			in the mechanical energy of a system		
			when a component of an external		
			force acts parallel or antiparallel to		
			the direction of the displacement of		
			the center of mass.		
			the center of mass.		
			A 1 - 41		
			Apply the concepts of conservation		
			of energy and the work-energy		
			theorem to determine qualitatively		
			and/or quantitatively that work done		
			on a two-object system in linear		
			motion will change the kinetic		
			energy of the center of mass of the		
			system, the potential energy of the		
			systems, and/or the internal energy		
			of the system.		
			or the system.		
Topic 4 3:	How does energy	The student can use representations and models	Create a representation or model	AP Physics I	Oniz
Topic 4.3:	How does energy	The student can use representations and models	Create a representation or model	AP Physics I	Quiz
Conservation	conservation allow the	to analyze situations or solve problems	showing that a single object can only	Workbook (College	`
Conservation of Energy,	conservation allow the riders in the back car of a		showing that a single object can only have kinetic energy and use		Progress Check on AP
Conservation of Energy, the	conservation allow the riders in the back car of a rollercoaster to have a	to analyze situations or solve problems qualitatively and quantitatively.	showing that a single object can only have kinetic energy and use information about that object to	Workbook (College Board)	`
Conservation of Energy, the Work-Energy	conservation allow the riders in the back car of a	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of	showing that a single object can only have kinetic energy and use	Workbook (College	Progress Check on AP Classroom
Conservation of Energy, the Work-Energy Principle, and	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride?	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy.	Workbook (College Board) Presentation Slides	Progress Check on AP Classroom Lab Report in CER
Conservation of Energy, the Work-Energy	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of	Workbook (College Board)	Progress Check on AP Classroom
Conservation of Energy, the Work-Energy Principle, and	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have	Workbook (College Board) Presentation Slides nTIPERS	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of	Workbook (College Board) Presentation Slides	Progress Check on AP Classroom Lab Report in CER
Conservation of Energy, the Work-Energy Principle, and Power	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have	Workbook (College Board) Presentation Slides nTIPERS	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4,	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2,	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies.	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab:	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure)	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1 HS-PS3-2	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of kinetic friction between	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1 HS-PS3-2 HS-PS3-3	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of kinetic friction between a block and a plank of	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1 HS-PS3-2 HS-PS3-3 HS-ETS1-2	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question. The student can analyze data to identify	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of conservation of energy	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of kinetic friction between a block and a plank of wood	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1 HS-PS3-2 HS-PS3-3 HS-ETS1-2 9.4.12.CT.2	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question.	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of conservation of energy principles to calculate the change in	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of kinetic friction between a block and a plank of	Progress Check on AP Classroom Lab Report in CER format
Conservation of Energy, the Work-Energy Principle, and Power Science Practice: 1.4, 1.5, 2.1,2.2, 4.2 NJSLS HS-PS3-1 HS-PS3-2 HS-PS3-3 HS-ETS1-2	conservation allow the riders in the back car of a rollercoaster to have a thrilling ride? How is energy transferred between objects or systems? How does the law of conservation of energy govern the interactions between objects and	to analyze situations or solve problems qualitatively and quantitatively. The student can re-express key elements of natural phenomena across multiple representations in the domain. The student can justify the selection of a mathematical routine to solve problems. The student can apply mathematical routines to quantities that describe natural phenomena. The student can design a plan for collecting data to answer a particular scientific question. The student can analyze data to identify	showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy. Translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies. Calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of conservation of energy	Workbook (College Board) Presentation Slides nTIPERS PHET Energy Skate Park Energy Lab: Determine an experimental value for the coefficient of kinetic friction between a block and a plank of wood	Progress Check on AP Classroom Lab Report in CER format

9.4.12.TL.2	The student can make claims and predictions	internal structure because the object is	
	about natural phenomena based on scientific	actually a system.	
	theories and models.		
		Describe and make qualitative and/or	
		quantitative predictions about everyday	
		examples of systems with internal	
		potential energy.	
		Make quantitative calculations of the	
		internal potential energy of a system	
		from a description or diagram of that	
		system.	
		Apply mathematical reasoning to	
		create a description of the internal	
		potential energy of a system from a	
		description or diagram of the objects	
		and interactions in that system.	
		Describe and make predictions about	
		the internal energy of systems.	
		Calculate changes in kinetic energy and	
		potential energy of a system using	
		information from representations of	
		that system.	
		Design an experiment and analyze data	
		to determine how a force exerted on	
		an object or system does work on the	
		object or system as it moves through a	
		distance.	
		Design an experiment and analyze	
		graphical data in which interpretations of the area under a force-distance	
		or the area under a force-distance curve are needed to determine the	
		work done on or by the object or	
		system.	
		oystem.	
		Predict and calculate from graphical	
		data the energy transfer to or work	
		done on an object or system from	

	information about a force exerted on the object or system through a distance. Make claims about the interaction between a system and its environment in which the environment exerts a force on the system, thus doing work on the system and changing the energy of the system (kinetic energy plus potential energy). Predict and calculate the energy transfer to (i.e., the work done on) an object or system from information about a force exerted on the object or system through a distance.	

Unit 5: Momentum

Enduring Understandings:	Essential Questions:
A force exerted on an object can change the momentum of the object	How does pushing an object change its momentum?
• Interactions with other objects or systems can change the total linear	How do interactions with other objects or systems change the linear
momentum of a system.	momentum of a system?
• The linear momentum of a system is conserved.	How is the physics definition of momentum different from how
	momentum is used to describe things in everyday life?
	How does the law of the conservation of momentum govern
	interactions between objects or systems?
	How can momentum be used to determine fault in car crashes?

Interdisciplinary Connections

High School Mathematics NJSLS Standards for Mathematical Practice 4: Model with mathematics.

Example: Students can apply the mathematics they know to solve problems arising in everyday life such as designing car safety structures.

ELA 11-12 NJSLSA.R7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.

Example: Students analyze graphs of Force vs. Time for airbags deployed during a crash and identify the airbag that is most likely to save a passengers life

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 5.1:	How does pushing an	The student can justify the selection of a	Justify the selection of data needed to	Presentation Slides	Do Now/Exit Slips
Momentum	object change its	mathematical routine to solve problems.	determine the relationship between the		
and Impulse	momentum?	-	direction of the force acting on an	AP Workbook (College	Quizzes
		The student can justify the selection of the kind	object and the change in momentum	Board)	
Science	How do interactions with	of data needed to answer a particular scientific	caused by that force.		
Practice: 2.1,	other objects or systems	question.		PSI Physics Problem	
4.1, 4.2, 5.1,	change the linear		Justify the selection of routines for the	Sets	
6.4	momentum of a system?	The student can design a plan for collecting data	calculation of the relationships		
	-	to answer a particular scientific question.	between changes in momentum of an	Phet simulation lab	
NJSLS:		_	object, average force, impulse, and		
HS-PS2-1		The student can analyze data to identify	time of interaction.		
9.4.12.CT.2		patterns or relationships.			
9.4.12.TL.2		· ·	Predict the change in momentum of		
			an object from the average force		
			exerted on the object and the interval		

Topic 5.2: Representations of Changes in Momentum Science Practice: 1.4, 2.2, 5.1 NJSLS: HS-PS2-1 9.4.12.CT.2 9.4.12.IML.3 9.4.12.TL.2	How do interactions with other objects or systems change the linear momentum of a system?	The student can use representations and models. The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can apply mathematical routines to quantities that describe natural phenomena. The student can analyze data to identify patterns or relationships.	of time during which the force is exerted. Analyze data to characterize the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. Design a plan for collecting data to investigate the relationship between changes in momentum and the average force exerted on an object over time. Calculate the change in linear momentum of a two-object system with constant mass in linear motion from a representation of the system (data, graphs, etc.). Analyze data to find the change in linear momentum for a constant-mass system using the product of the mass and the change in velocity of the center of mass. Apply mathematical routines to calculate the change in momentum of a system by analyzing the average force exerted over a certain time on the system. Perform an analysis on data presented	Presentation Slides AP Workbook (College Board) PSI Physics Problem Sets Air Bag Test Data	Do Now/Exit Slip Quiz Analysis of air bag test data
			as a force-time graph and predict the change in momentum of a system.		
Topic 5.3: Open and Closed Systems: Momentum Science Practice: 6.4, 7.2	How do interactions with other objects or systems change the linear momentum of a system?	The student can make claims and predictions about natural phenomena based on scientific theories and models. The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.	Define open and closed systems for everyday situations and apply conservation concepts for energy, charge, and linear momentum to those situations.	Presentation Slides AP Workbook (College Board) PSI Physics Problem Sets	Think-Pair-Share

NJSLS: HS-PS2-1					
9.4.12.CT.2					
9.4.12.TL.2	II 1 .1 1 C	779 1	361 15 2 1 2	D	D : . /A : 1 .
Topic 5.4: Conservation	How does the law of the conservation of	The student can justify the selection of a	Make qualitative predictions about	Presentation Slides	Project (Accident
of Linear	momentum govern	mathematical routine to solve problems.	natural phenomena based on conservation of linear momentum and	PSI Physics Problem	Reconstruction)
Momentum	interactions between	The student can apply mathematical routines to	restoration of kinetic energy in elastic	Set	Egg Crash Project
Womentum	objects or systems?	quantities that describe natural phenomena.	collisions.	Set	Lgg Clasii i ioject
Science	02)0000 01 0)00011101	There are an arrange and the first and the f		AP Workbook (College	Progress Checks (AP
Practice: 2.1,		The student can refine scientific questions.	Apply the principles of conservation	Board)	Classroom)
2.2, 3.2, 4.1,			of momentum and restoration of	,	,
4.2, 4.4, 5.1,		The student can justify the selection of the kind	kinetic energy to reconcile a situation		Momentum Unit Test
5.3, 6.4, 7.2		of data needed to answer a particular scientific	that appears to be isolated and elastic,		
		question.	but in which data indicate that linear		
NJSLS:			momentum and kinetic energy are not		
HS-PS2-2		The student can design a plan for collecting data	the same after the interaction, by		
HS-PS2-3		to answer a particular scientific question.	refining a scientific question to identify		
HS-ETS1-4 9.4.12.CT.2		The student can evaluate sources of data to	interactions that have not been considered. Students will be expected		
9.4.12.C1.2 9.4.12.CI.1		answer a particular scientific question.	to solve qualitatively and/or		
9.4.12.CI.1 9.4.12.IML.3		answer a particular scientific question.	quantitatively for one-dimensional		
9.4.12.TL.2		The student can analyze data to identify	situations and qualitatively in		
71,112,123,2		patterns or relationships.	two-dimensional situations.		
		The student can evaluate the evidence provided	Apply mathematical routines		
		by data sets in relation to a particular scientific question.	appropriately to problems involving elastic collisions in one dimension and		
			justify the selection of those		
		The student can make claims and predictions	mathematical routines based on		
		about natural phenomena based on scientific	conservation of momentum and		
		theories and models.	restoration of kinetic energy.		
		The student can connect concepts in and across	Design an experimental test of an		
		domain(s) to generalize or extrapolate in and/or	application of the principle of the		
		across enduring understandings and/or big	conservation of linear momentum,		
		ideas.	predict an outcome of the experiment		
			using the principle, analyze data		
			generated by that experiment whose		
			uncertainties are expressed		
			numerically, and evaluate the match		
			between the prediction and the		
			outcome.		

	Classify a given collision situation as elastic or inelastic, justify the selection of conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic collision, solve for missing variables, and calculate their values. Qualitatively predict, in terms of linear momentum and kinetic energy, how the outcome of a collision between two objects changes depending on whether the collision is elastic or	
	inelastic. Plan data-collection strategies to test	
	the law of conservation of momentum in a two-object collision that is elastic or inelastic and analyze the resulting data graphically.	
	Apply the conservation of linear momentum to a closed system of objects involved in an inelastic collision to predict the change in kinetic energy.	
	Analyze data that verify conservation of momentum in collisions with and without an external frictional force.	
	Classify a given collision situation as elastic or inelastic, justify the selection of conservation of linear momentum as the appropriate solution method for an inelastic collision, recognize that there is a common final velocity for the colliding objects in the totally inelastic case, solve for missing variables, and calculate their values.	

	Predict the velocity of the center of mass of a system when there is no interaction outside of the system but there is an interaction within the	
	system (i.e., the student simply recognizes that interactions within a system do not affect the center-of-mass motion of the system and is able to determine that there is no external force).	
	·	

Unit 6: Simple Harmonic Motion

Enduring Understandings:	Essential Questions:		
• Classically, the acceleration of an object interacting with other objects can be predicted by using $a = \frac{\Sigma F}{m}$ • The energy of a system is conserved.	 How does a restoring force differ from a "regular" force? How does the presence of restoring forces predict and lead to harmonic motion? How does a spring cause an object to oscillate? How can oscillations be used to make our lives easier? How does the law of conservation of energy govern the interactions between objects and systems? 		
	How can energy stored in a spring be used to create motion?		

Interdisciplinary Connections

High School Mathematics. NJSLS Trigonometric Functions F-TF: Model periodic phenomena with trigonometric functions: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

Example: Students use Sine or Cosine wave functions to study objects undergoing Simple Harmonic Motion.

ELA 11-12: NJSLSA.W1. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.

Example: Students will write a lab report in CER format upon completion of the Spring Constant Lab

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 6.1:	How does a restoring	The student can apply mathematical routines to	Predict which properties determine the	Presentation Slides	Do Now/Exit Slips
Period of	force differ from a	quantities that describe natural phenomena.	motion of a simple harmonic oscillator		
Simple	"regular" force?		and what the dependence of the	PSI Physics Problem	Think-Pair-Share
Harmonic		The student can design a plan for collecting data	motion is on those properties.	Set	
Oscillators	How does the presence	to answer a particular scientific question.			Lab Report in CER
	of restoring forces		Design a plan and collect data in order	Spring Constant Lab:	format
Science	predict and lead to	The student can analyze data to identify	to ascertain the characteristics of the	Springs, Lab stand,	
Practice: 2.2,	harmonic motion?	patterns or relationships.	motion of a system undergoing	Hooked Masses,	Quiz
4.2, 5.1, 6.2,			oscillatory motion caused by a	Stopwatch, Meter Stick	
6.4, 7.2	How does a spring cause		restoring force.	-	
	an object to oscillate?		_		

NJSLS:		The student can construct explanations of	Analyze data to identify qualitative and	AP Workbook (College	
HS-PS2-1		phenomena based on evidence produced	quantitative relationships between	Board)	
9.4.12.CT.2		through scientific practices.	given values and variables (i.e., force,	_ = = = = = = = = = = = = = = = = = = =	
9.4.12.TL.2		anough ceremane praedees	displacement, acceleration, velocity,		
71,112,113,12		The student can make claims and predictions	period of motion, frequency, spring		
		about natural phenomena based on scientific	constant, string length, mass)		
		theories and models.	associated with objects in oscillatory		
			motion and use those data to		
		The student can connect concepts in and across	determine the value of an unknown.		
		domain(s) to generalize or extrapolate in and/or			
		across enduring understandings and/or big	Construct a qualitative and/ or		
		ideas.	quantitative explanation of oscillatory		
			behavior given evidence of a restoring		
			force.		
Topic 6.2:	How can oscillations be	The student can use representations and	Calculate the expected behavior of a	Presentation Slides	Do Now/Exit Slips
Energy of a	used to make our lives	models to analyze situations or solve problems	system using the object model (i.e., by		•
Simple	easier?	qualitatively and quantitatively.	ignoring changes in internal structure)	PSI Physics Problem	Lab Report in CER
Harmonic			to analyze a situation. Then, when the	Set	Format
Oscillator	How does the law of	The student can justify the selection of a	model fails, the student can justify the		
	conservation of energy	mathematical routine to solve problems.	use of conservation of energy	AP Workbook (College	Lab Quiz
Science	govern the interactions		principles to calculate the change in	Board)	
Practice: 1.4,	between objects and	The student can apply mathematical routines	internal energy due to changes in		AP Classroom
2.1, 2.2, 6.4,	systems?	to quantities that describe natural phenomena.	internal structure because the object is	Marble Launcher Lab:	Progress Checks
7.2			actually a system.	Marble launcher,	
	How can energy stored	The student can make claims and predictions		marbles, timer, meter	Unit Test
NJSLS:	in a spring be used to	about natural phenomena based on scientific	Describe and make qualitative and/or	stick	
HS-PS3-1	create motion?	theories and models.	quantitative predictions about everyday		
HS-PS3-3			examples of systems with internal		
9.4.12.CT.2		The student can connect concepts in and	potential energy.		
9.4.12.TL.2		across domain(s) to generalize or extrapolate			
		in and/or across enduring understandings	Make quantitative calculations of the		
		and/or big ideas.	internal potential energy of a system		
			from a description or diagram of that		
			system.		
			l, , , ,		
			Apply mathematical reasoning to		
			create a description of the internal		
			potential energy of a system from a		
			description or diagram of the objects		
			and interactions in that system.		
			Describe and make predictions about		
			the internal energy of systems.		
	l .		the internal energy of systems.		

	Calculate changes in kinetic energy and potential energy of a system using information from representations of that system.	

Unit 7: Torque and Rotational Motion

Enduring Understandings:

- All forces share certain common characteristics when considered by observers in inertial reference frames.
- A force exerted on an object can cause a torque on that object.
- A net torque exerted on a system by other objects or systems will change the angular momentum of the system.
- The angular momentum of a system is conserved.

Essential Questions:

- How does a system at rotational equilibrium compare to a system in translational equilibrium?
- How does the choice of system and rotation point affect the forces that can cause a torque on an object or a system?
- How can balanced forces cause rotation?
- Why does it matter where the door handle is placed?
- Why are long wrenches more effective?
- How can an external net torque change the angular momentum of a system?
- Why is a rotating bicycle wheel more stable than a stationary one?
- How does the conservation of angular momentum govern interactions between objects and systems?
- Why do planets move faster when they travel closer to the sun?

Interdisciplinary Connections

Visual and Performing Arts Grades 9-12 1.2.12acc.Cr1c: Critique plans, prototypes, constraint of resources, and production processes considering purposeful and expressive artistic intention and personal aesthetic.

Example: Students will choose a theme and create a mobile to demonstrate zero net torque (static equilibrium)

High School Mathematics. NJSLS Standards for Mathematical Practice: Attend to precision.

Example: Students communicate precisely when solving word problems about Conservation of Angular Momentum. They calculate accurately and efficiently and express numerical answers with a degree of precision appropriate for the problem context.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
Topic 7.1: Rotational	How does a system at rotational equilibrium	The student can re-express key elements of natural phenomena across multiple	Express the motion of an object using narrative, mathematical, and graphical	Presentation Slides	Think-Pair-Share
Kinematics	compare to a system in translational equilibrium?	representations in the domain.	representations.		Do Now/Exit Slips
Science		The student can justify the selection of a			
Practice: 1.5,		mathematical routine to solve problems.			
2.1					

NJSLS: HS-PS2-1 9.4.12.CT.2 9.4.12.TL.2		The student can apply mathematical routines to quantities that describe natural phenomena.			
	How does the choice of system and rotation point affect the forces that can cause a torque on an object or a system? How can balanced forces cause rotation? Why does it matter where the door handle is placed? Why are long wrenches more effective?	The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. The student can justify the selection of a mathematical routine to solve problems.	Use representations of the relationship between force and torque. Compare the torques on an object caused by various forces. Estimate the torque on an object caused by various forces in comparison with other situations. Design an experiment and analyze data testing a question about torques in a balanced rigid system. Calculate torques on a two-dimensional system in static equilibrium by examining a representation or model (such as a diagram or physical construction). Make predictions about the change in the angular velocity about an axis for an object when forces exerted on the object cause a torque about that axis. Plan data-collection and analysis strategies designed to test the relationship between a torque exerted on an object and the change in angular velocity of that object about an axis. Predict the behavior of rotational collision situations by the same processes that are used to analyze linear collision situations using an analogy between impulse and change	Presentation Slides PSI Physics Problem Set AP Workbook (College Board) Mass of the meter stick lab Hooked masses, pivot, meter stick "Torque Feeler" activity	Quiz Lab Report in CER format
			of linear momentum and angular impulse and change of angular momentum.		

Topic 7.3:	How can an external net	The student can describe representations and	In an unfamiliar context or using	Presentation Slides	Do Now/Exit Slips
Angular	torque change the	models of natural or man-made phenomena and	representations beyond equations,		
Momentum	angular momentum of a	systems in the domain.	justify the selection of a mathematical	PSI Physics Problem	Think-Pair-Share
and Torque	system?		routine to solve for the change in	Sets	
		The student can use representations and models	angular momentum of an object		Quiz
Science	Why is a rotating bicycle	to analyze situations or solve problems	caused by torques exerted on the	AP Physics I	
Practice: 1.2,	wheel more stable than a	qualitatively and quantitatively.	object.	Workbook (College	AP Classroom
1.4, 2.2, 3.2,	stationary one?			Board)	Progress Checks
4.1, 4.2, 5.1,		The student can apply mathematical routines to	Plan data-collection and analysis		
5.3		quantities that describe natural phenomena.	strategies designed to test the		
			relationship between torques exerted		
NJSLS:		The student can refine scientific questions.	on an object and the change in angular		
HS-PS2-1			momentum of that object.		
HS-PS2-2		The student can justify the selection of the kind	<u> </u>		
9.4.12.CT.2		of data needed to answer a particular scientific	Describe a representation and use it to		
9.4.12.TL.2		question.	analyze a situation in which several		
			forces exerted on a rotating system of		
		The student can design a plan for collecting data	rigidly connected objects change the		
		to answer a particular scientific question.	angular velocity and angular		
			momentum of the system.		
		The student can analyze data to identify	,		
		patterns or relationships.	Plan data-collection strategies designed		
			to establish that torque, angular		
		The student can evaluate the evidence provided	velocity, angular acceleration, and		
		by data sets in relation to a particular scientific	angular momentum can be predicted		
		question.	accurately when the variables are		
			treated as being clockwise or		
			counterclockwise with respect to a		
			well-defined axis of rotation, and		
			refine the research question based on		
			the examination of data.		
			Describe a model of a rotational		
			system and use that model to analyze a		
			situation in which angular momentum		
			changes due to interaction with other		
			objects or systems.		
			Plan a data-collection and analysis		
			strategy to determine the change in		
			angular momentum of a system and		Į

			relate it to interactions with other		
			objects and systems.		
			Use appropriate mathematical routines		
			to calculate values for initial or final		
			angular momentum, or change in		
			angular momentum of a system, or		
			average torque or time during which		
			the torque is exerted in analyzing a		
			situation involving torque and angular		
			momentum.		
			Plan a data-collection strategy		
			designed to test the relationship		
			between the change in angular		
			momentum of a system and the		
			product of the average torque applied		
			to the system and the time interval		
			during which the torque is exerted.		
Topic 7.4:	How does the	The student can justify the selection of a	Make qualitative predictions about the	Presentation Slides	Rotational Motion Unit
Conservation			angular momentum of a system for a	Presentation singes	
	conservation of angular	mathematical routine to solve problems.	situation in which there is no net	DCI Dl	Test
of Angular	momentum govern			PSI Physics Problem	AD C1
Momentum	interactions between	The student can apply mathematical routines to	external torque.	Sets	AP Classroom
	objects and systems?	quantities that describe natural phenomena.		ADDI ' I	Progress Checks
Science			Make calculations of quantities related	AP Physics I	
Practice: 2.1,	Why do planets move	The student can make claims and predictions	to the angular momentum of a system	Workbook (College	
2.2, 6.4, 7.2	faster when they travel	about natural phenomena based on scientific	when the net external torque on the	Board)	
	closer to the sun?	theories and models.	system is zero.		
NJSLS:					
HS-PS2-2		The student can connect concepts in and across	Describe or calculate the angular		
9.4.12.CT.2		domain(s) to generalize or extrapolate in and/or	momentum and rotational inertia of a		
9.4.12.TL.2		across enduring understandings and/or big	system in terms of the locations and		
		ideas.	velocities of objects that make up the		
			system. Use qualitative reasoning with		
			compound objects and perform		
			calculations with a fixed set of		
			extended objects and point masses.		

General Differentiated Instruction Strategies

Leveled texts	Repeat, reword directions		
 Chunking texts 	Brain breaks and movement breaks		
Choice board	Brief and concrete directions		
Socratic Seminar	Checklists for tasks		
Tiered Instruction	Graphic organizers		
Small group instruction	 Assistive technology (spell check, voice to type) 		
Guided Reading	Study guides		
 Sentence starters/frames 	Tiered learning stations		
Writing scaffolds	Tiered questioning		
Tangible items/pictures	Data-driven student partnerships		
Adjust length of assignment	• Extra time		

Possible Additional Strategies for Special Education Students, 504 Students, At-Risk Students, and English Language Learners (ELLs)

Time/General	Processing	Comprehension	Recall	
 Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline 	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklist Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers 	
Assistive Technology	Assessments and Grading	Behavior/Attention	Organization	
Computer/whiteboardTape recorder	Extended timeStudy guides	Consistent daily structured routine	Individual daily plannerDisplay a written agenda	

- Spell-checker
- Audio-taped books

- Shortened tests
- Read directions aloud
- Simple and clear classroom rules
- Frequent feedback

- Note-taking assistance
- Color code materials

Enrichment

The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

- Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.
- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.
- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options
- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interest in greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and making connections.
- The inclusion of additional subject areas and/or activities (cross-curricular).
- Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources

- Learning style quiz for students- http://www.educationplanner.org/students/self-assessments/learning-styles-quiz.shtml
- "Word clouds" from text that you provide-http://www.wordle.net/
- Bilingual website for students, parents and educators: http://www.colorincolorado.org/
- Learn a language for FREE-www.Duolingo.com
- Time on task for students-http://www.online-stopwatch.com/
- Differentiation activities for students based on their Lexile-www.Mobymax.com
- WIDA-http://www.wida.us/
- Everything ESL http://www.everythingESL.net
- ELL Tool Box Suggestion Site http://www.wallwisher.com/wall/elltoolbox
- Hope4Education http://www.hope4education.com
- Learning the Language http://blogs.edweek.org/edweek/learning-the-language/
- FLENJ (Foreign Language Educators of NJ) 'E-Verse' wiki: http://www.flenj.org/Publications/?page=135
- OELA http://www.ed.gov/offices/OBEMLA
- New Jersey Department of Education-Bilingual Education information http://www.state.nj.us/education/bilingual/

Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combining with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/
- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. http://www.edutopia.org/

- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embed media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/