ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

Robbinsville High School

AP Physics C

Board of Education

Mr. Vito Galluccio, President Mr. Richard Young, Vice President Mrs. Kerriann Fox Mrs. Lauren Paluzzi Mr. Christopher Emigholz Mr. Scott Veisz Mrs. Maxine Fox Ms. Tanya Lehmann Mr. Jai Gulati Mr. Brian Betze, Superintendent

Curriculum Writing Committee

Bryan Miner

Supervisors

Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE: 9/27/22

Course Philosophy

AP Physics C allows students to apply and strengthen their mathematical reasoning skills by applying them to tangible phenomena through experimental and theoretical approaches. This course is to mirror the rigor one would find in a college-level physics course designed for STEM majors. AP Physics C provides the opportunities to solidify and apply calculus to discover the intricacies of Dynamics as described by Isaac Newton as well as the foundations of Electromagnetism. Students in this course will develop the bedrock for advanced skills they will apply throughout their college careers.

Course Description

AP Physics C is a laboratory-based course covering both AP C Mechanics and AP C Electricity and Magnetism. Included are Kinematics, Forces, Energy, Momentum, Rotation, Oscillations, Gravity, Electric Charge, Gauss' Law, Electric Potential, DC Circuits, Magnetostatics, and Induction. All areas of study will be approached through laboratory experience, derivations, and practice materials, and will develop the scientific skills as put forth by the College Board for this AP course.

Core Materials	Supplemental Materials
• Physics for Scientists and Engineers - Randall D. Knight	 Pearson Mastering Physics Pivot Interactives PhET Interactives NJCTL Materials AP Classroom Materials

Core and Supplemental Instructional Materials

Robbinsville Public Schools Scope, Sequence, Pacing and Assessment

AP Physics C

Unit Title	Unit Understandings and Goals	Recommended Duration/ Pacing	Assessments
1. Kinematics	 a. Determine the appropriate expressions for velocity and position as a function of time for an object accelerating uniformly in one dimension with given initial conditions. b. Calculate unknown variables of motion such as acceleration, velocity, or positions for an object 	9 Blocks	Formative Do now feedback Exit ticket feedback Formative worksheets Teacher and peer feedback
	undergoing uniformly accelerated motion in one dimension. c. Calculate values such as average velocity or minimum or maximum velocity for an object in		Summative · 1-D Kinematics Test · 2-D Kinematics Test
	uniform acceleration. Determine functions of position, velocity, and acceleration that are consistent with each other, for the motion of an object with a nonuniform		 Common Benchmark Assessments (mid/end of course) Mid-year Mechanics Test AP Test Course final exam Course culminating project
 a. Calculate the components of a velocity, position, or acceleration vector in two dimensions. b. Calculate a net displacement of an object moving in two dimensions. c. Calculate a net change in velocity of an object 		 Alternative Assessments (projects, etc when appropriate) Constant motion Lab Falling Chain Lab Projectiles Lab Circular Motion Demonstrations 	
	 moving in two dimensions. d. Calculate an average acceleration vector for an object moving in two dimensions. e. Calculate a velocity vector for an object moving relative to another object (or frame of reference) that moves with a uniform velocity. f. Describe the velocity vector for one object relative 		
	to a second object with respect to its frame of reference.		

	Describe the motion of an object in two-dimensional motion in terms of the consistency that exists between position and time, velocity and time, and acceleration and time.		
2. Newton's Laws of Motion	 Describe an object (either in a state of equilibrium or acceleration) in different types of physical situations such as inclines, falling through air resistance, Atwood machines, or circular tracks). a. Calculate the velocity of an object moving in a horizontal circle with a constant speed, when subject to a known centripetal force. b. Calculate relationships among the radius of a circle, the speed of an object (or period of revolution), and the magnitude of centripetal acceleration for an object moving in uniform circular motion. a. Describe the forces of interaction between two objects (Newton's third law). b. Describe pairs of forces that occur in a physical system due to Newton's third law. c. Describe the forces that occur between two (or more) objects accelerating together (e.g., in contact or connected by light strings, springs, or cords). 	10 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • 1-D Forces Test • 2-D Forces Test • 2-D Forces Test • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project Alternative Assessments (projects, etc when appropriate) • Atwood's Machine Lab • Drag Lab • Projectile drag simulations • Circular Motion simulations
3. Work, Energy, and Power	 a. Calculate work done by a given force (constant or as a given function F(x)) on an object that undergoes a specified displacement. b. Describe the work done on an object as the result of the scalar product between force and displacement. c. Explain how the work done on an object by an applied force acting on an object can be negative or zero. a. Compare conservative and dissipative forces. b. Describe the role of a conservative force or a dissipative force in a dynamic system. 	6 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • Energy Test Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project

	 a. Describe physical situations in which mechanical energy of an object in a system is converted to other forms of energy in the system. b. Describe physical situations in which the total mechanical energy of an object in a system changes or remains constant. a. Derive an expression for the rate at which a force does work on an object. b. Calculate the amount of power required for an object to maintain a constant acceleration. c. Calculate the amount of power required for an object to be raised vertically at a constant rate. 		 Alternative Assessments (projects, etc when appropriate) Kiss the Egg Lab Work and Energy Lab
4. Systems of Particles and Linear Momentum	 a. Calculate the center of mass of a system of point masses or a system of regular symmetrical objects. b. Calculate the center of mass of a thin rod of nonuniform density using integration. a. Calculate the total momentum of an object or a system of objects. b. Calculate relationships between mass, velocity, and linear momentum of a moving object. a. Calculate the velocity of one part of a system after an explosion or a collision of the system. b. Calculate energy changes in a system that undergoes a collision or an explosion. 	4 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • No Test • Possible short summative project Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project Alternative Assessments (projects, etc when appropriate) • Center of Mass Activity • Impulse of a falling chain • Momentum of collisions lab
5. Rotation	 a. Calculate the magnitude and direction of the torque associated with a given force acting on a rigid body system. b. Calculate the torque acting on a rigid body due to the gravitational force. a. Derive the moment of inertia, using calculus, of a thin rod of uniform density about an arbitrary axis perpendicular to the rod. b. Derive the moment of inertia, using calculus, of a thin rod of nonuniform density about an arbitrary axis perpendicular to the rod. 	7 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • Rotation test Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam

		1	
	c. Derive the moments of inertia for a thin		Course culminating project
	cylindrical shell or disc about its axis or an object		Alternative Assessments (projects, etc when appropriate)
	that can be considered to be made up of coaxial		Hoop and Disc Race
	shells (e.g., annular ring).		Unknown Rotational Inertia Lab
	a. Explain how the angular kinematic relationships		
	for uniform angular acceleration are directly		
	analogous to the relationships for uniformly and		
	linearly accelerated motion.		
	b. Calculate unknown quantities such as angular		
	positions, displacement, angular speeds, or angular		
	acceleration of a rigid body in uniformly		
	accelerated motion, given initial conditions.		
	c. Calculate unknown quantities such as angular		
	positions, displacement, angular velocity, or		
	rotational kinetic energy of a rigid body rotating		
	with a specified nonuniform angular acceleration.		
	which is operation in angular accelerations		
	a Describe the complete analogy between fixed		
	axis rotation and linear translation for an object		
	subject to a net torque.		
	b Calculate unknown quantities such as net torque		
	angular acceleration or moment of inertia for a		
	rigid body undergoing rotational acceleration		
	c Calculate the angular acceleration of an extended		
	rigid body of known moment of inertia about a		
	fixed axis or about its center of mass when it is		
	experiencing a specified pet torque due to one or		
	several applied forces		
	several applied forces.		
	a Calculate the angular impulse acting on a rotating		
	a. Calculate the angular impulse acting on a fotating		
	formed acting over time intervals		
	b Calculate the angular momentum verter of a		
	b. Calculate the angular momentum vector of a		
	parallel to the appropriate value site vector is		
	parallel to the angular velocity vector.		
6 Oscillations and Gravitation	a Describe the general behavior of a spring mass	6 Blocks	Formative
o. Obemations and Oravitation	system in SHM in qualitative terms	0 DIOCRO	· Do now feedback
	b Describe the relationship between the phase		· Fxit ticket feedback
	angle and amplitude in an SHM system		Formative worksheets
	angle and ampitude in an or five system.		Teacher and peer feedback
		1	

	 Derive a differential equation to describe Newton's second law for a spring-mass system in SHM or for the simple pendulum. Describe the kinetic energy as a function of time (or position), potential energy as a function of time (or position), and total mechanical energy as a function of time (or position) for a spring-mass system in SHM, identifying important features of the oscillating system and where these features occur. Calculate the magnitude of the gravitational force between two large spherically symmetrical masses. Calculate quantitative properties (such as period, speed, radius of orbit) of a satellite in circular orbit around a planetary object. 		Summative · Oscillations Test · Gravity Project Common Benchmark Assessments (mid/end of course) · Mid-year Mechanics Test · AP Test · Course final exam · Course culminating project Alternative Assessments (projects, etc when appropriate) · SHO equations activity · Physical Pendulum Lab · Gravitational Potential Energy Simulation Lab
7. Electrostatics	 Describe behavior of charges or system of charged objects interacting with each other. Using the definition of electric field, unknown quantities (such as charge, force, field, and direction of field) can be calculated in an electrostatic system of a point charge or an object with a charge in a specified electric field. Calculate the value of the electric potential in the vicinity of one or more point charges. a. State and apply the general definition of electric flux. b. Calculate the electric flux through an arbitrary area or through a geometric shape (e.g., cylinder, sphere). c. Calculate the flux through a rectangular area when the electric field is perpendicular to the rectangle and is a function of one position coordinate only. Derive expressions for the electric field of specified charge distributions using integration and the 	8 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • Coulomb's Law Test • Gauss' Law Test • Gauss' Law Test • Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project Alternative Assessments (projects, etc when appropriate) • Coulomb's Law Lab • Charge on tape • PhET Electric Field • PhET Electric Potential

	principle of superposition. Examples of such charge distributions include a uniformly charged wire, a thin ring of charge (along the axis of the ring), and a semicircular or part of a semicircular arc.		
8. Conductors, Capacitors, and Dielectrics	 a. Recognize that the excess charge on a conductor in electrostatic equilibrium resides entirely on the surface of a conductor. b. Describe the consequence of the law of electrostatics and that it is responsible for the other law of conductors (that states there is an absence of an electric field inside of a conductor). a. Apply the general definition of capacitance to a capacitor attached to a charging source. b. Calculate unknown quantities such as charge, potential difference, or capacitance for physical system with a charged capacitor. Describe and/or explain the physical properties of an insulating material when the insulator is placed in an external electric field. 	5 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • No test - possible lab practical Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course final exam • Course sements (projects, etc when appropriate) • Resistivity Lab • Construct a Capacitor Lab
9. Electric Circuits	 a. Calculate unknown quantities relating to the definition of current. b. Describe the relationship between the magnitude and direction of current to the rate of flow of positive or negative charge. a. Derive expressions that relate current, voltage, and resistance to the rate at which heat is produced in a resistor. b. Calculate different rates of heat production for different resistors in a circuit. a. Identify parallel or series arrangement in a circuit containing multiple resistors. b. Describe a series or a parallel arrangement of resistors. 	4 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • DC Circuits Test Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project Alternative Assessments (projects, etc when appropriate) • Internal Resistance Lab • Capacitance Investigation • Circuit Puzzles

	 a. Calculate the equivalent capacitance for capacitors arranged in series or parallel, or a combination of both, in steady-state situations. b. Calculate the potential differences across specified capacitors arranged in a series in a circuit. c. Calculate the stored charge in a system of capacitors and on individual capacitors arranged in series or in parallel. 		· RC Circuits
10. Magnetics Fields	 a. Calculate the magnitude and direction of the magnetic force of interaction between a moving charged particle of specified charge and velocity moving in a region of a uniform magnetic field. b. Describe the direction of a magnetic field from the information given by a description of the motion or trajectory of a charged particle moving through a uniform magnetic field. c. Describe the conditions that are necessary for a charged particle to experience no magnetic force of interaction between the particle and the magnetic field. a. Calculate the magnitude of the magnetic force acting on a straight-line segment of a conductor with current in a uniform magnetic field. b. Describe the direction of the magnetic force of interaction on a segment of a straight current-carrying conductor in a specified uniform magnetic field. a. Calculate the magnitude and direction of a magnetic field. b. Describe the direction of the magnetic force of interaction on a segment of a straight current field. a. Calculate the magnitude and direction of a magnetic field. b. Describe the direction of the magnetic force of interaction on a segment of a straight current-carrying conductor in a specified uniform magnetic field. a. Calculate the magnitude and direction of a magnetic field near a long, straight, current-carrying wire. b. Apply the right-hand rule for magnetic field of a straight wire (or correctly use the Biot–Savart Law found in CNV-8.A.1) to deduce the direction of a magnetic field near a long, straight, current-carrying wire. a. Describe the direction of the contribution to the magnetic field made by a short (differential) length 	5 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback Summative • Magnetic Fields Test Common Benchmark Assessments (mid/end of course) • Mid-year Mechanics Test • AP Test • Course final exam • Course culminating project Alternative Assessments (projects, etc when appropriate) • Magnetic Field of a slinky lab • Magnetic field strength lab • Magnetic field strength of Earth lab

	of straight segment of a current-carrying conductor. b. Calculate the magnitude of the contribution to the magnetic field due to a short (differential) length of a straight segment of a current-carrying conductor.		
11. Electromagnetism	 a. Calculate the magnetic flux through a loop of regular shape with arbitrary orientation in relation to the magnetic-field direction. b. Calculate the magnetic flux of the field due to a current-carrying, long, straight wire through a rectangular-shaped area that is in the plane of the wire and oriented perpendicularly to the field. c. Calculate the magnetic flux of a non-uniform magnetic field that may have a magnitude that varies over one coordinate through a specified rectangular loop that is oriented perpendicularly to 	5 Blocks	Formative Do now feedback Exit ticket feedback Formative worksheets Teacher and peer feedback Summative Faraday's Law Test Common Benchmark Assessments (mid/end of course) Mid-year Mechanics Test AP Test
	 a. Derive the expression for the inductance of a long solenoid. b. Calculate the magnitude and the sense of the EMF in an inductor through which a changing current is specified. c. Calculate the rate of change of current in an inductor with a transient current. a. Explain how a changing magnetic field can induce an electric field. b. Associate the appropriate Maxwell's equation with the appropriate physical consequence in a 		 Course final exam Course culminating project Alternative Assessments (projects, etc when appropriate) Faraday's Law lab RC, LR, and LC circuit labs
12. Conclusions and Summative Project	physical system containing a magnetic or electric field. Research and report on a notable physicist that provides inspiration Explore a notable aspect of physics that has not been explored during the year. Create a short	10 Blocks	Formative • Do now feedback • Exit ticket feedback • Formative worksheets • Teacher and peer feedback

	Summative · Unit culminating project presentation	
	Common Benchmark Assessments (mid/end of cour · Mid-year Mechanics Test · AP Test · Course final exam · Course culminating project	se)
	Alternative Assessments (projects, etc when appropria N/A	ate)

Unit 1: Kinematics

 Enduring Understandings: There are relationships among the vector quantities of position, velocity, and acceleration for the motion of a particle along a straight line. There are multiple simultaneous relationships among the quantities of position, velocity, and acceleration for the motion of a particle moving in more than one dimension with or without net forces. 	 Essential Questions: How can mathematical representations, specifically through calculus, accurately describe the motion of an object? How can different graphical representations of movement describe the motion of an object and how can they be utilized? How can we utilize derivatives and integrals to analyze the information contained within position, velocity, and acceleration graphs? 		
Interdisciplinary Connections			

RST.11-12.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

MP.2 - Reason abstractly and quantitatively

MP.4 - Model with mathematics

Standard I	Number & Description	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-1	Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.	 Motion in one dimension Concepts Differentiation and integration are necessary for determining functions that relate position, velocity, and acceleration for an object with nonuniform acceleration. Position, velocity, and acceleration versus time for a moving object are related to each other and depend on an understanding of slope, 	Desktop Experiment Provide students with a pull-back toy car and a means to take video, and have them record position versus time data for the car as it speeds up and slows down. Have students fit a cubic polynomial to the position-time data and use calculus to predict the car's maximum speed and initial and final magnitude of acceleration. Desktop Experiment Give students a ball launcher, right-triangular block, and meterstick.	Resources • Knight textbook • AP Classroom • HyperPhysics • PhET Simulations • Pivot Interactives simulations • Physics Classroom simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets Lab reports and lab notebook checks Progress checks
		intercepts, asymptotes, and	Have them calculate		

PS2.A	Newton's second law		area or upon conceptual	the launch speed of the ball using a	 Mastering 	Unit summative test
	accurately		calculus concepts.	horizontal launch of the ball from the	Physics	
	predicts changes in the	 Skills 	I	launcher, then predict where the ball		Project rubrics
	motion of	0	Describe the physical	will land if the ball is launched on the	Materials	,
	macroscopic objects.		meaning (includes identifying	triangular block.	 PASCO data 	
	1 /		features) of a representation.	0	sensors	
		0	Describe the relationship	Changing Representations	• PASCO	
ETS1.A	Criteria and constraints		between different types of	Give students a verbal description of	motion carts	
	also		representations of the same	segmented motion, such as	and tracks	
	include satisfying any		physical situation.	"accelerates from	 PASCO 	
	requirements set by	0	Select and plot appropriate	rest at $5 \text{ m/s}2$ for 10 seconds , then	Sparkvue	
	society, such		data.	comes to rest again after another 20	software	
	as taking issues of risk	0	Identify and describe patterns	seconds." Have students draw	 Students 	
	mitigation		and trends in data or a graph.	position/velocity/acceleration graphs	supplied	
	into account, and they	0	Linearize data and/or	and formulate piecewise	devices	
	should be		determine a best fit line or	position/velocity/acceleration	(Phones,	
	quantified to the extent		curve.	equations of motion.	laptops)	
	possible	0	Select an appropriate law,			
	and stated in such a		definition, mathematical	Create a Plan		
	way that one		relationship, or model to	Find data for speed and total stopping		
	can tell if a given		describe a physical situation.	distance for cars. Provide students		
	design meets	0	Make a scientific claim.	with five pairs of speed and total		
	them.			stopping distances (not broken into		
		Motion in two di	mensions	thinking and braking distances). Ask		
		 Concep 	ts	students to determine from the data		
		0	All of the kinematic	the driver's reaction time and the car's		
			quantities are vector	braking acceleration.		
			quantities and can be			
			resolved into components	Graph and Switch		
			(on a given coordinate	Student A creates a horizontal and		
			system).	vertical pair of velocity graphs for		
		0	Motion in two dimensions	projectile		
			can be analyzed using the	motion, and Student B must write a		
			kinematic equations if the	narrative of what happens (including		
			motion is separated into	whether the projectile was shot at an		
			vertical and horizontal	angle, landed higher or lower, or at the		
		• C1-:11-	components.	same neight).		
		• Skills	Demonstrate appointer av			
		0	between different types = f			
			representations of the corre-			
			representations of the same			
			physical situation.			

 Determine the relationship between variables within an equation when an existing variable changes. Extract quantities from narratives or mathematical relationships to solve problems. Support a claim with
evidence from experimental data.

Unit 2: Newton's Laws

 Enduring Understandings: A net force will change the translational motion of an object. The motion of some objects is constrained so that forces acting on the object cause it to move in a circular path. There are force pairs with equal magnitude and opposite directions between any two interacting objects. 	 Essential Questions: How can we visualize forces, and what approaches can we take to analyze the forces acting on an object? How is it possible that an object moves at a constant speed while accelerating and what kind of motion is this? Where do we see representations of Newton's Third Law in real life, and how does this affect how we analyze the forces acting on an object? 			
Interdisciplinary Connections				
RST.11-12.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.				
MP.2 - Reason abstractly and quantitatively				
MP.4 - Model with mathematics				

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-1	Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.	 Newton's First and Second Laws Concepts Newton's second law can be applied to an object in accelerated motion or in a state of equilibrium. The direction of friction can be determined by the relative motion between surfaces in kinetic frictional cases. 	Desktop Experiment Drill a small hole in the center of a wooden meterstick so that a pencil point fits in the hole. Place a penny on the meterstick and gently rotate the meterstick faster and faster until the penny slips. Have students make measurements and calculations to find the coefficient of static friction between the meterstick and the penny.	Resources • Knight textbook • AP Classroom • HyperPhysics • PhET Simulations • Pivot Interactives simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets

PS2.A	Newton's second law accurately	0	Because the resistive force is a function of velocity,	Graph and Switch Student A produces a free-body	•	Physics Classroom	Lab reports and lab notebook checks
	predicts changes in the motion of		applying Newton's second law correctly will lead to a	diagram. Student B is to suggest a situation where the forces on an object	•	simulations Mastering	Progress checks
	macroscopic objects.		velocity.	Discussion Groups	Matoria	Physics	Unit summative test
ETS1.A	Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them.	0 0 0 0 0 0 0	Describe the physical meaning (includes identifying features) of a representation. Make observations or collect data from representations of laboratory setups or results. Represent features of a model or the behavior of a physical system using appropriate graphing techniques, appropriate scale, and units. Demonstrate consistency between different graphical representations of the same physical situation. Select an appropriate law, definition, mathematical relationship, or model to describe a physical situation. Make a scientific claim. Support a claim with evidence from experimental data.	Have students explain why a strong man will win against a small child in tug-of-war, even though the rope always has the same tension at both ends. Have students support their reasoning with free-body diagrams. Desktop Experiment Ask students to find the coefficient of friction (static or kinetic) of a shoe or other object. This activity can be made into a competition, where the team with the simplest procedure or the team that uses the least equipment wins. Desktop Experiment Give students an object having unknown-mass (or have students use their set of house keys, if available), known masses, string, pulley, meterstick, and stopwatch. Have students determine the unknown mass of the object.	•	PASCO data sensors PASCO motion carts and tracks PASCO Sparkvue software Students supplied devices (Phones, laptops)	Project rubrics
		Circular Motion					
		• Concep	ts In order for an object to				
			undergo circular motion in any context, there must be a				
			force, multiple forces, or				
			in the radial direction. These forces can be represented				

	with appropriate free-body		
	diagrams.		
 Skills 			
0	Describe the relationship		
	between different types of		
	representations of the same		
	physical situation.		
0	Determine the relationship		
	between variables within an		
	equation when a new variable		
	is introduced.		
0	Apply an appropriate law,		
	definition, or mathematical		
	relationship to solve a		
	problem.		
	-		
Newton's Third I	LAW		
Concept	ts		
0	To analyze a complete system		
	of multiple connected masses		
	in motion, several		
	applications of Newton's		
	second law in conjunction		
	with Newton's third law may		
	be necessary. This may		
	involve solving two or three		
	simultaneous linear		
	equations.		
 Skills 			
0	Demonstrate consistency		
	between different types of		
	representations of the same		
	physical situation.		
0	Determine the relationship		
	between variables within an		
	equation when a new variable		
	is introduced.		
0	Determine or estimate the		
	change in a quantity using a		
	mathematical relationship.		
0	Support a claim with		
	evidence from physical		
	representations.	1	

	• Provide reasoning to justify		

Unit 3: Work, Energy, and Power

Enduring Understandings:	Essential Questions:			
 When a force is exerted on an object, and the energy of the object changes, then work was done on the object. Conservative forces internal to the system can change the potential energy of that system. The energy of a system can transform from one form to another without changing the total amount of energy in the system. The energy of an object or a system can be changed at different rates. 	 How do forces affect the energy of a system? What is work? How can this concept be more useful than analyzing the forces acting upon a system? How does the concept of energy transfer assist engineers in designing things like roller coasters, cars, etc.? How can we utilize the concept of power to analyze the ways that we utilize energy in our daily lives? 			
Interdisciplinary Connections				
SL.11-12.5 - Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. HSN-Q.A.2 - Define appropriate quantities for the purpose of descriptive modeling.				

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS3-1	Create a computational	Work-Energy Theorem	Bar Chart	Resources	Daily Do Nows
	model to calculate the	Concepts	Present students with a sequence of	 Knight 	
	change in the energy of	• The component of the	two or three energy bar charts and	textbook	Teacher and peer
	one component in a	displacement that is parallel	have them describe a realistic situation	• AP	feedback
	system when the	to the applied force is used to	that would involve those energy	Classroom	
	change in energy of the	calculate the work.	transformations.	 HyperPhysics 	Exit Tickets
	other component(s)	• The area under the curve of a	Students must also draw a diagram of	• PhET	
	and energy flows in	force versus position graph is	the situation.	Simulations	Individual activity
	and out of the system	equivalent to the work done		• Pivot	guided worksheets
	are known.	on the object or system.	Graph and Switch	Interactives	
		Skills	Student A constructs a potential	simulations	Lab reports and lab
		• Identify a testable scientific	energy (PE) function that has at least	 Physics 	notebook checks
		question or problem.	one minimum and a graph of that	Classroom	
			function. Student B formulates	simulations	Progress checks

HS-PS3-2	Develop and use	0	Support a claim with	AP-level questions about the PE	•	Mastering	
	models to illustrate that		evidence from physical	function (i.e., "If a 2 kg mass is		Physics	Unit summative test
	energy at the		representations.	released at $x = 3$ m, what is its speed at		,	
	macroscopic scale can		- <u>r</u>	x = 9 m?") that Student C must	Material	s	Project rubrics
	be accounted for as a	Forces and Poten	tial Energy	answer.	•	PASCO data)
	combination of energy	Concept	ts			sensors	
	associated with the	0	A force can be defined as a	Desktop Experiment	•	PASCO	
	motions of particles		conservative force if the work	Using spring-loaded suction cup		motion carts	
	(objects) and energy		done on an object by the	launchers, have students measure the		and tracks	
	associated with the		force depends only on the	spring constant of the spring, not by	•	PASCO	
	relative position of		initial and final position of	removing the spring from the		Sparkvue	
	particles (objects).		the object.	launcher, but by measuring some		software	
	1 () /	 Skills 	,	aspect of the suction cup's motion	•	Students	
		0	Select relevant features of a	after being launched.		supplied	
			representation to answer a			devices	
			question or solve a problem.	Identify Subtasks		(Phones,	
		0	Demonstrate consistency	Have students construct graph of		laptops)	
			between different graphical	power delivered to a car as a function			
			representations of the same	of time as the car accelerates from rest			
			physical situation.	and reaches full speed. Next, ask			
		0	Extract quantities from	students to determine the car's mass			
			narratives or mathematical	and its velocity as a function of time.			
			relationships to solve				
			problems.	Changing Representations			
				Have each student describe an			
		Conservation of	Energy	everyday activity that involves the			
		Concept	ts	transfer of mechanical energy.			
		0	If only forces internal to the	Students then construct energy bar			
			system are acting on an	charts showing the exchanges of			
			object in a physical system,	energy and free-body diagrams to			
			then the total change in	show the forces doing work, and			
			mechanical energy is zero.	flowcharts to show the flow of energy			
		 Skills 		from one system or form to another.			
		0	Identify or describe potential				
			sources of experimental				
			error.				
		0	Select relevant features of a				
			graph to describe a physical				
			situation or solve problems.				
		0	Determine the relationship				
			between variables within an				
			equation when a new variable				
			is introduced.				

 Calculate an unknown quantity with units from known quantities by selecting and following a logical computational pathway. Explain the connection between experimental results and larger physical principles, laws, or theories.
Power
• Concepts
• Power is defined by the
following expressions
$\mathbf{P} = \frac{dE}{dE}$
$\blacksquare P = F \cdot v$
• Skills
• Determine or estimate the
change in a quantity using a
mathematical relationship.

Unit 4: Systems of Particles and Linear Momentum

Enduring Understandings:	Essential Questions:			
 The linear motion of a system can be described by the displacement, velocity, and acceleration of its center of mass. An impulse exerted on an object will change the linear momentum of the object. In the absence of an external force, the total momentum within a system can transfer from one object to another without changing the total momentum in the system. 	 Why is the center of mass of a system important for defining the momentum? How can we utilize the concept of impulse to design systems that mitigate the harmful effects of collisions? How can we prove that internal forces do not affect the momentum of a system? 			
HSN-Q.A.1 - Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.				
HSN-Q.A.2 - Define appropriate quantities for the purpose of descriptive modeling.				

Standard Number & Description		Content, Themes, Concepts, and Skills		Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-2	Use mathematical	Center of Mass		Four-Square Problem Solving	Resources	Daily Do Nows
	representations to	 Concep 	ts	Present students with some problem	 Knight 	
	support the claim that	0	A symmetrical, regular solid	where an object's motion changes	textbook	Teacher and peer
	the total momentum of		of uniform mass density has	(such as a car on an on-ramp entering	• AP	feedback
	a system of objects is		a center of mass at its	a freeway). Have students determine	Classroom	
	conserved when there		geometric center.	the force applied to the object using	 HyperPhysics 	Exit Tickets
	is no net force on the	0	If there is no net force acting	Newton's laws of motion, work-energy	● PhET	
	system.		on an object or a system, the	theorem, and impulse-momentum	Simulations	Individual activity
HS-PS2-3	Apply scientific and		center of mass does not	theorem. The fourth square is a	• Pivot	guided worksheets
	engineering ideas to		accelerate; therefore, the	free-body diagram.	Interactives	
	design, evaluate, and		velocity of the center of mass		simulations	Lab reports and lab
	refine a device that		remains unchanged.	Desktop Experiment	 Physics 	notebook checks
	minimizes the force on	 Skills 		Give students two spring-loaded carts	Classroom	
	a macroscopic object	0	Apply an appropriate law,	with different mass First, have	simulations	Progress checks
	during a collision.		definition, or mathematical	students determine the amount of		

HS-PS3-1	Create a computational		relationship to solve a	kinetic energy gained by Cart 1 when	•	Mastering	Unit summative test
	model to calculate the]	problem.	launched by its spring. Then, have		Physics	
	change in the energy of	Impulse and Mom	entum	students make Cart 1 collide elastically			Project rubrics
	one component in a	 Concepts 	3	with Cart 2 and predict where Cart 2	Materials	3	
	system when the	0	For a single object moving	will land when it rolls off of the track.	•	PASCO data	
	change in energy of the		with some velocity,			sensors	
	other component(s)	1	momentum is defined as:	Desktop Experiment	•	PASCO	
	and energy flows in		p = mv	Using two bathroom scales and a long		motion carts	
	and out of the system	0	Impulse is defined as the	wooden plank, have students		and tracks	
	are known.	:	average force acting over a	determine the location of their center	•	PASCO	
			time interval.	of mass. Have students determine how		Sparkvue	
		0	A collection of objects with	far their center of mass moves as they		software	
			individual momenta can be	move their arms from their sides to up	•	Students	
			described as one system with	over their head.		supplied	
			one center of mass velocity.			devices	
		 Skills 		Desktop Experiment		(Phones,	
		0	Demonstrate consistency	Give students a device that fires a		laptops)	
			between different types of	projectile much faster than can be			
		:	representations of the same	time data. Students are to fire the			
			physical situation.	projectile into			
		0	Identify appropriate	a stationary freely movable object:			
			experimental procedures to	make necessary measurements and use			
			(which may include a shotch	conservation of momentum to			
			(which may include a sketch	determine the launch speed of the			
		0	Determine or estimate the	projectile.			
		0	change in a quantity using a	F			
			mathematical relationship				
		Conservation of L	inear Momentum /Collisions				
		Concepts					
		0 '	Total momentum is				
			conserved in the system and				
		:	momentum is conserved in				
			each direction in the absence				
			of an external force.				
		0	Forces internal to a system				
			do not change the				
		:	momentum of the center of				
		:	mass.				
		0	In the absence of a net				
			external force during an				
			interaction, linear momentum				
			is conserved.				

• Skil	
	• Describe the effects of
	modifying conditions or
	features of a representation
	of a physical situation.
	• Derive a symbolic expression
	from known quantities by
	selecting and following a
	logical algebraic pathway.
	• Provide reasoning to justify a
	claim using physical
	principles or laws.
	\circ Explain the connection
	between experimental results
	and larger physical principles,
	laws, or theories.
	• Explain how potential
	sources of experimental error
	may affect results and/or
	conclusions.

Unit 5: Rotation

Enduring Understandings:	Essential Questions:					
 When a physical system involves an extended rigid body, there are two conditions of equilibrium—a translational condition and a rotational condition. There are relationships among the physical properties of angular velocity, angular position, and angular acceleration. A net torque acting on a rigid extended body will produce rotational motion about a fixed axis. In the absence of an external torque, the total angular momentum of a system can transfer from one object to another within the system without changing the total angular momentum of the system. 	 How is the concept of torque considered when designing and utilizing levers? What parallels can be drawn between linear and angular kinematics and momentum? How can we apply Newton's Laws to rotating systems? In what ways can we utilize linear and rotational approaches to analyze the motion of a system? 					
Interdisciplinary	Connections					
RST.11-12.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.						
MP.2 - Reason abstractly and quantitatively						
MP.4 - Model with mathematics						

Standard Number & Description	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its	Torque and Rotational Statics • Concepts • The definition of torque is $\overline{\tau} = \overline{r} \times \overline{F}$ • The calculus definition of moment of inertia is $I = \int r^2 dm$ • Skills	Desktop Experiment Students allow a yo-yo to fall and unroll. Have them use a meterstick and stopwatch to determine its downward acceleration. Also have them measure its mass and the radius of its axle and use that information to determine the yo-yo's rotational inertia using rotational dynamics.	Resources Knight textbook AP Classroom HyperPhysics PhET Simulations 	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets

	mass, and its	0	Make observations or collect		•	Pivot	T 1
	acceleration.	-	data from representations of	Desktop Experiment		Interactives	Lab reports and lab
PS2.A	Newton's second law		laboratory setups or results.	Have students release a yo-yo from the		simulations	notebook checks
	accurately	0	Represent features of a	top of a ramp and allow it to roll down	•	Physics	
	predicts changes in the		model or the behavior of a	the ramp. Have them use a meterstick		Classroom	Progress checks
	motion of		physical system using	and stopwatch to determine the		simulations	
	macroscopic objects.		appropriate graphing	yo-yo's final velocity and the height of	•	Mastering	Unit summative test
			techniques, appropriate scale,	its release. Next, have them measure		Physics	
			and units.	the yo-yo's outer radius and mass and			Project rubrics
HS-PS3-1	Create a computational	Rotational Kinem	natics	use that information to determine the	Materia	ls	
	model to calculate the	Concept	ts	yo-yo's rotational inertia using energy	•	PASCO data	
	change in the energy of	0	There are angular kinematic	concepts.		sensors	
	one component in a		relationships for objects		•	PASCO	
	system when the		experiencing a uniform	Create a Plan		motion carts	
	change in energy of the		angular acceleration.	Have students complete the necessary		and tracks	
	other component(s)	 Skills 		research to determine the rotational	•	PASCO	
	and energy flows in	0	Make a claim or predict the	inertia of a human body in different		Sparkvue	
	and out of the system		results of an experiment.	configurations (arms outstretched,		software	
	are known.	0	Determine the relationship	arms pulled in, for example). Then,	•	Students	
			between variables within an	obtain footage of a figure skater		supplied	
			equation when an existing	spinning and pulling in her his/arms.		devices	
			variable changes.	Have students analyze the footage to		(Phones,	
		0	Calculate an unknown	see if angular momentum is conserved.		laptops	
			quantity with units from				
			known quantities, by selecting	Bar Chart			
			and following a logical	Have students a hoop and a disk (equal			
			computational pathway.	mass and radius) down identical			
		Rotational Dynam	nics and Energy	ramps. Then have them explain why			
		Concept	ts	the disk reached the bottom in less			
		0	The rotational analogue to	time using energy bar charts and			
			Newton's Second Law is	to-scale free-body diagrams.			
			$\overline{\alpha} = \frac{\Sigma \tau}{I}$	Identify Subtaska			
		0	A complete analysis of a	Have students design a wellway (- f			
			dynamic system that is rolling	Have students design a walkway (of			
			without slipping can be	given mass) that is to be suspended			
			performed by applying both	from a ceiling. Have them determine			
			of Newton's second laws	the amount of force the two supports			
			properly to the system.	(one on each end) must be able to			
		0	If a rigid body is defined as	walks across the walkway			
			"rolling," this implies (in the	waiks across the walkway.			
			ideal case) that the frictional				
			force does no work on the				

		rolling object. The		
		consequence of this property		
		is that in some special cases		
		(such as a sphere rolling		
		down an inclined surface)		
		the conservation of		
		machanical anarray can be		
		mechanical energy can be		
	01.111	applied to the system.		
	 Skills 			
	0	Describe the effects of		
		modifying conditions or		
		features of a representation		
		of a physical situation.		
	0	Sketch a graph that shows a		
		functional relationship		
		between two quantities.		
	0	Select relevant features of a		
		graph to describe a physical		
		situation or solve problems.		
	0	Determine or estimate the		
		change in a quantity using a		
		mathematical relationship		
	Angular Momenti	im and Its Conservation		
		The definition of angular		
	Ŭ	momentum of a rotating rigid		
		body is $L = I\omega$		
	0	The conservation of angular		
		momentum can be applied to		
		many types of physical		
		situations. In all cases, it must		
		be determined that there is		
		no net external torque on the		
		system.		
	 Skills 			
	0	Describe the effects of		
		modifying conditions or		
		features of a representation		
		of a physical situation.		
	0	Derive a symbolic expression		
		from known quantities by		
		selecting and following a		
		logical algebraic pathway.		
		0 0		

 6.D Assess the reasonableness of results or solutions 		
 Provide reasoning to justify a claim using physical 		
principles or laws.		

Unit 6: Oscillations and Gravity

nce gravity on Earth's surface e scale of the Solar System? The prbital systems allow us to launch						
Interdisciplinary Connections						
1ce g 2 scal 1rbita						

RST.11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

Standard Number & Description		Content, Themes, Concepts, and Skills		Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-1	Analyze data to	Simple Harmonio	c Motion, Springs. and	Changing Representations	Resources	Daily Do Nows
	support the claim that	Pendulums		Students are given a graph of	 Knight 	
	Newton's second law	 Conception 	ts	position/velocity/acceleration for	textbook	Teacher and peer
	of motion describes	0	The general relationship for	SHM and must make the other three	• AP	feedback
	the mathematical		SHM is given by the	graphs with the same time scale, along	Classroom	
	relationship among the		following relationship	with force, momentum, kinetic energy,	 HyperPhysics 	Exit Tickets
	net force on a		$x = Acos(\omega t + \varphi)$	potential energy, and total energy	 PhET 	
	macroscopic object, its	0	Using calculus and the	versus time graphs. The students must	Simulations	Individual activity
	mass, and its		position in relation to time	also make energy bar charts for	• Pivot	guided worksheets
	acceleration.		relationship for an object in	various instants during the SHM.	Interactives	
HS-PS2-4	Use mathematical		SHM, all three kinematic		simulations	Lab reports and lab
	representations of		characteristics can be	Desktop Experiment	 Physics 	notebook checks
	Newton's Law of		explored. Recognizing the	Obtain a steel ruler or yardstick, clamp	Classroom	
	Gravitation and		positions or times where the	it to a table, and attach various masses	simulations	Progress checks
	Coulomb's Law to		trigonometric functions have	to the end with the hole in it. Have	 Mastering 	
	describe and predict		extrema or zeroes can	students measure the period of	Physics	Unit summative test

	the gravitational and		provide more detail in	oscillation for each mass attached, and		
	electrostatic forces		qualitatively describing the	then use the data to determine the	Materials	Project rubrics
	between objects.		behavior of the motion.	spring constant of the steel ruler.	PASCO data	
HS-PS3-2	Develop and use	• Skills			sensors	
	models to illustrate that	0	Describe the effects of	Desktop Experiment	• PASCO	
	energy at the		modifying conditions or	Have students use a pendulum to	motion carts	
	macroscopic scale can		teatures of a representation	determine the acceleration of gravity in	and tracks	
	be accounted for as a		of a physical situation.	the classroom. The winners are the	PASCO	
	combination of energy	0	Make a claim or predict the	group whose procedure includes the	Sparkvue	
	associated with the		results of an experiment.	most	software	
	motions of particles	0	Explain modifications to an	components for reducing error (timing	Students	
	(objects) and energy		experimental procedure that	multiple periods, linearizing data, very	supplied	
	associated with the		will alter results.	precisely finding the center of mass of	devices	
	relative position of	0	Linearize data and/or	the bob, for example).	(Phones,	
	particles (objects).	-	determine a best fit line or		laptops	
			curve.	Ranking		
		0	Explain how the data or	Give students four to six cases of a		
			graph illustrates a physics	mass on a spring. The cases show		
			principle, process, concept,	different masses, spring constants, and		
			or theory.	oscillation amplitudes (m/k/2A,		
		0	Derive a symbolic expression	m/2k/A, and $2m/k/2A$, for example).		
			from known quantities by	Have students rank them based on		
			selecting and following a	period, frequency, maximum speed,		
			logical algebraic pathway.	maximum acceleration, maximum		
		0	Explain how potential	force, and total energy.		
			sources of experimental error			
			may affect results and/or	Predict and Explain		
			conclusions.	Have students predict whether a ball		
		Gravitational For	rces	rolling back and forth inside a		
		Concep	ts	spherical bowl is SHM. Have them		
		0	The magnitude of the	take data to show whether this is SHM		
			gravitational force between	(period independent of amplitude or		
			two masses can be	motion is a sine function or force		
			determined by using	proportional to displacement).		
			Newton's universal law of			
			gravitation.	Identify Subtasks		
		0	The gravitational force is	Have students research the structure		
			proportional to the inverse of	of the Earth (specifically the density		
			distance squared; therefore,	and depth of the various layers of the		
			the acceleration of an object	Earth: crust, mantle, outer core, inner		
			under the influence of this	core) and then calculate what the		
			type of force will be	gravitational field strength must be at		
			nonuniform.	the boundary of each layer.		

i		i	
	• Skills		
	 Create appropriate diagrams 	Predict and Explain	
	to represent physical	Have students predict whether an	
	situations.	object dropped into a hole drilled into	
	• Explain how the data or	a uniformly-dense, non-rotating planet	
	graph illustrates a physics	exhibits simple harmonic motion.	
	principle, process, concept,	Have students show that it does	
	or theory.	(because the gravitational force is	
	• Derive a symbolic expression	proportional to displacement from the	
	from known quantities by	center).	
	selecting and following a		
	logical algebraic pathway.	Bar Chart	
	Orbits of Planets and Satellites	Have students create an energy	
	Concepts	bar-chart for an actual comet or	
	• The centripetal force acting	asteroid that orbits the sun. Next, have	
	on a satellite is provided by	them research the orbital parameters	
	the gravitational force	of the asteroid to make to-scale bar	
	between satellite and planet.	charts. The perihelion should be	
	 Verifying Kepler's third law 	between 20% and 70% of the	
	with actual data provides	aphelion.	
	experimental verification of		
	the law.	Desktop Experiment	
	• The total mechanical energy	Have students use the My Solar	
	of a satellite is inversely	System PhET applet to establish a	
	proportional to the orbital	circular orbit of a planet whose mass is	
	distance and is always a	very small compared to the central	
	negative value and equal to	star. Trying various combinations of	
	one half of the gravitational	radius, speed, star mass, and planet	
	potential energy.	mass (always making a circular orbit),	
	• In all cases of orbiting	have students show evidence of	
	satellites, the total angular	Newton's Law of Universal	
	momentum of the satellite is	Gravitation.	
	a constant.		
	• Skills	Desktop Experiment	
	• Sketch a graph that shows a	Have students use the My Solar	
	functional relationship	System PhET applet to establish a	
	between two quantities.	circular orbit of a planet whose mass is	
	• Determine or estimate the	very small compared to the central	
	change in a quantity using a	star. Trying various combinations of	
	mathematical relationship.	radius and speed (always making a	
	• Calculate an unknown	circular orbit), have students show	
	quantity with units from	evidence of Kepler's Third Law.	
	known quantities by selecting		

0	and following a logical computational pathway. Explain how potential sources of experimental error		
	may affect results and/or conclusions.		

Unit 7: Electrostatics

Enduring Understandings:	Essential Questions:					
 Objects with an electric charge will interact with each other by exerting forces on each other. Objects with electric charge will create electric field The total energy of a system composed of a collection of point charges can transfer from one form to another without changing the total amount of energy in the system. There are laws that use symmetry and calculus to derive mathematical relationships that can be applied to physical systems containing electrostatic charge. 	 What are some methods we can use to create excess charge on objects and observe Coulomb's Law? How do electric fields compare and contrast with gravitational fields? What methods are most useful in defining the appropriate Gaussian surfaces to utilize Gauss' Law? 					
Interdisciplinary Connections WHST.9-12.2 Write informative / explanatory texts, including the narration of historical events, scientific procedures / experiments, or technical						

processes.

Standard Number & Description		Content, Themes, Concepts, and Skills		Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-4	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	Charge and Coulomb's Law Concepts Particles and objects r contain electrostatic c The Law of Electrost states that like charges and unlike charges att through electrostatic 	may ch harges. ar atics st s repel st ract to ba	Desktop Experiment Give two pith balls some amount of charge (assumed to be equal charges) and hold them near each other. Have students measure the angle their strings make, and use this information to determine the charge on the pith balls. Also, have them determine what	Resources Knight textbook AP Classroom HyperPhysics PhET Simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity
HS-PS2-6	Communicate scientific and technical information about why the molecular-level structure is important	interactions. • The presence of an el field will polarize a ne object (conductor or insulator). This can cr	lectric we eutral ele reate an Q	raction of the pith ball's electrons were lost/gained assuming one electron for every 3.3 × 10–27 kg of nass. Qualitative Reasoning	 Pivot Interactives simulations Physics Classroom simulations 	guided worksheets Lab reports and lab notebook checks Progress checks

	in the functioning of		"induced" charge on the	Have students consider a situation	•	Mastering	
	designed materials		surface of the object.	where two metal spheres (one heavy,		Physics	Unit summative test
HS-PS3-2	Develop and use	 Skills 	,	one light) have unequal-magnitude,		5	
	models to illustrate that	0	Describe the physical	opposite charges and are set at rest	Material	S	Project rubrics
	energy at the		meaning (includes identifying	near each other in space. Students	•	PASCO data	,
	macroscopic scale can		features) of a representation.	draw acceleration versus time and		sensors	
	be accounted for as a	0	Apply an appropriate law,	velocity versus time graphs for the	•	Circuit	
	combination of energy		definition, or mathematical	time when the light sphere attracts,		components:	
	associated with the		relationship to solve a	collides elastically with, and then repels		batteries,	
	motions of particles		problem.	from the heavier sphere.		wires,	
	(objects) and energy	0	Calculate an unknown	1		lightbulbs,	
	associated with the		quantity with units from	Changing Representations		multimeters,	
	relative position of		known quantities, by selecting	Have students use the Charges and		etc.	
	particles (objects).		and following a logical	Fields PhET or the applet at	•	PASCO	
HS-PS3-5	Develop and use a		computational pathway.	flashphysics.org/electricField.html to		Sparkvue	
	model of two objects	Electric Field and	l Electric Potential	investigate electric field and potential		software	
	interacting through	Concept	ts	(and their relationship) in the vicinity	•	Students	
	electric or magnetic	0	The electric field of a single	of equal or unequal two- or		supplied	
	fields to illustrate the		point charge can be	three-charge systems.		devices	
	forces between objects		determined by using the			(Phones,	
	and the changes in		definition of the electric field	Desktop Experiment		laptops	
	energy of the objects		and Coulomb's Law.	Connect two electrodes to a 9-V			
	due to the interaction.	0	A charged particle in a	battery and immerse them in a plastic			
			uniform electric field will be	pan of water that is less than 1 cm			
			subjected to a constant	deep. Use a voltmeter (negative			
			electrostatic force.	connected to the negative of the			
		 Skills 		battery) to probe the electric potential			
		0	Describe the physical	at various points in the water. Have			
			meaning (includes identifying	students construct an electric potential			
			features) of a representation.	isoline map and estimate the strength			
		0	Select and plot appropriate	of the electric field at various locations.			
			data.				
		0	Create appropriate diagrams	Create a Plan			
			to represent physical	Have students research the electric			
			situations.	field strength and direction at ground			
		0	Identity and describe patterns	level on Earth. Next, have them use			
		_	and trends in data or a graph.	Gauss's Law to determine the net			
		0	between different exclusion	charge on Earth.			
			representations of the serve				
			epresentations of the same				
		_	Apply on appropriate law				
		0	Apply an appropriate law,				
	1		definition, or mathematical	1			

			-	_	
		relationship to solve a			
		problem.			
	0	Calculate an unknown			
		quantity with units from			
		known quantities, by selecting			
		and following a logical			
		computational pathway.			
	Electric Potential	Due to Point CHarges and			
	Uniform Fields				
	Concept	ts			
	0	The definition of electric			
		potential at a particular			
	0	location due to a single point			
		charge is: $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$			
	0	The definition of electric			
		potential at a particular			
		location due to a single point			
		charge is: $\Delta U = q \Delta V$			
	0	An electrostatic configuration			
		or field is a conservative field,			
		and the work done in an			
		electric field in moving a			
		known charge through a			
		known electric field is			
		equivalent to the potential			
		energy lost or gained by that			
		charge. Changes in kinetic			
		energy can be determined by			
		using the principle of			
		conservation of energy.			
	 Skills 				
	0	Describe the relationship			
		between different types of			
		representations of the same			
		physical situation.			
	0	Select an appropriate law,			
		definition, mathematical			
		relationship, or model to			
		describe a physical situation.			
	0	Determine the relationship			
		between variables within an			
		equation when an existing			
-----	------------------------------	--------------------------------	---	--	
		variable changes.			
	0	Determine the relationship			
		between variables within an			
		equation when a new variable			
		is introduced.			
	0	Apply an appropriate law,			
		definition, or mathematical			
		relationship to solve a			
		problem.			
	0	Calculate an unknown			
		quantity with units from			
		known quantities, by selecting			
		and following a logical			
		computational pathway.			
Ga	auss' Law				
	 Concepts 	5			
	0	The general definition of			
		electric flux is:			
		* (<u>F</u> 14			
		$\Phi = \int E \cdot dA$			
	0	Gauss's Law can be defined			
		in a qualitative way as the			
		total flux through a closed			
		Gaussian surface being			
		proportional to the charge			
		enclosed by the Gaussian			
		surface. The flux is also			
		independent of the size of			
		the Gaussian shape.			
	Skills	1			
	0	Describe the physical			
		meaning (includes identifying			
		features) of a representation.			
	0	Select an appropriate law.			
		definition, mathematical			
		relationship,			
Fie	eld and Potentia	ls of other Charge			
Di	istributions	0-			
	 Concepts 	5			
	0	The electric field of any			
		charge distribution can be			
			l		

		determined using the		
		principle of superposition.		
		symmetry and the definition		
		of electric field due to a		
		differential charge da One		
		differential charge dq. One		
		step in the solution is shown		
		to be: $d\overline{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} r$ If		
		this is applied appropriately		
		and evaluated over the		
		appropriate limits, the electric		
		fields of the stated charge		
		distributions can be		
		determined as a function of		
		position. The following		
		charge distributions can be		
		explored using this method:		
		 An infinitely long, 		
		uniformly charged		
		wire or cylinder		
		determines field at		
		distances along		
		perpendicular		
		bisector		
		 A this rise of 		
		charge (along the		
		axis of the ring)		
		 A semicircular or 		
		par of a semicircular		
		arc		
		■ A field due to a		
		finite wire or line		
		charge at a distance		
		that is collinear with		
		the line charge		
	0	The integral definition of the		
	0	The integral definition of the		
		electric potential due to		
		continuous charge		
		distributions is defined as:		
		$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$		
	• Skille			
	- Okills			

 Apply an appropriate law, definition, or mathematical relationship to solve a problem. Make a scientific claim. Support a claim with evidence from physical representations. Provide reasoning to justify a claim using physical
claim using physical principles or laws

Unit 8: Conductors, Capacitors and Dielectrics

Enduring Understandings:	Essential Questions:				
 Excess charge on an insulated conductor will spread out on the entire conductor until there is no more movement of the charge. Excess charge on an insulated sphere or spherical shell will spread out on the entire surface of the sphere until there is no more movement of the charge because the surface is an equipotential. There are electrical devices that store and transfer electrostatic potential energy. An insulator has different properties (than a conductor) when placed in an electric field. 	 What are the differences in behavior of charges on a conductor versus an insulator? How is a microwave able to cook food without transferring energy to objects outside of the microwave? What properties of a capacitor make it useful in devices like defibrillators? What aspects of the capacitor would you have to change to design a defibrillator to deliver a certain shock? Why will a charged balloon stick to a non-conducting wall? 				
Interdisciplinary Connections					
HSN-Q.A.1 - Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in					

formulas; choose and interpret the scale and the origin in graphs and data displays.

HSN-Q.A.2 - Define appropriate quantities for the purpose of descriptive modeling.

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-6	Communicate scientific				
	and technical	Electrostatics with Conductors	Predict and Explain	Resources	Daily Do Nows
	information about why	 Concepts 	Find an enclosed metal wire mesh	 Knight 	
	the molecular-level	• The mutual repulsion of all	container that can fit a neon gas	textbook	Teacher and peer
	structure is important in	charges on the surface of a	discharge tube. Zap the tube with a	• AP	feedback
	the functioning of	conductor will eventually	tesla coil to show it lighting up. Then	Classroom	
	designed materials.	create a state of electrostatic	put the tube in the wire mesh (have	 HyperPhysics 	Exit Tickets
HS-PS3-3	Design, build, and	equilibrium on the	students predict what will happen); no	• PhET	
	refine a device that	conductor. This will result in	amount of effort will cause the tube to	Simulations	Individual activity
	works within given	a uniform charge density for	light up from the tesla coil. Explain	• Pivot	guided worksheets
	constraints to convert	uniform shapes (spheres,	why.	Interactives	
	one form of energy into	cylinders, planes, etc.) and an		simulations	Lab reports and lab
	another form of energy.	absence of an electric field	Create a Plan		notebook checks

		i		i		1
HS-PS3-5	Develop and use a		inside of all conductors	Have students research the electric	 Physics 	
	model of two objects		(uniform or nonuniform	properties of the ionosphere and the	Classroom	Progress checks
	interacting through		shapes).	Earth's surface and use their research	simulations	
	electric or magnetic	0	A charge can be induced on a	to determine the following: The	 Mastering 	Unit summative test
	fields to illustrate the		conductor by bringing a	capacitance of the spherical system	Physics	
	forces between objects		conductor near an external	consisting of the ionosphere and		Project rubrics
	and the changes in		electric field and then	Earth's surface, and the charge and	Materials	
	energy of the objects		simultaneously attaching a	potential difference of the "capacitor."	 PASCO data 	
	due to the interaction.		grounding wire/ground to		sensors	
			the conductor.	Desktop Experiment	• Circuit	
		0	The electric field has a value	Have students construct their own	components:	
			of zero within a spherical	capacitor and predict its capacitance.	batteries,	
			conductor.	Have them use a capacitance-meter to	wires,	
		 Skills 		measure the capacitance.	lightbulbs,	
		0	Describe the physical	_	multimeters,	
			meaning (includes identifying	Construct an Argument	etc.	
			features) of a representation.	Have students explain why it is that	 PASCO 	
		0	Describe the effects of	pure water has such a high dielectric	Sparkvue	
			modifying conditions or	constant (answer: the polarity of the	software	
			features of a representation	molecules). Also have them explain	 Students 	
			of a physical situation.	why impure water results in "leaky"	supplied	
		0	Select an appropriate law,	capacitors made from a water dielectric	devices	
			definition, mathematical	(answer: the impurities conduct	(Phones,	
			relationship, or model to	current).	laptops	
			describe a physical situation.			
		0	Support a claim with	Desktop Experiment		
			evidence from physical	Have students construct a		
			representations.	parallel-plate capacitor out of two		
		0	Provide reasoning to justify a	pieces of foil with a piece of paper		
			claim using physical	between each piece. Have students		
			principles or laws.	measure the capacitance with a		
		Capactors		capacitance-meter. Next, have them		
		Concept	ts	increase the number of sheets of paper		
		0	The general definition of	and record data with the purpose of		
			capacitance is given by the	finding the dielectric constant of the		
			following relationship:	paper.		
			$C = \frac{Q}{Q}$			
		_	ΔV			
		0	The conservation of charge			
			and energy can be applied to			
			a closed physical system			
			containing charge, capacitors,			

and a source of potential difference. • 'The arcego of the pandle typic expective can ble expenses al in terms of the indemental properties of the capacitor (6, arta), distance of separation), fundamental properties of the danged system (6, c), the determined by a physical constant the value between the datermined by a physical constant the value between the value by the val					
 The energy of the parallel-plate capacitor can be expressed in terms of the fundamental properties of the capacitor fox, area, distance of separation); fundamental properties of the charge density), and fundamental properties of the charge density), and fundamental constants. Skills Describe the physical means of a capacitor for a separation. Identify a testable scientific question of a capacitor for a capacitor for a separation. Identify a testable scientific question or product the reading of an expression for a capacitor for a capac			and a source of potential		
 The energy of the possible capacitor can be expressed in terms of the funchamonal properties of the capacitor (i.e., area, distance of separation), fundamental properties of the charged system (i.e., charge density), and fundamental properties of the charged system (i.e., charge density), and fundamental constants. Skilb Describe the physical means of properties of the charged system (i.e., charge density), and fundamental constants. Skilb Describe the physical means of the charged system (i.e., charge density), and fundamental constants. Skilb Describe the physical means of the charged system (i.e., charge density) of a representation. Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an eristing ymrifible or laws. Dielectrics Concepts An insultar's molecules will polyicle to various depress (dightly polarize or larged) for laws. 			difference.		
panilel-plate experies of the fundamental properties of the fundamental properties of the capacitor (i.e., area, distance of separation), fundamental properties of the charged system (i.e., charge density), and fundamental constants. • Skills • Describe the physical meaning (focludes) identifying features) of a representation. • Udentify a testable scientific question or prodict the results of an experiment. • Skills • Udentify a testable scientific question or prodict the results of a caperosciention. • Udentify a testable scientific question or prodict the results of a caperosciention. • Skills • Subject of a specific to generation or prodict the results of a caperosciention. • Udentify a testable scientific question or prodict the results of a caperoiment. • Skells • Udentify a testable scientific question or prodict the results of a caperimental caperoiment. • Udentify a testable scientific question or prodict the results of a caperimental caperoiment. • Udentify a testable scientific question or prodict the results within an capation when an existing variable scientific question and caperoscientific question or polysical provide reasoning to justify a chain scientific question with the subtor's molecules will polysical principles or laws. Dielectrics • An insultor's molecules will or provide reasoning to justify a chain scientific question or prodict the reasoning to justify a chain scientific question or prodict principles or laws. Dielectrics • An insultor's mole		0	The energy of the		
icapressed in cerms of the findamental properties of the capacitor (a.g. area, distance of separation), fundamental properties of the charged system (b.c., charge density), and fundamental constants. • Skills • Describe the physical meaning (includes identifying features) of a representation. • Identify a testable scientific question or problem. • Identify a testable scientific question or problem. • Identify or describe potential sciences of a experiment. • Identify or describe potential curror. • Determine the relationship between variable swithin an equitor when an existing variable changes. • Make a scientific claim. • Provide reasoning to justify a claim using physical principles or laws. Dieletries • Concepts • An insulator's molecules will polarize to various degrees (slightly polarize). This effect is determined by a physical constant called the "delectric constant." The delectric constant." The delectric constant." The delectric constant." The delectric constant." The delectric			parallel-plate capacitor can be		
 fundamental properties of the capacitor (i.e., area, distance of separation), fundamental properties of the charged system (i.e., charge density), and fundamental properties of fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. I dentify a testable scientific question or problem. Make a chim or predict the results of an experiment. I dentify or describe potential sources of experiment. I dentify or describe potential sources of experiment. Determine the relationship between variable swithin an equation when an existing variable changes. Make a scientific faim. Provide reasoning to justify a claim. Deterties An insultator's molecules will polarize to various depress (dightly polarize). This effect is determined by a physical constant tas values between 1 and large numbers. 			expressed in terms of the		
 the capacitor (i.e., area, distance of separation), fundamental propriets of the charged system (i.e., charge density), and fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. I dentify a testable scientific question or problem. Make a claim or predict the results of an experiment. I dentify or describe potential sources of experimental error. Determine the relationship between variables within an equation within an e			fundamental properties of		
 distance of separation, fundamental properties of the charged system (6.e, charge density), and fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientific question or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable chain. Make a scientific claim. Determine the relationship between variables within an equation when an existing variable charges. Make a scientific claim. Provide reasoning to justify a elightly polarize to various degrees (dightly polarize to various degrees (dightly polarize to random degrees (dightly polarize to various degrees (the capacitor (i.e. area		
 bandamental properties of the charged system (i.e., charge density), and fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientifie question or problem. Make a chain or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific chim. Provide reasoning to justify a chain using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slighty polarize or largely polarize. The dielectric constant called the "dielectric constant." The dielectric 			distance of separation)		
 Intraduction properties of the charged system (c., charge density), and fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientific question or problem. Make a chain or predict the results of an experiment. Identify a testable scientific greatest of the results of an experiment. Identify a testable scientific greatest of the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a clearing to justify a clearing to justify a clear with a most of the relationship between variables roles or laws. Dielectrics Concepts An insulators molecules will polarize to trajely polarize to trajely polarize to trajely polarize. The dielectric constant claw the 'dielectric constant alway the scheme net is and larger numbers. 			fundamental properties of		
 charge density), and fundamental constants. Skills Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical polarize. This molecules will polarize to various degrees (slightly polarize or largely polarize to various degrees (slightly polarize or largely polarize). The dielectric constant the values between 1 and larger numbers. 			the charged system (i.e.		
Concepts Concept Concent Conce			charge density) and		
Skills Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics O An insulator's molecules will polarize to various degrees (dightly polarize or largely polarize). This effect is determined the "dielectric constant thas values between land larger numbers.			fundamental constants		
 Describe the physical meaning (includes identifying features) of a representation. Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a claim superscience of experimental error. Provide reasoning to justify a claim superscience of experiments. Dielectrics Concepts An insulator's molecules will polarize to various degrees (dighty polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant. The dielectric constant." The dielectric constant. The dielectric constant." The dielectric constant." The dielectric constant." The dielectric constant constant. 		• Shille	fundamental constants.		
O Deschoe the physical meaning (includes identifying features) of a representation. O Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics O An insulator's molecules will polarize to various degrees (glighty polarize or largely polarize). This effect is detertine constant a light changes determine thy a physical constant a by salues between t and larger numbers. determine		• Skills	Describe the obviced		
 Identify a testable scientific question or problem. Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical polarize to various degrees (slightly polarize or largely polarize). This effect is determine dby a physical constant alled the "dielectric constant alled the" dielectric constant alled the "sources. 		0	meaning (includes identifying		
 Identify a testable scientific question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific chain. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant. The dielectric constant. 			features) of a representation		
 Identify a testator stellance question or problem. Make a claim or predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts Concepts An insulator's molecules will polarize to various degrees (slightly polarize to various degrees (slightly polarize to various degrees constant called the "dielectric constant has values between 1 and lager numbers. 		0	leatures) of a representation.		
 Make a claim or product. Make a claim or product the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between envirables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. 		0	Identify a testable scientific		
 Make a claim of predict the results of an experiment. Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize to various degrees (slightly polarize to rarious degrees (slightly polarize to various degrees constant." The dielectric constant as values between 1 and larger numbers. 		0	Question or problem.		
 I dentify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize to various degrees (slightly polarize to various degrees is determined by a physical constant called the "dielectric constant has values between 1 and larger numbers. 		0	Make a claim or predict the		
 Identify or describe potential sources of experimental error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant. "The dielectric constant." The dielectric constant has values between 1 and larger numbers. 		0	results of an experiment.		
sources of experimental error. O Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics • Concepts • An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize, This effect is determined by a physical constant called the "diclectric constant x values between 1 and larger numbers.		0	Identify of describe potential		
 error. Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant As values between 1 and larger numbers. 			sources of experimental		
 Determine the relationship between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. 			error.		
 between variables within an equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant." The dielectric constant." The dielectric constant has values between 1 and larger numbers. 		0	Determine the relationship		
 equation when an existing variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant has values between 1 and larger numbers. 			between variables within an		
 variable changes. Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant alled the "dielectric constant has values between 1 and larger numbers. 			equation when an existing		
 Make a scientific claim. Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant a values between 1 and larger numbers. 			variable changes.		
 Provide reasoning to justify a claim using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. Intervalue and the structure of the		0	Make a scientific claim.		
 clam using physical principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. 		0	Provide reasoning to justify a		
 principles or laws. Dielectrics Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant called the "dielectric constant has values between 1 and larger numbers. and larger numbers. 			claim using physical		
Dielectrics • Concepts • An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant." The dielectric constant has values between 1 and larger numbers.			principles or laws.		
 Concepts An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant. The dielectric constant has values between 1 and larger numbers. and larger numbers. 		Dielectrics			
 An insulator's molecules will polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. 		 Concept 	ts		
polarize to various degrees (slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers.		0	An insulator's molecules will		
(slightly polarize or largely polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers.			polarize to various degrees		
polarize). This effect is determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers.			(slightly polarize or largely		
determined by a physical constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers. 1			polarize). This effect is		
constant called the "dielectric constant." The dielectric constant has values between 1 and larger numbers.			determined by a physical		
constant." The dielectric constant has values between 1 and larger numbers.			constant called the "dielectric		
constant has values between 1 and larger numbers.			constant." The dielectric		
1 and larger numbers.			constant has values between		
			1 and larger numbers.		

• The initial condition of the	
capacitor system can	
determine which relationship	
to use when attempting to	
calculate unknown quantities	
in a capacitor system.	
• Skills	
• Make a claim or predict the	
results of an experiment.	
• Sketch a graph that shows a	
functional relationship	
between two quantities.	
 Create appropriate diagrams 	
to represent physical	
situations.	
• Determine the relationship	
between variables within an	
equation when an existing	
variable changes.	
 Calculate an unknown 	
quantity with units from	
known quantities, by selecting	
and following a logical	
computational pathway.	
• Make a scientific claim.	
 Support a claim with 	
evidence from experimental	
data.	

Unit 9: Electric Circuits

 Enduring Understandings: The rate of charge flow through a conductor depends on the physical characteristics of the conductor. There are electrical devices that convert electrical potential energy into other forms of energy. Total energy and charge are conserved in a circuit containing resistors and a source of energy. Total energy and charge are conserved in a circuit that includes resistors, capacitors, and a source of energy. 	 Essential Questions: How do different configurations of resistors and capacitors in DC circuits change the behavior of current flow in the circuit? How can a DC circuit be designed to power resistors in specific configurations? What behaviors do capacitors exhibit when included in circuits and what uses do they have? 				
Interdisciplinary Connections WHST.9-12.2 - Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. HSN-Q.A.2 - Define appropriate quantities for the purpose of descriptive modeling.					

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-6	Communicate scientific and technical information about why the molecular-level structure is important in the functioning of	Current and Resistance • Concepts • The definition of current is: $I = \frac{dQ}{dt}$ • Ohm's Law is defined as:	Desktop Experiment Give students water, modeling clay, or a related substance and ask them to determine whether the substance is ohmic by applying various voltages	Resources • Knight textbook • AP Classroom	Daily Do Nows Teacher and peer feedback
HS-PS3-1	Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the	$I = \frac{\Delta V}{R}$ • The definition of resistance can be derived using the microscopic definition of current and the relationship	Changing Representations Have students solve a typical multi-loop circuit problem with batteries and resistors. Then have students construct a representation for	 PhET Simulations Pivot Interactives simulations 	Individual activity guided worksheets Lab reports and lab notebook checks

	other component(s) and energy flows in and out of the system are known.	o ● Skills	between electric field and current density.	each possible loop that visually shows Kirchhoff's Loop Rule and a representation for each junction that visually shows Kirchhoff's Junction	•	Physics Classroom simulations Mastering	Progress checks Unit summative test
HS-PS3-5	and energy flows in and out of the system are known. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	 Skills Skills O O O Current, Resistant Concept O Skills O Skills O O	current density. Select and plot appropriate data. Extract quantities from narratives or mathematical relationships to solve problems. Apply an appropriate law, definition, or mathematical relationship to solve a problem. Provide reasoning to justify a claim using physical principles or laws. ce, and Power ts The definition of power or the rate of heat loss through a resistor is: $P = I\Delta V$ or an equivalent expressions that can be simplified using Ohm's Law Describe the physical meaning (includes identifying features) of a representation.* Demonstrate consistency between different types of representations of the same physical situation. Select relevant features of a representation to answer a question or solve a problem. Identify appropriate experimental procedures (which may include a sketch	Kirchhoff's Loop Rule and a representation for each junction that visually shows Kirchhoff's Junction Rule. Construct an Argument Have students explain why a small 1-ohm resistor can only handle a small amount of power (such as 1/4 watt) and why a large 1-ohm resistor can handle a large power (such as 30 watts). Have students explain why computer processors have "heat sinks" attached to them. Desktop Experiment Have students use a known capacitor charged and connected directly to a voltmeter to determine the voltmeter's (high) internal resistance. This is done by taking voltage versus time data as the capacitor discharges through the meter and using the data to find the time constant RC, then R.	Materia •	Classroom simulations Mastering Physics ls PASCO data sensors Circuit components: batteries, wires, lightbulbs, multimeters, etc. PASCO Sparkvue software Students supplied devices (Phones, laptops	Progress checks Unit summative test Project rubrics
		0	Make observations or collect data from representations of laboratory setups or results.				

O Select and plot appropriate data. Stready State Direct Corrent Grouts with Batteries and Resistors Output O Concepts Series arrangement of resistors arranged one after the other, creating, one pessible branch for change fore: O Parallel arrangement of resistors attached to be same resistors and reduce the operating current in the curcuit the deterministion of currents and operating differences in complex multi-loop recivits that cannob be reduced using currenting loop circuits that cannob be reduced using representations of the same physical Statianion. Explain modificant types of representations of the same physical Statianion. Persent procedure that will alter residus Persent procedure that will alter residus Persent futures of a mobiel or the behavior of a mobiel o				
data. Steady-Stare Direct-Current Greatins with Batteries and Resistors Only • Concepts • Series arrangement of resistors is defined as resistors arranged one after the other, creating one possible branch for charge flow. • Pundled arrangement of resistors is defined as resistors arranged one after the other, creating one possible branch for charge flow. • Pundled arrangement of resistors is defined as resistors arranged to the same two points (destrictually, creating multiple patrways for charge flow. • In an ondical battery, an internal resistance will exist within the battery. This resistance and reduce the operating current in the circuit. • Skills • Skills • Skills • Skills • Describe the relationship between different types of representations of the same physical situation. • Texplain modifications to a respective the velocients will alter cessits. • Skills • Skills • Bayessen fatures of a model or the betwy or a • Brane resist. • Represent fatures of a model or the betwy or a • Describe the relationship	0	Select and plot appropriate		
Steady-State Direct-Current Conclose with Batterics and Resistance Only • Series arrangement of resistors is defined as resistors arranged one after the other, creating one possible branch for change down • Parallel arrangement of resistors is defined as resistors attached to the same two points (decrinally), creating multiple pathways for change flow. • Derailel arrangement of resistors is defined as resistors attached to the same two points (decrinally), creating multiple pathways for change flow. • In a nonideal battery, an interest of resistors is estimated to the series to the total external circuit resistance will exist within the battery. This resistance will add in series to the total external circuit resistance will exist within the battery. This is creating gurrent in the circuit. • Krethhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits in the circuit. • Skills • Describe the relationship between different types of representations of the relationship between faithere status. • Particular resistance will be relationship between faithere using conventional (free results. • Representations of the remain modifications to a model or the behavior of a m		data.		
 Bratteries and Resistors Only Concepts Series arrangement of resistors is defined as resistors arranged one after the other, creating one possible branch for charge flow. Parallel arrangement of resistors is defined as resistors in tached to the same two points (defencially, creating multiple pathways for charge flow. I randical battery, an internal resistance will exist within the battery. This resistance and reduce the operating current in the circuit resistance is in collection of currents and possible for opposition of currents and postential differences in complex multiple pathways that cannot be reduced using currentian differences in complex multiples pathway is that cannot be reduced using currentian differences in complex multiples pathways that cannot be reduced using currentian differences in complex multiples pathways durates in methods. Skills Describe the relationship between different types of representations of the same different types of representations of the same will ake results. Represent features of a model or the behavior of a beha	Steady-State Dire	ct-Current Circuits with		
Concepts Series arrangement of resistors is defined as resistors stacked to the same resistors stacked to the same resistors stacked to the same resistors attacked to the same resistore will exist within the battery. In a nonideal battery, an internal existance will exist within the battery. This resistance and reduce the operating current in the circuit resistance and reduce the operating current in the circuit resistance and reduce the operating currents and potential differences in complex multi-loop circuits the determination of currents and potential differences in complex multi-loop circuits the determination of currents and potential differences in complex multi-loop circuits the determination of currents and potential differences in complex multi-loop circuits the determination of the base physical situation. Skills Describe the relationship between different types of representations to ranke will alter results. Represent focurues of a model or the behavior of a model or the behavior of a model or the behavior of a	Batteries and Res	istors Only		
 Series arrangement of resistors a defined as resistors arranged one after the other, creating one possible branch for charge flow. Parallel arrangement of resistors is defined as resistors resistors for the state quere, an internal resistore will add in series to resistor and reduce the operating current in the circcuit Kitchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that canor be reduce dusing conventional (series' parallel rules) shalls o Describe the relationship between different types of representations of it esame physical situation. o Represent features of a model or the behavior of a model or the behavior of a model or the behavior of a model or the physical situation. 	 Concept 	ts		
 resistors is defined as resistors arranged one after the other, revaring one possible branch for charge flow. Parallel arrangement of resistors is defined as resistors attached to the same two points (electrically), creating multiple pathways for charge flow. In a nonideal battery, an internal resistance will exist within the battery. This resistors attached to the operating current in the or the a nonideal battery, an internal resistance will exist within the battery. This resistance will add in series to the directure to the operating current in the circuit Circuit. Circuit. Skills Skills Obscribe the relationship between different types of reperimental procedure that will alter results. Fixplin modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a 	0	Series arrangement of		
resistors arranged one after the other, creating one possible branch for charge Hox: • Parallel arrangement of resistors is defined as resistors is defined to the same two points (dectrically), creating multiple pathways for charge flow. • In a nonideal battery, an internal resistance will exist within the battery. This resistance will exist within the battery. This resistance and reduce the operating current in the circuit. • Kirchboff's Rules allow for the total external circuit conventional differences in complex multi-loop circuits that canot be reduced using conventional (sries/ parallel resistance of a reduced using conventional (sries/ parallel resistance of a reduced using conventional (sries/ parallel resistance of the detainship between different types of representations of the same physical situation. • Explain modifications to an experimental procedure that will alter results • Represent factures of a model or the behavior of a physical situation.		resistors is defined as		
 be obter, creating one possible branch for charge flow. Parallel arrangement of resistors is defined as resistors attached to the same two points (electrically), creating multiple pathways for charge flow. In a nonideal battery, an internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the error. Kitchhoff's Rules allow for the determination of currents and potential differences in complex multi-hoop circuits that cannot be reduced using conventional (series/parallel rises/parallel rises		resistors arranged one after		
 possible branch for change flow. Parallel arrangement of resistors is defined as resistors attached to the same two points (electrically), cereating multiple pathways for charge flow. In a nonideal battery, an internal resistance will exist within the battery. This resistance will di n series to the total external circuit resistance und reduce the operating current in the circuit. Kiritchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations to an experimental procedure that will alter results. Represent features of a model or the behavior of a 		the other, creating one		
intervent intervent intervent		possible branch for charge		
 Parallel arrangement of resistors is defined as resistors attached to the same two points (dectrically), creating multiple pathways for charge flow. In a notical abattery, an internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance of the couper attached to the couper attached to the operating current in the circuit. Krichtioff's Rules allow for the determination of currents and potential differences in conventional (series parallel rules) methods. Skills Describe the relationship between of the same physical situation. Explain modifications to an experimental procedure that will alter results 		flow.		
resistors is defined as resistors attached to the same two points (cleetrically), creating multiple pathways for charge Dow. In a nonideal battery, an internal resistance will ackit within the battery. This resistance will add in series to the total extrand circuit resistance and reduce the operating current in the circuit. circuit. and potential differences in competition of currents and potential differences in competitional (series/parallel rules. via Battery, of representations of the same physical situation. • Skills • Describe the relationship between different types of representations to an explain modifications to an explain modifications to an explain modifications to an experimental procedure that will alter results • Represent features of a model or the behavior of a physical system using	0	Parallel arrangement of		
 resistors attached to the same two points (electrically), creating multiple pathways for charge flow. In a nonical battery, an internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical system. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a 		resistors is defined as		
 two points (electrically), creating multiple pathways for charge flow. In a nonideal battery, an internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/panillel rules) methods. Skills Describe the relationship between different types of representations. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a brysical system using 		resistors attached to the same		
eccating multiple pathways for charge flow. o In a nonideal battery, an internal resistance will exist within the battery. This resistance and reduce the operating current in the circuit. o Kirchhoff's Rules allow for the determination of currents and potential differences in compete values/spanial compete value/spanial generality o Narchhoff's Rules allow for the determination of currents and potential differences in compete value/spanial compete value/spanial curventional (series/parallel rules) rules) Describe the relationship between different types of representations of the same physical situation. o codel or the behavior of a o Represent features of a model or the behavior of a obsvical system using		two points (electrically),		
o In a nonideal battery, an internal resistance will exist within the battery, This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. circuit. resistance multi-loop circuits and potential differences in converting current in the converting and potential differences in converting converting converting and potential differences in converting converting (series/parallel rules) methods. • Skills • o Describe the relationship between different types of representations of the same physical situation. o Explain modifications to an experimental procedure that will alter results. o Represent features of a model or the behavior of a behavior of a behavior of a model or the behavior of a mod		creating multiple pathways		
 In a nonideal battery, an internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skiils Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model of the bayaing and the bayaing and and the bayaing and and the bayaing and		for charge flow.		
 internal resistance will exist within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will at results. Represent features of a model or the behavior of a physical system using 	0	In a nonideal battery, an		
 within the battery. This resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a obvious experimental provedure that will alter subts. 		internal resistance will exist		
resistance will add in series to the total external circuit resistance and reduce the operating current in the circuit. • Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. • Skills • Describe the relationship between different types of representations of the same physical situation. • Explain modifications to an experimental procedure that will alter results. • Represent features of a model or the behavior of a physical situation generations of a model or the behavior of a		within the battery. This		
 the total external circuit resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a Present situation 		resistance will add in series to		
 resistance and reduce the operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent fatures of a model or the behavior of a 		the total external circuit		
operating current in the circuit. operating current in the circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. operating current in the circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills operations of the same physical situation. operations to an experimental procedure that will alter results. experimental procedure that will alter results. operators of a model or the behavior of a physical system using		resistance and reduce the		
 circuit. Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		operating current in the		
 Kirchhoff's Rules allow for the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a obygical system using 		circuit.		
the determination of currents and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 	0	Kirchhoff's Rules allow for		
 and potential differences in complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		the determination of currents		
 complex multi-loop circuits that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		and potential differences in		
 that cannot be reduced using conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		complex multi-loop circuits		
 conventional (series/parallel rules) methods. Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		that cannot be reduced using		
• Skills • Describe the relationship between different types of representations of the same physical situation. • Explain modifications to an experimental procedure that will alter results. • Represent features of a model or the behavior of a physical system using		conventional (series/parallel		
 Skills Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		rules) methods.		
 Describe the relationship between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 	 Skills 			
 between different types of representations of the same physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 	0	Describe the relationship		
representations of the same physical situation. • Explain modifications to an experimental procedure that will alter results. • Represent features of a model or the behavior of a physical system using		between different types of		
 physical situation. Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		representations of the same		
 Explain modifications to an experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 		physical situation.		
 experimental procedure that will alter results. Represent features of a model or the behavior of a physical system using 	0	Explain modifications to an		
 will alter results. Represent features of a model or the behavior of a physical system using 		experimental procedure that		
 Represent features of a model or the behavior of a physical system using 		will alter results.		
model or the behavior of a physical system using	0	Represent features of a		
physical system using		model or the behavior of a		
		physical system using		

$C_{particles} = \sum_{i=1}^{n} \frac{1}{i_i_i}$ $C_{particles} = \sum_{i=1}^{n} \frac{1}{i_i_i_i}$ $C_{particles} = \sum_{i=1}^{n} \frac{1}{i_i_i}$ $C_{particles} = \sum_{i=1}^{n} \frac{1}{i_i}$ $C_{particles} = \sum_{i$					
$c_{\rm sec}(x_{\rm sec},x_{\rm sec}(x_{\rm sec},x_{\rm sec},x_{\rm$			appropriate graphing		
Capacitors in (Group) the formula of the state of the s			techniques, appropriate scale,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			and units.		
$C_{s} = \sum_{i=1}^{n} \frac{1}{i}$ $C_{s} = C_{s} = C_{s}$ $C_{s} = C_{s} = C_{s} = C_{s} = C_{s}$ $C_{s} = C_{s} = C_{s$		0	Identify and describe patterns		
• Demonstrate consistency between different graphical representations of the same physical situation. • Linearize data and/or determine a best fit line or curve • Select relevant features of a graph to describe a physical situation or solve problems. • Explain how potential sources of experimental error may affect results and/or conclusions. Capacitors in Circuits • Concepts • Oncepts • The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: $C_s = \sum_i \frac{1}{c_i}$. • When a circuit containing resistors and capacitors reaches a steady state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The intercost the determined a significant feature on the sketches for transient belavior in an RC circuits • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the changing			and trends in data or a graph.		
$C_{S} = \sum_{i} \frac{1}{C_{i}}$ $C_{S} = \sum_{i} C_{i}$ $C_{S} = C_{i}$ C_{i} $C_$		0	Demonstrate consistency		
$G_{S} = \sum_{i=1}^{n} \frac{1}{i} $			between different graphical		
$C_{1} = \frac{1}{2} \frac{1}{C_{1}}$ $C_{1} = \frac{1}{2} \frac{1}{C_{1}}$ $C_{2} = \frac{1}{2} \frac{1}{C_{1}}$ $C_{3} = \frac{1}{2} \frac{1}{C_{1}}$ $C_{4} = \frac{1}{2} \frac{1}{C_{1}}$ $C_{5} = \frac{1}{C_{1}}$ C_{5			representations of the same		
$\begin{array}{c} \bullet & \text{Linearise data and/or} \\ & \text{determine a best fit line or} \\ & \text{curve.} \\ \bullet & \text{Select relevant features of a} \\ & \text{graph to describe a physical} \\ & \text{situation or solve problems.} \\ \bullet & \text{Sipplin how potential} \\ & \text{sources of experimental error} \\ & \text{may affect results and/or} \\ & \text{conclusions.} \\ \hline & \text{Capacitors in Gravitis} \\ \bullet & \text{Concepts} \\ \bullet & \text{Concepts} \\ \bullet & \text{Concepts} \\ & \bullet & \text{The equivalent capacitance of} \\ & \text{can be determined by the} \\ & \text{following relationship:} \\ \hline & & C_s = \sum_{i} \frac{1}{c_i} \\ \bullet & \text{When a circuit containing} \\ & \text{resistors and capacitors} \\ & \text{reaches a steady-state} \\ & \text{condition, the potential} \\ & \text{difference across the} \\ & \text{capacitor can be determined} \\ & \text{using Krehhoff's Rules.} \\ \bullet & \text{The time constant (\tau = RC) is a significant feature on the sketches for transient behavior in an RC circuits \\ \bullet & \text{The total energy provided by} \\ & \text{the energy source (battery)} \\ & the charging discussioned and RCC circuit during the charging discussioned and RCC circuit substitute of the capacitor can RCC circuit during the charging discussioned and RCC circuit during the charging discussioned and RCC circuit during the charging discussioned and circuit during the charging discussioned and and RCC circuit during the charging discussioned and RCC circuit during the charging discussioned and circuit during the charging discussioned a$			physical situation.		
$\begin{array}{ c c c c } \hline determine a best fit line or every c. \\ \hline & Select relevant features of a griph to describe a physical situation or solve problems. \\ \hline & Select relevant features of a griph how potential sources of experimental error may affect results and/or conclusions. \\ \hline & Capacitors in Circuits \\ \hline & Concepts \\ \hline & & \\ \hline \hline & $		0	Linearize data and/or		
$\begin{array}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $			determine a best fit line or		
$\label{eq:constraint} \begin{array}{ c c c } \hline & & & & & & & & & & & & & & & & & & $			curve.		
$ \begin{array}{ c c c c c } graph to describe a physical situation or solve problems. \\ \hline \\ $		0	Select relevant features of a		
$eq:constant_$			graph to describe a physical		
$\label{eq:constant_state} \left(\begin{array}{c} \circ & \text{Explain how potential} \\ & \text{sources of experimental error} \\ & \text{may affect results and/or} \\ & \text{conclusions.} \end{array} \right) \\ \end{tabular}$			situation or solve problems.		
sources of experimental error may affect results and/or conclusions. Capacitors in Circuits • Concepts • The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: $C_s = \sum_i \frac{1}{c_i}$ • When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy provided by the energy source (battery) the is experiment on a RC circuit during the charging		0	Explain how potential		
$\begin{array}{c} \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$			sources of experimental error		
$\begin{tabular}{ c c c c } \hline conclusions. \\ \hline Capacitors in Circuits \\ \hline Concepts \\ \hline The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: \\ \hline C_S = \sum_i \frac{1}{c_i} \\ \hline When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. \\ \hline The total energy source (batters) \\ \hline The total energy provided by the energy provided by the energy source (batters) \\ \hline The total energy provided by the energy source (batters) \\ \hline The total energy provided by the energy of the angle capacitor an RC circuit during the charging \\ \hline \end{tabular}$			may affect results and/or		
Capacitors in Circuits • Concepts • The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: $C_S = \sum_i \frac{1}{c_i}$ • When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			conclusions.		
• Concepts • The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: $C_{s} = \sum_{i} \frac{1}{c_{i}}$ • When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constat ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging		Capacitors in Circ	cuits		
$\circ \text{The equivalent capacitance of capacitors arranged in series can be determined by the following relationship: C_{S} = \sum_{l} \frac{1}{c_{i}} \circ \text{When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. \circ \text{The time constant } (\tau = \text{RC}) \text{ is a significant feature on the sketches for transient behavior in an RC circuits } \circ The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging$		 Concept 	ts		
capacitors arranged in series can be determined by the following relationship: $C_S = \sum_i \frac{1}{c_i}$ • When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy powided by the energy source (battery) that is transferred into an RC circuit during the charging		0	The equivalent capacitance of		
$c_{ab} = be determined by the following relationship: C_{S} = \sum_{i} \frac{1}{c_{i}} \circ When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. \circ The time constant (\tau = RC) is a significant feature on the sketches for transient behavior in an RC circuits \circ The total energy provided by the energy source (battery) the energy source (battery) that is transferred into an RC circuit during the charging $			capacitors arranged in series		
following relationship: $C_S = \sum_i \frac{1}{c_i}$ • When a circuit containing resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			can be determined by the		
$C_{S} = \sum_{i} \frac{1}{c_{i}}$			following relationship:		
$ \begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $			$C_{S} = \sum_{i} \frac{1}{C_{i}}$		
resistors and capacitors reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. \circ The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits \circ The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging		0	When a circuit containing		
reaches a steady-state condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. • The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			resistors and capacitors		
condition, the potential difference across the capacitor can be determined using Kirchhoff's Rules. \circ The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits \circ \circ The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging \sim			reaches a steady-state		
 difference across the capacitor can be determined using Kirchhoff's Rules. The time constant (\tau = RC) is a significant feature on the sketches for transient behavior in an RC circuits The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging 			condition, the potential		
capacitor can be determined using Kirchhoff's Rules. \circ The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits \circ The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			difference across the		
using Kirchhoff's Rules.• The time constant ($\tau = RC$) is a significant feature on the sketches for transient behavior in an RC circuits• The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			capacitor can be determined		
 The time constant (τ = RC) is a significant feature on the sketches for transient behavior in an RC circuits The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging 			using Kirchhoff's Rules.		
a significant feature on the sketches for transient behavior in an RC circuits The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging		0	The time constant ($\tau = RC$) is		
sketches for transient behavior in an RC circuits The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging			a significant feature on the		
behavior in an RC circuits • The total energy provided by • The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging •			sketches for transient		
 The total energy provided by the energy source (battery) that is transferred into an RC circuit during the charging 			behavior in an RC circuits		
the energy source (battery) that is transferred into an RC circuit during the charging		0	The total energy provided by		
that is transferred into an RC circuit during the charging			the energy source (battery)		
circuit during the charging			that is transferred into an RC		
			circuit during the charging		

	process is split between the		
	capacitor and the resistor.		
Skills			
0	Describe the physical		
	meaning (includes identifying		
	features) of a representation.		
0	Select relevant features of a		
	representation to answer a		
	question or solve a problem.		
0	Make observations or collect		
	data from representations of		
	laboratory setups or results.		
0	Sketch a graph that shows a		
	functional relationship		
	between two quantities.		
0	Create appropriate diagrams		
	to represent physical		
	situations.		
0	Calculate an unknown		
	quantity with units from		
	known quantities, by selecting		
	and following a logical		
	computational pathway.		
0	Support a claim with		
	evidence from experimental		
	data.		

Unit 10: Magnetic Fields

Enduring Understandings:	Essential Questions:						
 Charged particles moving through a magnetic field may change the direction of their motion. A magnetic field can interact with a straight conducting wire with current. Current-carrying conductors create magnetic fields that allow them to interact at a distance with other magnetic fields. There are laws that use symmetry and calculus to derive mathematical relationships that are applied to physical systems containing moving charge. 	 With the charge of the electron known, how can a magnetic field be used to determine the mass of the electron? How can the right hand rule be utilized to predict magnetic fields and forces from current-carrying wires? In what ways is Ampere's Law similar to Gauss' Law? How is it different? 						
Interdisciplinary	Connections						
HSN-Q.A.2 - Define appropriate quantities for the purpose of descriptive modeling. MP.4 - Model with mathematics							

Standard Number & Description	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	Forces on Moving Charges in Magnetic Fields • Concepts • The magnetic force of interaction between a moving charged particle and a uniform magnetic field is defined by the following expression: $\overline{F} = q(\overline{v} \times \overline{B})$ • The direction of the magnetic force is always in a direction perpendicular to the velocity of the moving charged	Identify Subtasks Have students research some model of old CRT television. Ask them to find the potential difference through which electrons are accelerated to determine their speed entering the magnetic field region, then the strength of the magnetic field needed to deflect them to different points on the screen. Identify Subtasks Have students research the current in an east west traveling high tension	Resources • Knight textbook • AP Classroom • HyperPhysics • PhET Simulations • Pivot Interactives simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets Lab reports and lab notebook checks

HS-PS2-6	Communicate scientific		trajectory that is either a	power line and find the length of such	•	Physics	Progress checks
110 1 02 0	and technical		curved path or a complete	a power line near their home. Also		Classroom	r rogress enteens
	information about why		circular path (if it moves in	have them research the magnetic field		simulations	Unit summative test
	the molecular-level		the field for a long enough	strength of Earth, and determine the	•	Mastering	
	structure is important		time).	force the Earth's magnetic field exerts		Physics	Project rubrics
	in the functioning of	 Skills 	/	on the wire. Compare to the wire's)	
	designed materials.	0	Make a claim or predict the	weight.	Material	s	
HS-PS3-5	Develop and use a		results of an experiment.	0	•	PASCO data	
	model of two objects	0	Create appropriate diagrams	Create a Plan		sensors	
	interacting through		to represent physical	Have students use their research of	•	Circuit	
	electric or magnetic		situations.	high-tension power lines to determine		components:	
	fields to illustrate the	0	Calculate an unknown	how far from such a power line a		batteries,	
	forces between objects		quantity with units from	person must stand before the magnetic		wires,	
	and the changes in		known quantities, by selecting	field created by the power line is equal		lightbulbs,	
	energy of the objects		and following a logical	to that of the Earth. Have them		multimeters,	
	due to the interaction.		computational pathway.	conduct the same research for the		etc.	
		0	Make a scientific claim.	distance from a wire to a hair dryer or	•	PASCO	
		0	Support a claim with	vacuum cleaner in the home.		Sparkvue	
			evidence from physical			software	
			representations.	Create a Plan	•	Students	
		0	Provide reasoning to justify a	Have students research the magnetic		supplied	
			claim using physical	field strength of a typical MRI		devices	
			principles or laws.	machine, as well as the magnetic field		(Phones,	
		Forces on Curren	tt-Carrying Wires in Magnetic	strength of the machine's length and		laptops	
		Fields		radius. Next, have them determine			
		 Concept 	ts	how that magnetic field can be created			
		0	The definition of a the	with a same-radius, same-length			
			magnetic force acting on a	solenoid. Include factors such as			
			straight-line segment of a	length and radius of the wire making			
			current-carrying conductor in	the solenoid, its resistance, the current			
			a uniform magnetic field is:	and voltage necessary, and the cost of			
			$\overline{F}_{M} = \int I(d\overline{l} \times \overline{B})$	the wire.			
		0	The definition of torque can	Desktop Experiment			
			be applied to the loop to	Obtain a piece of rectangular			
			determine a relationship	aluminum foil about 1 foot wide and 2			
			between the torque, field,	teet long. Connect it to a battery and			
			current, and area of the loop.	resistance (so current travels the long			
		 Skills 	. 1	way) and orient it so that current			
		0	Identify appropriate	travels toward magnetic north. A			
			experimental procedures	compass on the toil should deflect			
				between 30 and 60 degrees (or adjust			
				the voltage/resistance). Have students			

		(which may include a sketch	use the compass deflection and	
		of a lab setup).	Ampere's Law to determine the	
	0	Make observations or collect	magnetic field of Earth.	
		data from representations of		
		laboratory setups or results		
	0	Explain modifications to an		
	Ű	experimental procedure that		
		will alter results		
	0	Select and plot appropriate		
	0	deta		
	0	data.		
	0	Apply an appropriate law,		
		definition, of mathematical		
		relationship to solve a		
		problem.		
	0	Provide reasoning to justify a		
		claim using physical		
		principles or laws.		
	0	Explain the connection		
		between experimental results		
		and larger physical principles,		
		laws, or theories.		
	0	Explain how potential		
		sources of experimental error		
		may affect results and/or		
		conclusions.		
	Fields of Long C	urrent-Carrying Wires		
	Concept	ts		
	0	It can be shown or		
		experimentally verified that		
		the magnetic field of a long,		
		straight, current-carrying		
		and vature in $\mathbf{P} = \frac{\mu_0 I}{2}$		
		conductor is. $B = \frac{1}{2\pi r}$		
	0	The field of a long, straight		
		wire can be used as the		
		external field in the definition		
		of magnetic force acting on a		
		segment of current carrying		
		wire.		
	 Skills 			
	0	Represent features of a		
		model or the behavior of a		
		physical system using		

			-	
		appropriate graphing		
		techniques, appropriate scale,		
		and units.		
	0	Sketch a graph that shows a		
		functional relationship		
		between two quantities.		
	0	Derive a symbolic expression		
		from known quantities by		
		selecting and following a		
		logical algebraic pathway.		
	0	Support a claim with		
		evidence from physical		
		representations.		
	Biot-Savart Law a	nd Ampere's Law		
	 Concept 			
	0	The Biot–Savart Law is the		
		tundamental law of		
		magnetism that defines the		
		magnitude and direction of a		
		magnetic field due to moving		
		charges or current-carrying		
		conductors. The law in		
		differential form is:		
		$d\overline{B} = \frac{\mu_0}{2\pi} \frac{I(dl \times r)}{r^2}$		
	0	The Biot–Savart Law can be		
		used to derive the magnitude		
		and directions of magnetic		
		fields of symmetric		
		current-carrying conductors		
		(e.g., circular loops), long,		
		straight conductors, or		
		segments of loops.		
	0	Ampère's Law is a		
		fundamental law of		
		magnetism that relates the		
		magnitude of the magnetic		
		field to the current enclosed		
		by a closed imaginary path		
		called an Amperian loop. The		

	law in integral form is:		
	$\oint \overline{B} \cdot d\overline{l} = \mu_0 I$		
0	Ampère's Law can be used to determine magnetic-field relationships at different locations in cylindrical		
	current-carrying conductors.		
Skills			
0	Determine or estimate the		
	change in a quantity using a		
	mathematical relationship.		
0	Derive a symbolic expression		
	from known quantities by		
	selecting and following a		
	logical algebraic pathway.		
0	Make a scientific claim.		

Unit 11: Electromagnetism

Enduring Understandings:	Essential Questions:						
 There are laws that use symmetry and calculus to derive mathematical relationships that are applied to physical systems containing a magnetic field. A changing magnetic field over time can induce current in conductors. Induced forces (arising from magnetic interactions) that are exerted on objects can change the kinetic energy of an object. Electric and magnetic fields that change over time can mutually induce other electric and magnetic fields. 	 How does magnetic flux compare to electric flux? How does induction allow for electric motors such as those found in modern electric cars? What different configurations for electric motors exist? How are LC circuits utilized to create things like radio transmission and theremins? How is electromagnetic induction utilized in induction heaters? 						
Interdisciplinary Connections							
WHST.9-12.9 - Draw evidence from informational texts to support analysis, reflection, and research.							

HSN-Q.A.3 - Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS2-5	Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	Electromagnetic Induction • Concepts • Magnetic flux is the scalar product of the magnetic-field vector and the area vector over the entire area contained by the loop. The definition of magnetic flux is: $\Phi_B = \int \overline{B} \cdot d\overline{A}$	Desktop Experiment Have students spin a magnet within a coil of wire and measure the spin rate, area, number of coils, and peak voltage induced. From this, have students estimate the strength of the magnetic field generated by the magnet. Qualitative Reasoning Have students explain qualitatively how electromagnetic braking works,	Resources • Knight textbook • AP Classroom • HyperPhysics • PhET Simulations • Pivot Interactives simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets Lab reports and lab
		 Induced currents arise in a conductive loop (or long 	including how electromagnetic brakes are structured, how e-brakes can		notebook checks

HS-PS2-6	Communicate scientific		wire) when there is a change	recharge a battery, and how e-brakes	•	Physics	Progress checks
	and technical		in magnetic flux occurring	can double as electric motors.		Classroom	0
	information about why		through the loop. This			simulations	Unit summative test
	the molecular-level		change is defined by	Desktop Experiment	•	Mastering	
	structure is important		Faraday's Law	Have students construct their own		Physics	Project rubrics
	in the functioning of	0	When an induced current is	solenoid (or provide one) and measure			,
	designed materials.		created in a conductive loop,	its inductance using an RL circuit	Materia	ls	
HS-PS3-3	Design, build, and		the current will interact with	(measure the time constant and the R	•	PASCO data	
	refine a device that		the already-present magnetic	to get L). Have them repeat the		sensors	
	works within given		field, creating induced forces	experiment with iron or steel in the	•	Circuit	
	constraints to convert		acting on the loop. The	core of the inductor to get the		components:	
	one form of energy		magnitude and directions of	increased L.		batteries,	
	into another form of		these induced forces can be			wires,	
	energy.		calculated using the	Graph and Switch		lightbulbs,	
HS-PS3-5	Develop and use a		definition of force on a	Have Student A construct quantitative		multimeters,	
	model of two objects		current-carrying wire.	graphs of current versus time and		etc.	
	interacting through	 Skills 		voltage versus time for Inductor,	•	PASCO	
	electric or magnetic	0	Select relevant features of a	Resistor 1, and Resistor 2 that shows		Sparkvue	
	fields to illustrate the		representation to answer a	current/voltage before and after a		software	
	forces between objects		question or solve a problem.	switch opens/closes. Student B must	•	Students	
	and the changes in	0	Describe the effects of	then construct the circuit with the		supplied	
	energy of the objects		modifying conditions or	switch, R1, R2, L.		devices	
	due to the interaction.		features of a representation			(Phones,	
			of a physical situation.	Construct an Argument		laptops	
		0	Assess the reasonableness of	Have students use Maxwell's equations			
			results or solutions.	to construct arguments for the			
		0	Make a scientific claim.	following: Why there can be no			
		0	Explain the connection	magnetic monopoles, what eddy			
			between experimental results	currents are and why they exist, why a			
			and larger physical principles,	surface entirely within conducting			
			laws, or theories.	material must have zero net charge			
		Inductance		within, and why there must be electric			
		 Conception 	ts	currents within the Earth's core.			
		0	By applying Faraday's Law to				
			an inductive electrical device,				
			a variation on the law can be				
			determined to relate the				
			definition of inductance to				
			the properties of the				
			inductor: $\varepsilon_i = -L \frac{dI}{dt}$ where				
			L is defined as the inductance				
			of the electrical device				

0	The electrical characteristics		
	of an inductor in a circuit are		
	the following:		
	■ At the initial		
	condition of closing		
	or opening a switch		
	with an inductor in		
	a circuit the		
	induced voltage will		
	be equal in		
	magnitude and		
	opposite in		
	direction of the		
	applied voltage		
	across the branch		
	containing the		
	inductor		
	In a stoody state		
	■ In a steady-state		
	inductor has a		
	resistance of zero		
	and therefore will		
	behave as a care		
	wire in a circuit.		
	In circuits		
	containing only a		
	charged capacitor		
	and an inductor, the		
	maximum current		
	through the		
	inductor can be		
	determined by		
	applying		
	conservation of		
	energy within the		
	circuit and the two		
	circuit elements that		
	can store energy.		
0	Using Kirchhoff's Rules and		
	the general model for an LR		
	circuit, general current		
	characteristics can be		
	determined in an LR circuit		

in a serie	es or parallel		
arranger	ment.		
• Skills			
• Select as	n appropriate law,		
definitio	n, mathematical		
relations	ship, or model to		
describe	a physical situation.		
• Apply a:	n appropriate law,		
definitio	on, or mathematical		
relations	ship to solve a		
problem	- I.		
• Calculat	e an unknown		
quantity	with units from		
known o	quantities, by selecting		
and follo	owing a logical		
comput	ational pathway.		
• Provide	reasoning to justify a		
claim us	ing physical		
principle	es or laws.		
Maxwell's Equations			
• Concepts			
• Maxwel	's Laws completely		
describe	the fundamental		
relations	ships of magnetics		
and elec	tric fields in		
steady-s	tate conditions, as		
well as i	n situations in which		
the field	s change in time.		
• Skills			
• Describ	e the effects of		
modifyi	ng conditions or		
features	of a representation		
of a phy	viscal situation.		
• Lineariz	e data and/or		
determi	ne a best fit line or		
curve.			
• Explain	how the data or		
graph ill	ustrates a physics		
principle	e, process, concept,		
or theor	у.		
• Derive a	symbolic expression		
from kn	own quantities by		

		selecting and following a		
		logical algebraic pathway.		
	0	Provide reasoning to justify a		
		claim using physical		
		principles or laws.		

Unit 12: Conclusions and Summative Project

 Enduring Understandings: There are many notable physicists that come from a myriad of backgrounds and identities. Physics is a broad subject with many facets and subtopics. 	 Essential Questions: What other scientists have contributed to the field of physics that aren't as commonly discussed? Within the field of physics, what other interesting things are there to 			
	study?			
Interdisciplinary	Connections			
RST.11-12.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-12.7 - Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.				
WHST.11-12.8 - Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.				

Standard Number & Description		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
HS-PS4-3	Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some	 Discover scientists not often discussed in the context of physics topics covered by this class. Due to the scope of this course (foundational physics before the advent of modern physics), many scientists that have contributed to the field of physics go unnamed. 	 Notable Physicist Project Students will pick a scientist to research from a list of underrepresented scientists in the field of physics, astronomy, or other related fields. 	Resources • Knight textbook • AP Classroom • HyperPhysics • PhET Simulations	Daily Do Nows Teacher and peer feedback Exit Tickets Individual activity guided worksheets

HS-PS4-4	situations one model is more useful than the other. Evaluate the validity	• What other scientists from diverse backgrounds have contributed to our understanding of physics?	• Students will create a small presentation based on the scientist they chose.	 Pivot Interactives simulations Physics 	Lab reports and lab notebook checks
	and reliability of claims in published materials	Dive deeper into physics to find other, interesting fields within the subject.	Physics Phenomenon ProjectStudents will choose a	Classroom simulations	Progress checks
	of the effects that different frequencies of electromagnetic radiation have when absorbed by matter	 Physics is a very broad field, and this class is designed to cover the fundamental building blocks of the science. What other fields exist with physics? 	 physics topic that was not covered in the year to research and report upon. Students can create a small presentation, a video, a skit, 	 Mastering Physics 	Unit summative test Project rubrics
HS-PS4-5	Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.	What is being researched today? How are we using these fields to discover new things or create new inventions?	ot other forms of demonstrating understanding of the material.		

Social Emotional Learning Connections

Below are the five core SEL Competencies as outlined by CASEL, and examples of how each may be addressed within this curriculum

Self-awareness: The ability to accurately recognize one's emotions and thoughts and their influence on behavior. This includes accurately assessing one's strengths and limitations and possessing a well-grounded sense of confidence and optimism.

Example 1: AP Physics C is a demanding and self-driven class. The pacing of this course and the difficulty of the material will require students to understand their limitations and when to ask for assistance.

Example 2: Students explore how to utilize their strengths in the setting of a collaborative group environment to generate solutions.

Self-management: The ability to regulate one's emotions, thoughts, and behaviors effectively in different situations. This includes managing stress, controlling impulses, motivating oneself, and setting and working toward achieving personal and academic goals.

Example 1: Students will develop a broader understanding of how they prefer to complete work by working through difficult course work and quick pacing.

Example 2: Students will practice self-management through guided and open inquiry labs where they are tasked to explore phenomena.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students frequently collaborate with peers and consider the thoughts and feelings of others while observing different perspectives. **Example 2:** Students build self-confidence and social awareness through class presentations and the study of scientists that contributed to physics.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1: Students must practice communication skills while working cooperatively with peers on various problems in the lab environment. **Example 2:** Students must practice group management skills to create a productive lab environment.

Responsible decision-making: The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of

self and others.

Example 1: Students must practice safe behavior in the lab environment.

Example 2: Students consider the consequences of various decisions while problem solving and researching as they relate to academic integrity and personal ethics.

Integration of 21st Century Themes and Skills

See: Career Readiness, Life Literacy Skills & Key Skills

NJSLS-CLKS 9.4: Life Literacies and Key Skills			
Creativity and Innovation	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
	Can be found in units: 1, 6, 12		
Critical Thinking and Dacklass Salving	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
Critical Trinking and Problem Solving	Can be found in units: 2, 5, 7, 9, 10, 11		
Digital Citizenship	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
	Can be found in units: 6, 12		
Global and Cultural Awareness	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
	Can be found in unit: 7, 11, 12		
Information and Media Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
	Can be found in unit: 1, 6, 12		
Technology Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit		
	Can be found in unit: 1, 12		

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist . . . using technologies that haven't been invented . . . in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Career Awareness and Planning Standards			
Act as a responsible and contributing community member and employee.: Students understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.	Students reflect on their obligations to the classroom community and time is dedicated to examining how our conduct and contributions to the learning process impact those around us and the productivity of the class/group/school community as a whole.		
<u>Attend to financial well-being</u> : Students take regular action to contribute to their personal financial well-being, understanding that personal financial security provides the peace of mind required to contribute more fully to their own career success.	Time is dedicated to exploring how and why we work. What about working makes us feel good? What are we uncomfortable with? How can work in this particular content area contribute to the financial security of those working in this industry?		
Consider the environmental, social and economic impacts of decisions: Students understand the interrelated nature of their actions and regularly make decisions that positively impact and/or mitigate negative impact on other people, organization, and the environment. They are aware of and utilize new technologies, understandings, procedures, materials, and regulations affecting the nature of their work as it relates to the impact on the social condition, the environment and the profitability of the organization.	Students understand that each action has a consequence that can be positive or negative. This impact exists within the classroom & the workplace, but also reverberates in our communities, our state, our nation and our world. As a result, workplaces and classrooms have procedures and regulations for the wellbeing of all.		
Demonstrate creativity and innovation: Students regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek	Students are provided with the opportunity to think creatively to solve problems. There is consistent opportunity for innovation in both individual and in a group setting. Peer feedback is encouraged to allow for revisions of proposals and		

to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization.	to troubleshoot potential solutions to problems as they arise.
Utilize critical thinking to make sense of problems and persevere in solving them: Students readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of problems when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. They carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through their own actions or the actions of others.	The integration of problem based learning throughout this curriculum provides students with the opportunity to recognize specific problems and take action through thoughtful investigation and problem solving strategies to make meaningful, sustainable change.
<u>Model integrity. ethical leadership and effective management:</u> Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' actions, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture.	This course provides students opportunities to work collaboratively, rotating from leadership to subordinate roles within the group. Through this structure, students learn how to work with others and gain valuable insights into human behavior and its impact on others' actions, attitudes and/or beliefs.
Plan education and career paths aligned to personal goals: Students take personal ownership of their own education and career goals, and they regularly act on a plan to attain these goals. They understand their own career interests, preferences, goals, and requirements. They have perspective regarding the pathways available to them and the time, effort, experience and other requirements to pursue each, including a path of entrepreneurship. They recognize the value of each step in the education and experiential process, and they recognize that nearly all career paths require ongoing education and experience. They seek counselors, mentors, and other experts to assist in the planning and execution of career and personal goals.	What do we need to do physically and emotionally to prepare to accomplish our goals? Students will regularly participate in goal setting exercises. They will create action plans to accomplish said goals.
<u>Use technology to enhance productivity, increase collaboration and communicate effectively:</u> Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks.	Students will be presented with access to a variety of technological opportunities throughout this course and empowered to utilize the technology to increase collaboration and communicate with their peers.

<i>Work productively in teams while using cultural/global competence:</i> Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural differences to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of all team members. They plan and facilitate effective team meetings.	Students will work productively in culturally and socioeconomically diverse groups of individuals. Through these activities, they will gain an awareness of cultural difference and find ways to increase the engagement and contribution of all team members by introspection and continued reflective practices that examine what we each contribute to a group and what we need from our teammates.
---	--

Diversity, Equity & Inclusion Mandate Guide

Robbinsville Public Schools believes that our similarities make us stronger and commits to creating an accessible, inclusive, and connected community where all individuals fully belong and are empowered to contribute and grow. This curriculum meets the New Jersey Department of Education mandats set forth in the Amistad Law, AAPI Law. Holocaust Law and LGBT and disabilities law. Samples of learning for these historically underrepresented groups are embedded throughout this curriculum with key examples highlighted below.

<u>AAPI</u> (K-12)	Students will be able to explore the contributions of AAPI scientists to the field of physics in the final unit where they will be tasked to research a scientist and their contributions to the field of physics.
Diversity & Inclusion Law (K-12)	AP Physics C embodies inclusivity by providing physics through the lens of culturally informed pedagogy. Student backgrounds are represented and included in varied problem sets, and students are able to explore the world of physics by relating to aspects in their own lives. Additionally, students will be able to explore the diversity within the field of physics through the scientist research project.

General Differentiated Instruction Strategies				
 Leveled texts Chunking texts Choice board Socratic Seminar Tiered Instruction Small group instruction Guided Reading Sentence starters/frames Writing scaffolds Tangible items/pictures Adjust length of assignment 	 Repeat, reword directions Brain breaks and movement breaks Brief and concrete directions Checklists for tasks Graphic organizers Assistive technology (spell check, voice to type) Study guides Tiered learning stations Tiered questioning Data-driven student partnerships Extra time 			

Possible Additional Strategies for Special Education Students, 504 Students, At-Risk Students, and English Language Learners (ELLs)				
Time/General	Processing	Comprehension	Recall	
 Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline 	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklist Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers 	
Assistive Technology	Assessments and Grading	Behavior/Attention	Organization	

 Computer/whiteboard Tape recorder Spell-checker Audio-taped books 	 Extended time Study guides Shortened tests Read directions aloud 	 Consistent daily structured routine Simple and clear classroom rules Frequent feedback 	 Individual daily planner Display a written agenda Note-taking assistance Color code materials
--	---	--	--

Enrichment The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

• Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.

- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.
- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options
- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interest in greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and making connections.
- The inclusion of additional subject areas and/or activities (cross-curricular).
- Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources :

General Supports

- WIDA Can Do Descriptors
- WIDA Can Do Descriptors Cheat Sheet
- Ways to Support ELLs with Visuals
- <u>Activate Background Knowledge</u>
- Glossary of ELL friendly strategies and activities

Technology based supports

- Virtual Supports and Accommodations for ELL with Technology Specific Supports Slides presentation
- <u>Translate Google Doc Directions</u>
- <u>Read Write Chrome Extension</u> -Text to speech and speech to text
- Mercury Reader Chrome Extension cleans up webpages, removes ads, adjusts font and text size, and offers printing
 optimization
- <u>Text Compactor</u> simplifies reading level of texts by creating summary sentences based on the frequency of words appearing in the text. This tool works best with expository text.
- <u>Rewordify</u> simplifies key terms. The reworded words are highlighted (see example to the right with yellow highlighting). There are a few different options for how the changes are shown. Students can click highlighting to hear and see the original words. The site also offers "learning sessions" to help students learn new words from the text they chose to paste on the site. Rewordify documents can be saved and shared.
- <u>Simplish.org</u> uses an 850 word vocabulary and a scientific dictionary to simplify texts. Any scientific terms are explained in footnotes and students can create their own personal dictionary as they learn new words.
- WordSift.org input text it pulls out academic vocabulary and creates a word cloud

Supports by English Level

- <u>ELs Expectations and Modifications by Level</u>
- Blooms for ELLs by Level

Leveled Questions for ELLs with Bloom

Supports by Domain - Listening, Speaking, Reading, Writing

- Speaking Expectations by Level
- <u>Sentence frames by level for Speaking</u>
- <u>Scaffolds Receptive and Productive Language</u>
- <u>Writing Rubric Using WIDA Levels</u>

Vocabulary Specific Support

- Vocabulary Scaffold Ideas
- Frayer Model Graphic Organizer
- ELL Dictionary Google Sheet Self Populating
- <u>Virtual World Wall Template</u>

Content Specific Support

- <u>Considerations when teaching Science to ELLs</u>
- Math/ Science Reference Sheet
- Physics Lab Equipment
- <u>CER Graphic Organize</u>
- <u>Speak like a Scientist Sentence Frames</u>
Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combining them with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/
- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. <u>http://www.edutopia.org/</u>
- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embed media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/