ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

SCIENCE

7th Grade Integrated Science

Board of Education

Mr. Vito Gallucio, President Mr. Christopher Emigholz, Vice President Ms. Jane Luciano Ms. Lisa Temple Mr. Richard Young Mr. Scott Veisz Ms. Maxine Fox Ms. Tanya Lehmann Mr. Jai Gulati Mr. Brian Betze, Superintendent Dr. Kimberly Tew, Assistant Superintendent **Curriculum Writing Committee**

Karen Miller

Supervisors Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE:

Course Philosophy

Science and science education are essential to the lives of everyone. By learning science, students become informed and involved citizens as well as innovative thinkers. This course is structured around The Next Generation Science Standards (NGSS), where students apply their knowledge and skills to master these new science standards. The NGSS embodies a new vision for how students learn science by combining core ideas with cross-cutting concepts, science, and engineering practices. They emphasize the practice of scientific inquiry and analysis, and provide students with a variety of interactions that shift the cognitive expectation from simple answers to higher-level, critical-thought responses. Explicit strategies guide the learner while hands-on investigations focus on open-ended inquiry. By introducing students to new concepts with phenomena, students actively discover the knowledge and skills required to solve real-world problems. This course strives to educate students in science and engineering in order to prepare them for today's technologically advanced world.

Course Description

The 7th grade integrated science program is structured and based on the Next Generation Science Standards. Integrated science is a revolutionary science program that provides students with science topics that span many scientific disciplines. This course integrates multiple disciplines to enable students to make relevant connections and generate meaningful associations with the real world. By integrating crucial critical thinking skills, students enhance content and skills in all disciplines. This course helps students think about, read about, write about, and talk about science. It elevates thinking and learning by engaging students with phenomena, and with problem-based activities to anchor each topic. Students will connect science, technology, engineering, and mathematics with STEM activities that fuel innovation, problem solving, collaboration, and reasoning—skills needed for future careers. This blended print and digital curriculum prepares students for the challenges of tomorrow.

Core and Supplemental Instructional Materials

Core Materials	Supplemental Materials
• <u>Elevate Science Course 2</u> by Pearson Education	 Teacher created resources Various internet activities TedED Brain POP National Geographic IXL Newsela EdPuzzle Kesler Station labs Khan Academy Crash Course PBS Digital Learning https://why.pbslearningmedia.org/ https://www.ck12.org/teacher/ https://sciencespot.net/

Social Emotional Learning Connections

Below are the five core SEL Competencies as outlined by CASEL, and examples of how each may be addressed within this curriculum.

Self-awareness: The ability to accurately recognize one's emotions and thoughts and their influence on behavior. This includes accurately assessing one's strengths and limitations and possessing a well-grounded sense of confidence and optimism.

Example 1: Students will learn about the body systems and how they interact. They will gain self-awareness of being healthy due to proper diet and exercise, and the importance of making healthy choices in life.

Example 2: Establish clear norms and consequences in the beginning of the year so that students can see the impact of their own actions and behaviors on outcomes. Students will develop appropriate strategies for providing feedback to each other if someone is not pulling their weight in their group.

Self-management: The ability to regulate one's emotions, thoughts, and behaviors effectively in different situations. This includes managing stress, controlling impulses, motivating oneself, and setting and working toward achieving personal and academic goals.

Example 1: Students will learn how stress affects the body and can lead to depression, anxiety, headaches, digestive issues, and cardiovascular disease. In class, students discuss ways of reducing stress naturally, including exercise, meditation and positive mindset.

Example 2: Students will participate in a lesson in which they will discuss how to use certain equipment, such as computers and microscopes, as well as other resources appropriately.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students will learn about some of the important impacts of women and minorities in science, in order to help them identify with different cultural communities - including both well-known stories like that of Henrietta Lacks and her connection to cell biology and smaller stories like that of Cynthia Lucero and her connection to osmosis.

Example 2: Cultivate students' empathy by encouraging them to "put themselves in the shoes" of people living in different parts of the world with limited resources. This will help them view other perspectives of peoples' cultures and the issues they face.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1: Students will build diverse work groups through the use of cooperative learning and project-based learning activities. The engineering design process is a perfect opportunity to encourage students to team up, develop and test ideas, appreciate each other's creativity, and talk about their successes and failures.

Example 2: Students will create their own ideas for how investigations should be carried out in an environment that encourages collaboration and respect. They will discuss ways to demonstrate respect for others during group activities.

Responsible decision-making: The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of self and others.

Example 1: Students describe how they can help the environment by stopping pollution and stop wasting water to help with the World Water Crisis. They will discuss ways that we can reverse human impacts on the environment, and describe things they can do to better the planet.

Example 2: Teaching students to accurately recognize when they have encountered a problem and learn to analyze the situation from a variety of angles, which includes identifying how and why the problem arose. After students have sufficiently identified, analyzed, and considered the problem, they then need to develop and practice methods for solving problems.

NJSLS-CLKS 9.4: Life Literacies and Key Skills					
Creativity and Innovation	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
Can be found in unit: 1, 6, 7					
	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
Critical Thinking and Problem Solving	Can be found in unit: 4, 5, 7				
Digital Citizenship	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
	Can be found in unit: 6, 7				
Global and Cultural Awareness	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
	Can be found in unit: N/A				
Information and Media Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
	Can be found in unit: 9, 10				
Technology Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit				
	Can be found in unit: 1, 2, 3				

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist . . . using technologies that haven't been invented . . . in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Career Awareness and Planning Standards 9.2			
9.2.8.CAP.2: Develop a plan that includes information about career areas of interest.	Example: Students learn about different STEM careers that incorporate science and technology skills that are learned in the curriculum. Have students research careers of interest and discuss with the class.		
9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.	Example : Students will research how STEM jobs can be affected by the economy, as well as social and political conflicts (ex: cloning, space travel,etc) about moral and ethical concerns that can affect their specific career path.		
9.2.8.CAP.12: Assess personal strengths, talents, values, and interests to appropriate jobs and careers to maximize career potential.	Example: Incorporate reflection and exploration about student interests in science topics based on their own talents and strengths. Students journal about all the careers covered in the curriculum and then research one that interests them. They then share their findings with each other in small groups and post them on the wall or the class website.		

Robbinsville Public Schools Scope, Sequence, Pacing and Assessment

7th Grade Science

Unit Title	Unit Understandings and Goals	Recommended Duration/ Pacing	Assessments
Unit 1: The Cell System	- The organization and development of living things, in particular their cells, are the main ideas that frame this topic. While studying cells, students use models to recognize cell structures and conduct an investigation to understand cell structures and functions. Using models, students will describe the function of a cell as a whole, and ways that parts of the cell contribute to the function.	4+ Weeks (Approximately 23 days)	Formative Interactivities Hands-on investigative labs Virtual labs Enrichment activities QUEST project check-ins Teacher and peer feedback Open-ended/ scaffolded questions Summative Lesson checks Lesson quiz Unit assessment QUEST project rubric Teacher feedback and comments Common Benchmark Assessments (mid/end of course) Content SGO Skills SGO Alternative Assessments (projects, etc when appropriate) QUEST project "How can you design a model exhibit for a science museum?" Performance- Based assessment: "Design and Build a Microscope"
Unit 2: Human Body Systems	How human body organs and their systems interact is the main idea that frames this topic. Students will demonstrate the interactions among several systems and learn how the nervous system sends and receives messages throughout the body. This topic supports student understanding of the importance of making healthy lifestyle decisions in regard to their physical and nutritional health.	4 Weeks (Approximately 20 days)	Formative Interactivities Hands-on investigative labs Virtual labs Enrichment activities QUEST project check-ins Teacher and peer feedback Open-ended/ scaffolded questions

			Summative · Lesson checks · Lesson quiz · Unit assessment · QUEST project rubric · Teacher feedback and comments Common Benchmark Assessments (mid/end of course) · Content SGO · Skills SGO Alternative Assessments (projects, etc when appropriate) · QUEST project "How do your body systems interact when you train for your favorite sport?" · Performance- Based Assessment: "Reaction Research"
Unit 3: Reproduction and Growth	The diversity of ways in which living things reproduce and grow is the context that frames this topic. While learning how plants and animals reproduce and grow, students will come to recognize the importance of the environmental factors in the growth of all living things, including themselves.	3-4 Weeks (Approximately 17 days)	Formative • Interactivities • Hands-on investigative labs • Virtual labs • Enrichment activities • QUEST project check-ins • Teacher and peer feedback • Open-ended/ scaffolded questions Summative • Lesson checks • Unit assessment • QUEST project rubric • Teacher feedback and comments Common Benchmark Assessments (mid/end of course) • Content SGO • Skills SGO Alternative Assessments (projects, etc when appropriate) • QUEST project "How can we reduce the impact of construction on plants and animals?" • Performance- Based Assessment: "Clean and Green"
Unit 4: Ecosystems	Patterns of inheritance between living and nonliving things in an ecosystem, and how these interactions affect resource availability are the main ideas that frame this topic. While studying organisms' interactions in ecosystems and limiting factors that affect their populations, students begin to recognize the connections among features of an ecosystem,	3 Weeks (Approximately 15 days)	Formative · Interactivities · Hands-on investigative labs · Virtual labs · Enrichment activities · QUEST project check-ins · Teacher and peer feedback · Open-ended/ scaffolded questions

	human and natural events, and overall health of an		Summative
	ecosystem, including the availability of resources.		· Lesson checks
			· Lesson quiz
			• Unit assessment
			QUEST project rubric
			Teacher feedback and comments
			Common Benchmark Assessments (mid/end of course)
			Content SGO
			· Skills SGO
			Alternative Assessments (projects, etc when appropriate)
			· QUEST project "What do you think is causing Pleasant
			Pond to turn green?"
			· Performance- Based Assessment: "Last Remains"
Unit 5: Populations,	The impact of ecosystem changes on a region's	3-4 Weeks	Formative
Communities and Ecosystems	biodiversity is the context that frames this topic.	(Approximately 18	· Interactivities
	While studying organisms' interaction in ecosystems	days)	· Hands-on investigative labs
	and factors that affect their populations, students		· Virtual labs
	recognize the importance of biodiversity for		Enrichment activities
	sustaining life on Earth.		· QUEST project check-ins
	Sustaining file of Earth.		Teacher and peer feedback
			· Open-ended/ scaffolded questions
			Summative
			· Lesson checks
			· Lesson quiz
			1
			· Unit assessment
			· QUEST project rubric
			Teacher feedback and comments
			Common Benchmark Assessments (mid/end of course)
			Content SGO
			Skills SGO
			Alternative Assessments (projects, etc when appropriate)
			· QUEST project "Should an animal crossing be
			constructed in my community?"
			· Performance- Based Assessment: "Changes in an
			Ecosystem"
Unit 6:	The distribution of natural resources and the ways	3-4 Weeks	Formative
Distribution of Natural	humans use the resource are explored in this	(Approximately 18	· Interactivities
Resources	topic. While studying nonrenewable and	days)	· Hands-on investigative labs
	renewable resources, students also explore the use		· Virtual labs
	of minerals and water resources.		· Enrichment activities
			QUEST project check-ins
	1		• Teacher and peer feedback

			· Open-ended/ scaffolded questions
			Summative
			· Lesson checks
			Lesson quiz
			· Unit assessment
			· QUEST project rubric
			Teacher feedback and comments
			Common Benchmark Assessments (mid/end of course)
			· Content SGO
			· Skills SGO
			Alternative Assessments (projects, etc when appropriate)
			· QUEST project "How could natural resources have
			saved a ghost town?"
			· Performance- Based Assessment: "To Drill or Not to
			Drill"
Unit 7: Human Impacts on the	The various ways that humans impact Earth's	3-4 Weeks	Formative
Environment	systems form the context for this topic. Students	(Approximately 17	· Interactivities
	will identify the ways that a growing human	days)	Hands-on investigative labs
	population uses and affects Earth's air, land , and		 Virtual labs
	water. Students will also identify ways to mitigate		Enrichment activities
	the impact of humans, using technology or		 QUEST project check-ins
	sustainable-use policies.		· Teacher and peer feedback
			Open-ended/ scaffolded questions
			Summative
			Lesson checks
			· Lesson quiz
			· Unit assessment
			QUEST project rubric
			Teacher feedback and comments
			Common Benchmark Assessments (mid/end of course)
			· Content SGO
			· Skills SGO
			Alternative Assessments (projects, etc when appropriate)
			· QUEST project "How can you help your school reduce
			its impact on Earth's systems?"
			· Performance- Based Assessment: "Washing Away"
Unit 8:	Each day, students encounter many forms of	4 Weeks	Formative
Waves and Electro- magnetic	energy transmission through waves. Students	(Approximately 20	· Interactivities
Radiation	explore and examine the different properties of	days)	· Hands-on investigative labs
	these waves and the way that the waves interact	. ,	· Virtual labs
	with matter and with each other. Through this		Enrichment activities
	study, they also learn the ways in which		· QUEST project check-ins

	electromagnetic waves are particularly relevant to our lives and to the use of technologies that we use every day.		 Teacher and peer feedback Open-ended/ scaffolded questions Summative Lesson checks Lesson quiz Unit assessment QUEST project rubric Teacher feedback and comments Common Benchmark Assessments (mid/end of course) Content SGO Skills SGO Alternative Assessments (projects, etc when appropriate) QUEST project "How can you design a system to stop a thief?" Performance- Based Assessment "Making Waves"
Unit 9: Electricity and Magnetism	This topic introduces students to electric forces, magnetic forces, and the interaction between them. Students investigate these forces and interactions and learn about the design and operation of electromagnets, motors, and generators.	3-4 Weeks (Approximately 18 days)	Formative Interactivities Hands-on investigative labs Virtual labs Enrichment activities QUEST project check-ins Teacher and peer feedback Open-ended/ scaffolded questions Summative Lesson checks Lesson quiz Unit assessment QUEST project rubric Teacher feedback and comments Common Benchmark Assessments (mid/end of course) Content SGO Skills SGO Alternative Assessments (projects, etc when appropriate) QUEST project "How can you lift an object without making contact?" Performance- Based Assessment "Planetary Detective"
Unit 10: Information Technologies	This topic introduces students to information signals and the technologies that encode and transmit that information. Students study digital and analog signals in order to compare their advantages and disadvantages.	3 Weeks (Approximately 14 days)	Formative Formative Interactivities Hands-on investigative labs Virtual labs Enrichment activities QUEST project check-ins

 Teacher and peer feedback Open-ended/ scaffolded questions
Summative
· Lesson checks
· Lesson quiz
· Unit assessment
· QUEST project rubric
Teacher feedback and comments
Common Benchmark Assessments (mid/end of course)
· Content SGO
· Skills SGO
Alternative Assessments (projects, etc when appropriate)
QUEST project "What is the best way to record sound
for my scenario?"
Project-Based Assessment "Over and Out"

Unit # 1: The Cell System

Enduring Understandings:	Essential Questions:
 All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multi-cellular). Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. Plants and many other microorganisms use the energy from the light to make sugars (food) from carbon dioxide which comes from the atmosphere, and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use. Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy. 	 How does the structure of cells determine their function? How do the structures of organisms enable life's functions? How do organisms detect, process, and use information about the environment?

Interdisciplinary Connections

NJSLS Mathematics 6.EE.C.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent variables using graphs and tables, and relate these to the equation.

• <u>Examples</u>: Students will write a mathematical expression to calculate the total magnification of a microscope, and represent quantitative relationships by drawing a human hair at actual size and at the size it appears under a microscope. Students can also analyze proportional relationships by determining the difference between the giant dragonfly and the modern dragonfly, and infer the relationship between dragonfly size and air oxygen levels.

NJSLS Mathematics 8.F.B.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

• Example: Students will draw a picture to show the relationship between carbon dioxide molecules and glucose molecules from photosynthesis. They will work with a partner to develop an equation to model this relationship.

NJSLS Mathematics 7.RP.A.1: Compute unit rates associated with ratios of fractions including ratios of lengths, areas and other quantities measured in like or different units.

• Example: Students will analyze quantitative relationships by proving the equations for photosynthesis and cellular respiration are balanced.

Career/Real World Connections

Careers

- Museum Curator- Responsible for managing and overseeing artifacts, models, and exhibits for the museum.
- Biologist- Some biologists such as microbiologists and cytologists, focus on studying different types or aspects of cells. They may also study how infections and diseases affect cells.

- Public Health- some bacteria can cause diseases and illnesses and can be presented by practicing good hygiene.
- Stem Cell Research- Stem cells are cells that have not yet differentiated into specialized cells. Research suggests that these cells may one day be used to repair or replace damaged or destroyed cells in the human body. This can help to treat or even cure diseases such as Alzheimer's and Parkinson's. There is a controversy over the use of embryonic stem cells in the lab and whether or not they should be studied or destroyed for their stem cells.
- Drinking Salt Water- People stranded in the ocean should never drink salty ocean water due to osmosis, and water would leave the cells causing dehydration and possibly death.
- Environment- Kelp forests (giant algae) provide food and shelter to many animals in the ocean. Pollution of the ocean can threaten the kelp forests by slowing their growth, which would result in many consequences to the ecosystem and environment.
- Sports Medicine- Muscle soreness is caused by lactic acid buildup in the muscles from the process of fermentation. Sports medicine specialists help design workouts to help athletes perform in the aerobic and anaerobic zones to enhance performance and endurance.

	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	What evidence is there that	Students investigate and explain how cells	Phenomena:	Elevate Interactivities:	Open-ended quiz
LS1-1	cells make up living things?	determine the structure of living things	- Observe different types of cells	- In Common	
			- The Mighty Mole Rat	- Functions of All	Think Pair Share
MS-	How do cells determine the	Using models, students compare and contrast	- Tumor/cancer formation	Cells	
LS1-2	structure of living things?	cell structures and their functions. They also	- Water Intoxication	- Through A	Four corners
	W/hat are some anapial	compare and contrast plant and animal cells.	https://www.youtube.com/watch?	Microscope	
MS-	What are some special structures within a cell?		<u>v=jeiHmGTn_X8</u>	- A Strance Specimen	Science notebooks
LS1-3	structures within a cen-	Students explore the primary role of the cell	- The immortal cells of Henrietta	- Build a Cell	
	How do the different parts of	membrane and how it helps the cell to maintain	Lacks	- Structure Function	Discussions/socratic
MS-	a cell help it to function?	homeostasis.	https://thewonderofscience.com/	Junction	seminars
LS1-6	I I I I I I I I I I I I I I I I I I I		phenomenon/2018/7/8/the-immo	- Specialized Cells	
	How are animal cells	Students explore how cells undergo	rtal-cells-of-henrietta-lacks	Cell Transport	Graphic Organizers
MS-	different from plant cells?	reproduction. Using models, they recognize	- Killer T Cell	- Entering and	
LS1-7		how structures in the cell support this process.	https://thewonderofscience.com/	Leaving a Cell	Individual whiteboards
	What is the primary role of		phenomenon/2018/7/9/killer-t-ce	- Active Cell Division	
MS-	the cell membrane in cell	Students investigate how plants and other	<u>ll-the-cancer-assassin</u>	- A Cell Divides	Lab reports
LS2-3	function?	organisms use photosynthesis to make food.		- How Does a	
				Broken Bone heal?	

9.4.8.			SED 2 Diamain and 1 Commission Com	$T_{1} = C_{-1} C_{-1}$	the second se
	What are the functions of cell	Students explore how organisms use cellular	SEP.3 Planning and Carrying Out	- The Cell Cycle	open-ended
TL.3	division?	respiration to break down food and produce	Investigations	- Food or Fiction?	questioning
	Which structures in a cell	energy and carbon dioxide.	Conduct an investigation to provide	- Making Food for	0.10
	help it to reproduce?		evidence that living things are made of	Cells	Self assessments
	help it to reproduce:	CCC.3 Scale, Proportion and Quantity	cells; either one cell or many different	- Flower Food	D.
	How do plants and other	Students will understand that changes in a	numbers and types of cells.	- Making Energy for	Peer assessments
	organisms use photosynthesis	small-scale system, such as a cell, are viewed		Cells	
	to make food?	over much shorter times. It is important to	SEP.2 Develop and Use Models		Show of hands/3-2-1
		recognize that processes that occur locally and	Develop and use a model to describe	<u>Hands-On Labs:</u>	
	What role does	on short time scales can have long-term and	the function of a cell as a whole and	- Observing Cells	Exit slips
	photosynthesis play in cycling	large-scale impacts as well.	ways parts of cells contribute to the	- How Large Are	
	materials and energy		function.	Cells?	Project rubrics
	through ecosystems?	CCC.5 Energy and Matter		 Comparing Cells 	
		Students will learn that matter is conserved	Develop and use a model to describe	- Make a Cell Model	Lesson quizzes and
	How can cells release energy	because atoms are conserved in physical and	how food is rearranged through	- Eggsperiment With	unit test
	without oxygen?	chemical processes.	chemical reactions forming new	a Cell (egg osmosis)	
			molecules that support growth and/or	- Modeling Mitosis	Lesson checks
	How are matter and energy	Within a natural system, the transfer of energy	release energy as this matter moves	- Energy from the	
	conserved during cellular	drives the motion and/or cycling of matter.	through an organism.	Sun	Reading checks
	respiration?			- Cellular Respiration	
		CCC.6 Structure and Function	Develop a model to describe the	- Exhaling Carbon	QUEST project
		Students will understand that complex and	cycling of matter and flow of energy	Dioxide	"Design a Model
		microscopic structures and systems can be	among living and nonliving parts of an		Exhibit for a Science
		visualized, modeled, and used to describe how	ecosystem.	Living vs. Nonliving:	Museum"
		their function depends on the relationships		https://www.explorato	
		among its parts, therefore complex natural	SEP.7 Engaging in Argument from	rium.edu/imaging_stati	Performance-based
		structures/systems can be analyzed to	Evidence	on/activities/classroo	assessment: "Design
		determine how they function.	Use arguments supported by evidence	<u>m/characteristics/ca_c</u>	and build a
			for how the body is a system of	haracteristics.php	Microscope" - Students
		Key terms:	interacting subsystems composed of		will design and build
		-cell	groups of cells.	Cell City Analogy:	their own microscopes
		-microscope		https://www.biologyco	to observe small
		-cell theory	Hands-On Labs	<u>rner.com/worksheets/</u>	objects.
		-organelle		cell-analogy.html	
		-cell wall	Virtual Labs		
		- cell membrane		Cell Structure Video:	
		-cytoplasm	Online webquests	https://www.youtube.c	
		-nucleus		om/watch?v=URUJD5	
		-mitochondria	Topic Enrichments	NEXC8	
		-chloroplast			
		-vacuole	Graphic Organizers	Cell Interactives:	
		-selectively permeable		http://learn.genetics.ut	
		-diffusion	Scientific arguments (CER)	ah.edu/content/cells/	

-osmosis		
-endocytosis	Science Videos	Microscope Mania:
-exocytosis		http://sciencespot.net
-cell cycle	Science Stations	/Pages/classbio.html#
-interphase		micro
-replication	Interactive Science Journals	
-mitosis		Microscope Simulation:
-cytokinesis	Digital Learning	http://www1.udel.edu
-photosynthesis		/biology/ketcham/mic
-autotroph		roscope/ Interactive
-heterotroph		
-chlorophyll		Interactive Online cells:
-cellular respiration		http://www.cellsalive.c
-fermentation		om/cells/cell_model.h
		<u>tm</u>

Unit #2: Human Body Systems

Enduring Understandings:	Essential Questions:
 In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behavior or memories. Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function. 	 How do systems interact in the human body? How do the structures of the body allow them to function properly? How do the decisions that we make each day influence how efficiently our body's operate? In order to prevent disease and infection how might one create proactive strategies?

Interdisciplinary Connections

NJSLS Mathematics 6.EE.C.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

• <u>Example</u>: Students will convert a large number (number of body cells) into an exponent using scientific notation.

NJSLS Mathematics 7.RP.A.3: Use proportional relationships to solve multistep ratio and percent problems.

• Example: Students will calculate the amount of sodium they consume daily by changing percentages to fractions, analyzing and proportional relationships, performing calculations, and applying mathematical concepts.

NJSLS Mathematics 7.EE.A.1: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

• Example: Students will convert the data in a table into a double bar graph that shows the difference between the blood flow rate while the body is resting and exercising intensely.

NJSLS Comprehensive Health and Physical Education 2.1.8.PGD.4: Analyze the relationship between healthy behaviors and personal health.

• Example: Students create a menu and exercise program for an athlete to determine how a healthy behavior affects a person's overall health and to help prevent diseases such as heart disease and Type 2 diabetes.

Career/Real World Connections

Careers

- Some doctors specialize in different parts of the body. For example, gastroenterologists specialize in digestive disorders, including those that affect specific organs and digestive processes.
- Nutritionists and dieticians promote healthy eating habits and develop nutrition plans tailored to an individual's dietary or medical needs.
- A medical illustrator is a professional artist with advanced education in both the life sciences and visual communication. Collaborating with scientists, physicians, and other specialists, medical illustrators transform complex information into visual images that have the potential to communicate to broad audiences.
- A physical therapist helps injured or ill people improve movement and manage pain. They are often an important part of preventive care, rehabilitation, and treatment for patients with chronic conditions, illnesses, or injuries.

- Olympic athletes are able to complete tremendous feats through extensive physical training and striving to meet their nutritional needs to improve their overall health.
- There are some common idioms linked to the nervous system. Students can work together to explain the figurative meanings of these idioms (*Examples: fly by the seat of your pants, knee-jerk reaction, sweatingbullets, in the blink of an eye, firing on all cylinder*}.

	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How do groups of cells	Students identify patterns when observing how	Phenomena:	Elevate Interactivities:	Open-ended quiz
LS1-3	form interacting	cells form interacting subsystems of the body.	- Athlete in training	- Human Body	
	subsystems in the body?	Through models, students identify and	- Case studies of illness/diseases	Sytems	Think Pair Share
MS-		investigate the organs that are specialized for	- Lab grown organs	- Advances in	
LS1-8	How do the structures of	particular body functions.	- Runner's High	Medical	Four corners
	specialized organs relate to		https://thewonderofscience.com/	Technology	
9.4.8.	their functions in the	Students identify and investigate how organ	phenomenon/2018/7/9/runners-	(artificial skin)	Science notebooks
CI.4	body?	systems interact with each other to carry out all	<u>high</u>	- He's a Growing	
		necessary functions for an organism's growth		Boy	Discussions/socratic
9.4.8.	How do organ systems	and survival. Through this investigation,	SEP.7 Engaging in Argument from	- Balancing Act	seminars
TL.3	interact to carry out all the	students relate how the organ systems interact	Evidence	- Communication	
	necessary functions for an	and maintain homeostasis.	Use arguments supported by evidence	and Homeostasis	Graphic Organizers
9.4.8.	organism's growth and		for how the body is a system of	- A Variety of	
TL.2	survival?	Students investigate and explain how the	interacting subsystems composed of	Symptoms	Individual whiteboards
		digestive system provides necessary energy to	groups of cells.	- Training Symptoms	
	How do organ systems	the body's cells in the form of nutrients.		- Investigating Cells	Lab reports
	interact to maintain	Students use this information to analyze the	SEP.8 Obtaining, Evaluating, and	and Homeostasis	-
	homeostasis?	nutritional value of foods and develop healthy	Communicating Information	- Body Highways and	open-ended
		meals.	_	Byways	questioning

What are the important		Gather and Synthesize information	- Circulatory System	
nutrients your body needs	Students investigate and determine the	that sensory receptors respond to	- Humans vs.	Self assessments
to carry out its processes?	relationship between the circulatory and	stimuli by sending messages to the	Computers	
, , , , , , , , , , , , , , , , , , ,	respiratory systems, which provide the body	brain for immediate behavior or	- Flex Your Rflexes	Peer assessments
How does food become	with oxygen and remove carbon dioxide.	storage as memories.	- Why Practice	
materials your body can	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Makes Perfect	Show of hands/3-2-1
use?	Students identify the nervous system as the	Hands-On Labs		
	central system that controls all other systems		Hands-On Labs	Exit slips
How do your body's	and bodily functions. Students use models to	Virtual Labs	- How Is Your Body	1
systems process the food	determine how the endocrine system works		Organized?	Project rubrics
you eat?	with the nervous system to regulate growth and	Online webquests	- Observing Cells	,
, ,	development and maintain homeostasis.	1	and Tissues	Lesson quizzes and
How are materials	L	Topic Enrichments	- Parts Working	unit test
transported on the body?	CCC.4 Systems and System Models	Ĩ	Together	
1	Students will understand how the systems in the	Graphic Organizers	- Your Heart, Your	Lesson checks
How does the respiratory	body interact with other systems; they may have	1 0	Breathing	
system interact with other	subsystems and be a part of larger complex	Scientific arguments (CER)	- Body Systems	Reading checks
systems to exchange gases?	systems.		Working Together	U
		Science Videos	- Testing a Training	Journal writings: trace
How does the excretory	Key terms:		Plan	journey of oxygen
system interact with other	-tissue	Science Stations	- How Does Your	molecule through the
systems to remove wastes	-organ		Knee React?	body)
from the body?	-organ system	Interactive Science Journals	- What Are the Parts	
-	-stimulus		of the Nervous	QUEST project "How
Which systems control	-response	Digital Learning	System?	do your body systems
processes in the human	-gland			interact when you train
body?	-hormone		Body Systems- heart	for your favorite
	-stress		function:	sport?"
How does the body sense	-digestion		https://www.smm.org	
and respond to stimuli in	-nutrients		/heart/heart/top.html	Performance- Based
the environment?	-carbohydrates			Assessment: "Reaction
	-peristalsis		Body Systems- lung	Research" - Students
How do the cells that	-saliva		function:	design and conduct an
make up the nervous	-enzyme		https://www.smm.org	investigation to explore
system respond to stimuli?	-circulatory system		/heart/lungs/top.html	how different factors
	-artery			affect reaction times,
	-capillary		Innerbody system	then share the results
	-vein		research:	with game developers.
	-lymph		https://www.innerbod	
	-bronchi		<u>y.com/htm/body.html</u>	
	-alveoli			
	-excretion		Human Body Systems	
	-nephron		interactive website by	

	ieuron ynapse	University of Utah http://www.uen.org/t
	prain	hemepark/systems/hu
	pinal cord	man.shtml
-g	land	
-n	negative feedback	How the Body Works:
-10	eflex	KidsHealth;
		http://kidshealth.org
		National Geographic :
		Human Body
		http://science.national
		geographic.com/scienc
		e/healthand-human-bo
		<u>dy/human-body/</u>

Unit #3: Reproduction and Growth

Enduring Understandings:	Essential Questions:
 Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may be different from each other. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. Animals engage in characteristic behaviors that increase the odds of reproduction. Genetic factors as well as local conditions affect the growth of the adult plant. 	 What factors influence the growth of organisms and their ability to reproduce? How do organisms reproduce and transfer genes to their offspring? How do organisms grow and develop? How does genetic variation among organisms affect survival and reproduction? How do environmental and genetic factors influence an organism's growth?
Interdisciplinary	Connections

Interdisciplinary Connections

NJSLS Mathematics 7.SP.C.8: Find probabilities of compound events using organized lists, tables, tree diagrams and simulation.

• Example: Have students use data from a table to distinguish the relationship between animal size and gestation period, then construct a boxplot for each animal.

NJSLS Mathematics 7.SP.B.4: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations:

• <u>Example</u>: Students will interpret information in a graph (showing number of survivors of species vs.age) to make an inference about the role of parental care for three separate animal species.

NJSLS Mathematics 8.EE.B.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

• Example: Students will interpret data in a graph (human malnutrition and height) by calculating the differences between two populations over time.

NJSLS Comprehensive Health and Physical Education 2.1.8.PGD.2: Analyze how genetics and family history can impact personal health.

• <u>Example</u>: As part of the "Reproduction and Growth Unit," students will learn about the different types of diabetes, and compare how the different types have a genetic or environmental influence.

NJSLS Health and Physical Education 2.1.8.PGD.2: Analyze how genetics and family history can impact personal health.

• <u>Example</u>: Students will learn about different genetic diseases and how they can affect human health.

Career/Real World Connections

<u>Careers</u>

- Environmental biologists look at the environmental conditions of the habitats in which organisms live, sometimes designing landscapes to highlight specific organisms. Students can think like an environmental biologist and design a flower garden where each flower displays at least three tropisms, and lists the environmental conditions each flower would need for proper growth.
- Wildlife biologists study the behaviors of animals and the impact of the environment on animals' ability to survive and reproduce.
- A geneticist is a scientist who studies genes, including how they are inherited, mutated, activated, or inactivated. They often study the role that genes play in disease and health.

- Genetically Modified Organisms (GMOs) are a current issue in the world of agriculture. GMOs are plants, animals, viruses ,and bacteria whose genetic makeup has been changed in a way that would not occur naturally through sexual or asexual reproduciton. Scientists are producing GMOs by selecting desirable traits from one organism and transferring them to another.
- Ants have a very structured set of behaviors that protect the colony and better ensure successful reproduction. The colony contains hundreds of thousands of ants with varying sizes and roles. They communicate through touching antennae, and exchanging pheromones that convey danger, food, caste, and reproductive status.
- Local parks take measures that promote the growth and development of the plant life found in that park or preserve.

	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How do offspring	Students learn how organisms reproduce and	Phenomena:	Elevate Interactivities:	Open-ended quiz
LS1-4	produced by asexual	transfer genes to their offspring. Students apply	- Mouthbrooding fish	- Your Physical Traits	
	reproduction and sexual	the process of asexual and sexual reporduction	https://thewonderofscience.com/	- Inheritance of	Think Pair Share
MS-	reproduction compare?	to explain the appearance of offspring.	phenomenon/2018/7/11/mouthb	Traits	
LS1-5			rooding-fish	- Animal	Four corners
	Why do different offspring	Students learn about the plant structures and	- Shrew caravan	Reproduction	
MS-	of the same parent usually	processes related to plant reproduction, as well	https://thewonderofscience.com/	- Plants and	Science notebooks
LS3-2	look different?	as the role other organisms play in the	phenomenon/2018/7/5/shrew-car	Pollinators	
		reproduction and growth of plants.	avan	- Designer Flowers	

9.4.8.	Why do individuals of		- Movement of sunflowers with the	- Twin Studies	Discussions/socratic
TL.1	the same species vary in	Students learn about animal behaviors related to	sun	- They're acting Like	seminars
112.1	how they look,	reproduction, and how those behaviors affect	- Wildlife returns from surrounding	Animals!	seminars
	function, and behave?	the survival and growth of their offspring.	areas to areas humans have	- Fireflies	Graphic Organizers
	function, and behave.	the survivar and growth of their orisping.	populated	- The Mating Game	Graphic Organizers
	How do plants reproduce?	Students examine the environmental factors that	- Effects of ocean temperatures on	- Growing and	Individual whiteboards
		influence the growth and reproduction of	the development and size of	Thriving	individual winteboulds
	How do seeds become new	organisms.	Atlantic cod.	- Breeding Bigger	Lab reports
	plants?	8		Bovines	
	1	CCC.2 Cause and Effect	SEP.7 Engaging in Argument from	- See How They	open-ended
	Which specialized plant	Students will explain how changes in genes can	Evidence	Grow	questioning
	structures affect the	cause varying traits in offspring.	Use arguments based on empirical	- Modeling Flowers	1 0
	probability of successful	, , , , , , , , , , , , , , , , , , , ,	evidence and scientific reasoning to	- Growing Crops	Self assessments
	reproduction?	Key terms:	support an explanation for how	- Make Your	
	1	-asexual reproduction	characteristic animal behaviors and	Construction Case	Peer assessments
	What causes animals to	-sexual reproduction	specialized plant structures affect the		
	behave in certain ways?	-fertilization	probability of successful reproduction	<u>Hands-On Labs:</u>	Show of hands/3-2-1
		-trait	of animals and plants respectively.	- To Care or Not To	
	What are some different	-gene		Care	Exit slips
	ways in which animals	-inheritence	SEP.2 Developing and Using	- Is It All In the	
	reproduce?	-allele	Models	Genes?	Project rubrics
		-zygote	Develop and use a model to describe	- Behavior Cycles	
	How can the behavior of	-pollination	why asexual reproduction results in	- Watching Roots	Lesson quizzes and
	animals increase their	-cones	offspring with identical genetic	Grow	unit test
	chances of reproducing?	-ovule	information and sexual reproduction		
		-fruit	results in offspring with genetic	Flower Dissection Lab	Lesson checks
	What stimulates plant	-germination	variation.	https://www.nps.gov/	
	growth?	-behavior		common/uploads/teac	Reading checks
		-instinct	Develop and use a model to describe	hers/lessonplans/Day2	
	Which factors control plant	-pheremone	why structural changes to genes	BeeWeek.pdf	QUEST project "How
	and animal growth?	-mating system	(mutations) located on chromosomes		can we reduce the
		-migration	may affect proteins and may result in	Challenges of Life	impact of construction
		-hormone	harmful, beneficial, or neutral effects	https://www.bbc.co.uk	on plants and
		-auxin	to the structure and function of the	/programmes/b00ncr1	animals?"
		-tropism	organism.	3	
		-photoperiodtropism	SEDC Construction E al action	W/less Australia Mr.	Performance-Based
		-dormancy	SEP.6 Constructing Explanations	Why Animals Migrate	Assessment: "Clean
		-metamorphosis	and Designing Solutions	https://www.nationalg eographic.org/activity/	and Green" - Students
			Construct a scientific explanation based on evidence for how	why-animals-migrate/	will design and conduct
			environmental and genetic factors	<u>#:~:text=Animal%20</u>	an experiment to determine the effects
			influence the growth of organisms.	<u>#:~:text=Animal%20</u> <u>Migration,-32&text=So</u>	on "eco-friendly"
			influence the growth of organisms.	mgration,-52&text=50 me%20animals%2C%2	on eco-menuiy
	1		I	111C/02/04111111a15/02/C/02	<u> </u>

	Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.	0such%20as%20the,on %20seasonal%20or%2 0geographic%20variati ons.	laundry detergents on plant growth.
	Hands-On Labs		
	Virtual Labs		
	Online webquests		
	Topic Enrichments		
	Graphic Organizers		
	Scientific arguments (CER)		
	Science Videos		
	Science Stations		
	Interactive Science Journals		
	Digital Learning		

Unit #4: Ecosystems

Enduring Understandings:	Essential Questions:
 Organisms, and populations of organisms, are dependent on their environmental interactions, both with other living things and with nonliving factors. In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. Growth of organisms and population increases are limited by access to resources. Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environmentoccur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. 	 How do organisms interact with the living and nonliving environments to obtain matter and energy? How do matter and energy move through an ecosystem? What happens to ecosystems when the environment changes? Why is it important to preserve all components of an ecosystem?

Interdisciplinary Connections

NJSLS Mathematics 7.SP.A.1: Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of thatpopulation. Understand that random sampling tends to produce representative samples and support valid inferences.

• Example: Students will graph numbers from a data table showing deer population over time and describe the trend they see in the graph. They will then determine possible factors that may have caused the trend they observe.

NJSLS Mathematics 7.RP.A.2b: Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

• Example: Calculate energy available at each level of a food pyramid and determine how this amount would change if the food web changes.

NJSLS Mathematics 6.EE.C.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables and relate these to the equation.

• <u>Example</u>: Students will determine the dependent and independent variables in a graph showing the effects of nitrogen-fixing bacteria on soybean crops. They will use evidence from the graph to interpret the results of the bacteria treatment on soybean seed yield.

Career/Real World Connections

Careers

- Environmental scientists study the health of ecosystems by looking at the problems in the environment and investigate solutions. They follow the transfer of energy from one organism to another to understand what happens when this flow of energy is interrupted.
- Forest rangers help protect wildlife and educate communities about protecting natural resources. They monitor forest growth, set guidelines for use of the forests, monitor forest fires, and conduct research into the health of the ecosystem. Forest rangers have a strong background in biology and ecology.

- Florida agriculture- producers are a vital part of the ecosystem because they are a food source for many other organisms. In 2014, 60 percent of all oranges grown in the US were from Florida's orange trees because of the climate.
- The National Oceanic and Atmospheric Administration (NOAA) studies algal blooms by the use of field observation, and collecting and testing water samples. They also use different technologies to collect data when studying algal blooms, such as satellite images, buoy data, and remote sensing technologies.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How are populations	Students investigate the organization of	Phenomena:	Elevate Interactivities:	Open-ended quiz
LS2-1	affected by changes to the	ecosystems and analyze evidence of the effects	- Rapid population decline of the	- There's No Place	
	amount and availability of	of limiting factors on resource availability,	migratory cerulean warbler	Like Home	Think Pair Share
MS-	resources?	organisms, and populations of organisms within	population	- Factors Affecting	
LS2-3		an ecosystem.	- Composting	Growth	Four corners
	How are population size		- Expedition to different Biomes	- An Ecological	
9.4.8.	and resource availability	Students model food and food webs to learn	- Management of forest and	Mystery	Science notebooks
CT.3:	related?	how energy flows between the living and	fisheries	- Suspicious Activities	
		nonliving things within ecosystems.	- Attack of the Killer Fungi	- Food Sources	Discussions/socratic
	What are the energy roles		https://thewonderofscience.co	- Living Things in	seminars
	in an ecosystem?	Students model how organisms and their	m/phenomenon/2018/5/14/at	Ecosystems	
	-	environments participate in the cycling of	tack-of-the-killer-fungo	- Energy Roles and	Graphic Organizers
	How is energy transferred	carbon, oxygen, nitrogen and water.	- The Great Oxidation Event	Flows	
	between living and		https://thewonderofscience.co	- A Changing	Individual whiteboards
	nonliving parts of an	CCC.2 Cause and Effect	m/phenomenon/2018/6/15/th	Ecosystem	
	ecosystem?		e-great-oxygenation-event	·	Lab reports

	Students will observe how changes in the food	- 50 Year old Ecosystem	- Nutrients and	
How is energy conserved	chain can affect entire ecosystems.	https://thewonderofscience.co	Aquatic Organisms	open-ended questioning
in an ecosystem?	chain ean arreet entre cosystems.	m/phenomenon/2017/10/8/ls	- Cleaning an Oil Spill	open ended questioning
	CCC.5 Energy and Matter	<u>2-ecosystems</u>	- Recycling Your	Self assessments
How is matter transferred	Students will show how the transfer of energy	<u> </u>	Energy	
between the living and	can be tracked as energy flows through a	SEP.4 Analyzing and	- Earth's Recyclables	Peer assessments
nonliving parts of an	designed or natural ecosystem.	Interpreting Data	- Matter and Energy in	
ecosystem?		Analyze and interpret data to	a Pond	Show of hands/3-2-1
,	Key terms:	provide evidence for the effects of		
How is matter conserved	- organism	resource availability on organisms	Hands-On Labs:	Exit slips
in an ecosystem?	- habitat	and populations of organisms in an	- Elbow Room-explore	-
	- biotic factor	ecosystem. (MS-LS2-1)	effects of space as a	Project rubrics
	- abiotic factor		limited resource	
	- population	SEP.2 Developing and Using	- Modeling a dam	Lesson quizzes and unit
	- community	Models	- Observing	test
	- ecosystem	Develop a model to describe the	Decomposers	
	- limiting factor	cycling of matter and flow of	- Following Water	Lesson checks
	- producer	energy among living and nonliving		
	- consumer	parts of an ecosystem. (MS-LS2-3)	PBS- Exploring	Reading checks
	- decomposer		Ecosystems	
	- food chain	Hands-On Labs	https://nj.pbslearningme	Evidence-based
	- food web	TT 1 T 1	dia.org/resource/lsps07.	assessment: Create a
	- energy pyramid	Virtual Labs	sci.life.eco.lpexpecosyste	food web and describe
	- Law of Conservation of Mass		ms/exploring-the-system	the role of each
	- Law of Conservation of Energy	Online webquests	<u>s-in-ecosystems/</u>	organism in the web.
	- evaporation - condenstaion	Tania Envidemente	Salastia Facaratorea	QUEST project "What Do You Think is
	- precipitation	Topic Enrichments	Scholastic Ecosystems https://www.scholastic.c	Causing Pleasant Pond
	- precipitation	Graphic Organizers	om/teachers/activities/t	to Turn Green?"
		Oraphic Organizers	eaching-content/ecosyst	to fulli Ofeen:
		Scientific arguments (CER)	ems-11-studyjams-intera	Performance- Based
		Scientific arguments (OLIC)	ctive-science-activities/	Assessment: "Last
		Science Videos		Remains" - Students will
			Ecosystems:	design and carry out an
		Science Stations	Interactions, Energy and	investigation by
			Dynamics	observing remains
		Interactive Science Journals	https://www.ck12.org/n	0
			gss/middle-school-life-sc	Based on their findings,
		Digital Learning	iences/ecosystems:-inter	students will make a
			actions,-energy,-and-dyna	claim based on their
			mics	evidence stating whether
				or not the idea to
				introduce barn owls in

		the community will help bring the rodent population under
		control.

Unit #5: Populations, Communities and Ecosystems

Enduring Understandings:	Essential Questions:		
 Enduring Understandings: Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary 	 Essential Questions: How do living and nonliving things affect one another? How can resource availability affect interactions between organisms? How can changes to physical or biological components of an ecosystem affect organisms and populations? What is the value of biodiversity? 		
 across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. Biodiversity describes the variety of species found in Earth's terrestrial 			
 and oceanic ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. 			

Interdisciplinary Connections

NJSLS Mathematics 7.RP.A.2d: Explain what a point (x,y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0,1) and (1,r) where *r* is the unit rate.

• Example: Students will write a formula to show the amount of water filtered by 7 oysters in one day and use the formula to calculate the amount of water 5, 10, 15 and 20 oysters and filer. They will do the same with mussels, then graph the two sets of data to compare the results.

NJSLS Mathematics 7.RP.A.2d: Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

• Example: Students will use ratio reasoning when comparing the African lion population from 1950 to that of 2000, and use the ratio to determine the relationship between human population density and the lion population.

NJSLS Social Studies 6.1.5.GeoGI.4: Explain how cultural and environmental characteristics affect the distribution and movement of people, goods, and ideas.

• Students will describe how human populations and technology have impacted ecosystems and environments around the globe.

Career/Real World Connections

Careers

- An epidemiologist is a scientist who studies outbreaks of disease in human populations (such as the coronavirus which causes COVID-19). Their job is to determine how the outbreak started, how it was transmitted from person to person, and the most effective treatment. They investigate how populations are affected and the results of their investigations help other doctors and scientists figure out how to prevent future outbreaks.
- Field Biologists study living things and how they interact with the other living and nonliving things in their environment. They research the way all living things interact in an environment. They may monitor any disruptions within parts of an ecosystem and determine how populations of organisms might be impacted.
- Population ecologists study patterns to determine relationships between a specific population and the individuals and communities where they live. Community ecologists study patterns to determine the relationships among different populations within a geographic area

- Urban development- highways are built to accommodate large companies, and create evacuation and supply roots for natural disasters. These highways impact the animal populations in these areas.
- One important reason that biodiversity is important to humans is its role in developing medicines (pharmaceutical). Examples of plants and animals that help create medications include the Pacific yew tree used to fight cancer cells, microbes used as a source of penicillin, and cone snails to help with neurological disorders.
- The National Wildlife Federation is an organization committed to observation. It strives to protect wildlife, help habitats, confront climate change, and advocate for conservation by supporting laws and policies.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How is population size	Students model different types of relationships	Phenomena:	Elevate Interactivities:	Open-ended quiz
LS2-1	affected by predation and	between organisms and how changes to one	- Florida's red tide	- Competition in	
	symbiotic relationships?	population may impact another.	https://www.youtube.com/watch?	Daily Life	Think Pair Share
MS-			<u>v=-WJ0hi Pi44</u>	- Life on the Reef	
LS2-2	How are patterns of	Students investigate how changes to abiotic	- Invasive species: Hemlock Woolly	- Symbiotic	Four corners
	interactions between	factors in ecosystems impact populations.	Adelgid	Relationships	
MS-	organisms similar in		https://www.fs.usda.gov/naspf/	- Shared Interactions	Science notebooks
LS2-3	different ecosystems?	Students investigate the importance of	- Southern Pine Beetle Outbreak	- Research Animal	
		biodiversity; consider the scientific, economic,	https://www.fs.fed.us/foresthealth	Crossings	Discussions/socratic
MS-		and social implications of human intervention in			seminars

LS2-4	How do natural events	ecosystems and design solutions for maintaining	/applied-sciences/mapping-reporti	- Succession in an	
	impact the environment?	biodiversity.	ng/spb-hazard-rating-maps.shtml	Ecosystem	Graphic Organizers
MS-	p p		- The role of the African elephant as	- A Butterfly Mystery	oh
LS2-5	How do human activities	Students learn how ecosystems are important to	a keystone species	- Community	Individual whiteboards
	impact ecosystems?	humans and consider design solutions for	- The Wolves of Yellowstone	Options	
MS-	1 5	maintaining ecosystem service.	https://www.nationalgeographic.or	- Biodiversity in the	Lab reports
LS4-1	What affects biodiversity?		g/media/wolves-yellowstone/	Amazon	1
	-	CCC.1 Patterns		- Preventing Soil	open-ended
9.4.8.	What factors affect	Students will construct an explanation that	SEP.4 Analyzing and Interpreting	Erosion	questioning
CT.1	biodiversity?	predicts patterns of interactions among	Data	- Maintaining	
		organisms across multiple ecosystems.	Analyze and interpret data to provide	Healthy	Self assessments
9.4.8.	How do human activities		evidence for the effects of resource	Ecosystems	
CT.3:	impact biodiversity?	CCC.7 Stability and Change	availability on organisms and	- Human Impacts on	Peer assessments
	Why is it important to	Students will understand that small changes in	populations of organisms in an	Biodiversity	
	maintain healthy	one part of an ecosystem might cause large	ecosystem.	- Diverse Systems	Show of hands/3-2-1
	ecosystems?	changes in another part.		- Walk This Way	
			Analyze and interpret data for patterns		Exit slips
	Which supporting services	CCC.2 Cause and Effect	in the fossil record that document the	<u>Hands-On Labs:</u>	
	are necessary to all other	Students will understand that there are	existence, diversity, extinction, and	- How Communities	Project rubrics
	ecosystem services?	relationships between resources and growth of	change of life forms throughout the	Change	
		individual organisms that affects the numbers of	history of life on Earth under the	- Competition and	Lesson quizzes and
	How does biodiversity	organisms in ecosystems during periods of	assumption that natural laws operate	Predation	unit test
	impact ecosystem	abundant and scarce resources.	today as in the past.	- Primary or	
	services?			Secondary	Lesson checks
		Key terms:	SEP.7 Engaging in Argument from	- Modeling Keystone	
		- niche	Evidence	Species	Reading checks
		- competition	Construct an argument supported by	- Ecosystem Impacts	
		- predation	empirical evidence that changes to		QUEST project
		- symbiosis	physical or biological components of	Engineering Design	"Should an animal
		- commensalism	an ecosystem affect populations.	Challenge: Students	crossing be
		- mutualism		design and build a	constructed in my
		- parasitism	Evaluate competing design solutions	model of a geometric	community?"
		- succession	for maintaining biodiversity and	dome that could be	
		- pioneer species	ecosystem services.	filled with plants to	Performance-Based
		- biodiversity		showcase the	Assessment: "Changes
		- keystone species	SEP.2 Developing and Using	biodiversity of a	in an Ecosystem" -
		- extinction	Models	particular biome.	Students will work with
		- invasive species	Develop a model to describe the	DDCD 1	a model of a forest's
			cycling of matter and flow of energy	PBS Population	ecosystem to
			among living and nonliving parts of an	Dynamics	demonstrate how a
			ecosystem.	https://nj.pbslearning	forest fire changes the
			Hards On Labo	media.org/subjects/sci ence/life-science/ecolo	population sizes of
			Hands-On Labs	ence/me-science/ecolo	longleaf pine trees and

	Virtual Labs	<u>gy/population-dynami</u> <u>cs/</u>	oaks. They will then construct an argument about the necessity of
	Online webquests	Biology Corner- Ecology	intentional forest fires
	Topic Enrichments	https://www.biologyco	to help preserve an endangered tree
	Graphic Organizers	<u>rner.com/category/wo</u> <u>rksheets/ecology/</u>	species.
	Scientific arguments (CER)		
	Science Videos		
	Science Stations		
	Interactive Science Journals		
	Digital Learning		

Unit #6: Distribution of Natural Resources

 Enduring Understandings: Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes. Conservation of non-renewable resources is vital to the world' health. 	 Essential Questions: How is the distribution of natural resources the result of geological processes? How can we use our resources in a more responsible way? 			
Interdisciplinary	Connections			
 NJSLS Mathematics 7.EE.B.4a: Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Example: Students interpret information in a chart showing US Annual Natural Gas Consumption over time. They will determine the trend in the data and describe factors that may have contributed to this trend. 				
 NJSLS Mathematics MP.2: Reason abstractly and quantitatively. Example: Students will represent quantitative relationships by creating a graph showing the production of industrial wind farms in the U.S. over the coming decades. Once they create this graph, they will analyze the data to make predictions. 				

NJSLS Social Studies 6.1.5.GeoPP.3: Use geographic models to describe how human movement relates to the location of natural resources and sometimes results in conflict.

• Example: Students will explain how many wars were fought over land and other natural resources in order to acquire economic value for their nations.

Career/Real World Connections

Careers

- Nuclear scientists who work with the International Energy Agency (IAEA) monitor the development of peaceful projects as well as the whereabouts of nuclear material such as uranium.
- A land use planner organizes and designs plans for land use. They evaluate population number and the environmental and economic factors that will be affected, normally working with land developers and public officials to establish a cost-effective, salubrious, and ethical habitat.
- An environmental planner largely deals with making sure that development projects comply with environmental laws and regulations. They help reduce impacts, facilitate environmental permitting, and write environmental reports and documents.

- The use of solar power for generating electricity has been available for decades, but the demand for solar energy has risen in recent years. They are used in individual homes or solar power plants, and can be used to provide energy to people in countries without stable energy infrastructure.
- Silicon is a resource extracted from silica sand or quartz and is the main "ingredient" in the construction of computers. When the Technology Age was in its infancy, a large number of startups set up shop on a stretch of land near San Francisco. This area became known as "Silicon Valley."
- Fracking is the process of injecting liquid at high pressure into subterranean rocks, so as to force open existing fissures and extract oil or gas. Air pollution and water contamination due to the toxic chemicals used in hydraulic fracturing are the greatest concerns within fracking sites, while the need for wastewater disposal and shrinking water supplies are also pressing issues directly related to the procedure.

	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	What are nonrenewable	Students explore the diversity of	Phenomena:	Elevate Interactivities:	Open-ended quiz
ESS3-1	resources?	nonrenewable energy sources and the impact	- Phosphorus mining and the	- Renewable Resources in	
		of their scarcity on human energy use.	disruption of the	Your Community	Think Pair Share
MS-	What factors affect the		phosphorus cycle	- Using Renewable	
ESS3-3	distribution of	Students investigate the difference between	- Urban Farming	Resources	Four corners
	nonrenewable energy	renewable and nonrenewable resources, the	- Mineral formation	- Biogas Farming	
MS-	resources?	benefits of alternative energy sources, and	- UAE Building a Mountain to	- Distribution of Minerals	Science notebooks
ESS3-4		methods to reduce fossil fuel use.	Increase Rainfall	- Surviving on Minerals	
	How has human activity		https://thewonderofscience.	- Drinkable Water	Discussions/socratic
9.4.8.	impacted the distribution	Students learn about the diversity of minerals	com/phenomenon/2018/6/	- Wetland Restoration	seminars
CI.2	of fossil fuels?	in the world and how humans use them.	<u>10/uae-building-a-mountain</u>	- Water Worth	
			-to-increase-rainfall		Graphic Organizers
9.4.8.	What are renewable energy	Students investigate the distribution and		<u>Hands-On Labs:</u>	
DC.6	resources?	characteristics of water resources on Earth	SEP.6 Constructing	- What's in a Piece of Coal?	Individual whiteboards
		and learn about the human impacts of their	Explanations and	- Fossil Fuels	
	How do renewable energy	use.	Designing Solutions	- Distribution of Fossil	Lab reports
	resources reduce human		Construct a scientific	Fuels	
	reliance on other natural	CCC.2 Cause and Effect	explanation based on	- Using Resources	open-ended
	resources?	Students will understand that human	evidence for how the uneven	- The Power of Wind	questioning
		populations and the rates of consumption of	distribution of Earth's	- An Artesian Well	
	What are mineral	food and natural resources (such as freshwater,	mineral, energy, and		Self assessments
	resources?	mineral, and energy) can cause changes to the	groundwater resources are	Design Challenge- students	
		appearance, composition, and structure of	the result of past and current	will design a method to use	Peer assessments
	What factors affect the	Earth's systems as well as the rates at which they	geoscience processes.	hydro power on a small scale	
	distribution of minerals on	change.		to generate power.	Show of hands/3-2-1
	Earth?		Apply scientific principles to		
		Key terms:	design a method for	PBS Natural Resources	Exit slips
		- natural resource	monitoring and minimizing	Videos	

1	How do geological	- nonrenewable resource	the human impact on the	https://nj.pbslearningmedia.o	Project rubrics
	processes affect the	- fossil fuels	environment.	rg/subjects/science/earth-an	1 toject rubiles
	distribution of groundwater	- nuclear fission		d-space-science/natural-resou	Lesson quizzes and
	on Earth?	- renewable resource	SEP.7 Engaging in	rces/	unit test
		- ore	Argument from Evidence		
]	How is water used as a	- crystallize	Construct an argument	Interpreting Resource Maps	Lesson checks
1	resource?	- desalination	supported by evidence for	https://www.whiteplainspubli	
			how increases in human	cschools.org/cms/lib/NY010	Reading checks
			population per-capita	00029/Centricity/Domain/3	0
			consumption of natural	53/Resource%20Maps%20G	QUEST project "How
			resources impact Earth's	eography.pdf	could natural resources
			systems.		have saved a ghost
				PBS Future Fuels	town?"
			Hands-On Labs	https://www.pbslearningmedi	
				a.org/resource/deb0cbd6-4a4	Performance- Based
			Virtual Labs	<u>9-4e08-9dfb-14dd4c46bc2c/f</u>	Assessment: "To Drill
				uture-fuelsnc-science-now/su	or Not to Drill" -
			Online webquests	pport-materials/	Students will develop a
					model that they can
			Topic Enrichments	Explained: The World's Water	use to predict whether
				Crisis video	or not an oil company
			Graphic Organizers	https://www.youtube.com/w	will locate oil below
				atch?v=C65iqOSCZOY	their town.
			Scientific arguments (CER)		
			Science Videos	National Geographic Distribution of Resources	
			Science Videos	https://www.nationalgeograp	
			Science Stations	hic.org/idea/distribution-reso	
			Science Stations	<u>nic.org/idea/distribution-reso</u> urces/	
			Interactive Science Journals	<u>urces/</u>	
			Interactive Science Journais	Earth's Water- A Drop in	
			Digital Learning	Your Cup	
				https://www.calacademy.org/	
				educators/lesson-plans/earth	
				<u>s-water-a-drop-in-your-cup</u>	
				<u> </u>	
				Nine Wars Caused by	
				Commodoties	
				https://www.businessinsider.	
				com/nine-wars-that-were-fou	
				ght-over-commodities-2012-8	

Unit #7: Human Impacts on the Environment

Enduring Understandings:	Essential Questions:
• Typically, as human populations and per-capita consumption of natural	• How does human activity impact Earth's systems?
resources increase, so do the negative impacts on Earth unless the activities	• How has the rapid increase in human population impacted the planet?
and technologies involved are engineered otherwise.	 How do human impacts affect the environment?
	• What are some solutions to fix or reduce the negative human impacts on
	the planet?

Interdisciplinary Connections

NJSLS Mathematics 7.RP.A: Analyze proportional relationships and use them to solve real-world and mathematical problems.

• Example: Students will analyze proportional relationships of how energy consumption has changed over time in the U.S. over the past century.

NJSLS Visual and Performing Arts 1.2.8.Cr1b: Organize and design artistic ideas for media arts productions.

• <u>Example</u>: Students create a public service announcement for a human impact of their choice. Their public service announcement will be designed as a digital poster or video.

NJSLS Computer Science and Design Thinking 8.2.8.ED.3: Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype, graphical/technical sketch).

• Example: Students will research innovative solutions for human impacts such as pollution and deforestation, and propose a way to use this technology or design a new technology which will help the environment.

NJSLS Social Studies 6.2.8. HistoryCC.1.a: Describe the influence of the agricultural revolution on population growth and the subsequent development of civilizations (e.g., the impact of food surplus from farming).

• Example: Students will explain how the Industrial Revolution led to human population growth by increasing the use of natural resource consumption over time.

Career/Real World Connections

Careers

- Environmental engineering is a fast-growing field in which engineers address environmental hazards that arise from human use of resources. They may specialize in sustainable land use, protecting water sources, managing waste, or even helping to design laws that protect the environment while allowing smart resource use.
- A career in environmental protection provides many avenues for someone with a passion for the environment. For example, they could focus on reducing the negative environmental impacts from human activity, helping restore damage ecosystems, or even developing sustainable ways of life that have yet to be created.

- Some respiratory problems, such as asthma, bronchitis, and emphysema, are caused or worsened by breathing polluted air. Knowing the air quality in the area is important to know if a person has one of these respiratory concerns.
- People usually know how to reduce pollution or incorporate "green" routines in their lives, but often this doesn't happen. Reasons for lack of action could include convenience, cost, or even awareness.

	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How has the human	The various ways that humans impact Earth's	Phenomena:	Elevate Interactivities:	Open-ended quiz
ESS3-	population changed over	systems form the context for this topic.	- Water treatment plant recycles	- Modern Life	
4	time?	Students will identify the ways that a growing	sewage and yard waste into	- Sources of	Think Pair Share
		human population uses and affects Earth's air,	nutrient-rich soil and fertilizer	Resources	
9.4.8.	How is the consumption	land, and water. Students will also identify ways	- Mystery of the Missing Bees	- More Trash, Less	Four corners
CI.1	of natural resources by	to mitigate the impact of humans, using	https://thewonderofscience.com/	Space	
	humans affected by	technology or sustainable-use policies.	phenomenon/2018/5/13/the-mys	- Air Pollution	Science notebooks
9.4.8.	changes in population		tery-of-the-missing-bees	Sources and	
CT.1	size?	Students learn that as the human population	- Google maps timelapse	Solutions	Discussions/socratic
		increases, human need for natural resources also	https://thewonderofscience.com/	- Trash vs. Water	seminars
9.4.8.	What are the causes of air	increases and that resource use has impacts on	phenomenon/2018/4/29/google-	- Using Land	
DC.2:	pollution?	Earth's systems.	<u>maps-timelapse</u>	- Farming Lessons	Graphic Organizers
			- Easter Island Deforestation	- How You Use	
	What are the long-term	Students learn about the causes of air pollution,	https://thewonderofscience.com/	Water	Individual whiteboards
	negative impacts of air	the long-term impact it has on Earth's systems,	phenomenon/2017/10/8/ess3-ear	- Water Cycle	
	pollution?	and efforts to decrease the levels of air pollution	th-and-human-activity	Interrupted	Lab reports
		around the world.		- Mutation Mystery	
	What efforts are being		SEP.7 Engaging in Argument from	- Wetland	open-ended
	made to decrease the	Students investigate natural resources obtained	Evidence	Restoration	questioning
	levels of air pollution	from Earth's geosphere, the importance of	Construct an argument supported by	- Damage from the	
	around the world?	these resources, and how human activities	evidence for how increases in human	Skies	Self assessments
		impact the availability of resources.	population and per-capita	- Ride the Light Rail	
	What natural resources		consumption of natural resources		Peer assessments
	are obtained from Earth's	Students learn why freshwater is a limited	impact Earth's systems.	<u>Hands-On Labs:</u>	
	geosphere?	resource within Earth's systems, how human		- Finding a Solution	Show of hands/3-2-1
		activities cause freshwater and ocean pollution,	Hands-On Labs	to Your Pollution	
	Why are natural resources	and how humans utilize technology and other		- Growth Spurt	Exit slips
	on land so important to	methods to help limit freshwater and ocean	Virtual Labs	- Doubling Time	
	Earth's systems?	pollution.		- How Does the	Project rubrics
			Online webquests	Scent Spread?	

How do human activities			- It's All in the Air	Lesson quizzes and
positively and negatively	CCC.2 Cause and effect	Topic Enrichments	- Mining Matters	unit test
affect land resources?	Students will understand how human activities		- Ride the Light Rail	
	have significantly altered the biosphere,	Graphic Organizers	- Getting Clean	Lesson checks
Why is freshwater such a	sometimes damaging or destroying natural		- Reducing Waste	
limited resource within	habitats and causing the extinction of other	Scientific arguments (CER)	- Trash vs. Water	Reading checks
Earth's systems?	species.		- Using Land	
		Science Videos		Scientific arguments
How do certain human	Key terms:		Banning Plastic Water	(CER)
activities cause freshwater	- birth rate	Science Stations	Bottles CER	
and ocean pollution?	- death rate		httpsnj.pbslearningmed	QUEST project "How
	- exponential growth	Interactive Science Journals	ia.org/resource/bannin	can you help your
What methods have	- pollution		g-plastic-bottles-video/	school reduce its
humans developed to	- overpopulation	Digital Learning	<u>above-the-noise/</u>	impact on Earth's
reduce freshwater and	- conservation			systems"
ocean pollution?	- sustainable use		Population Connection	
	- point source		https://www.populatio	Performance- Based
	- nonpoint source		nconnection.org/	Assessment: "Washing
	- emissions			Away" - Students will
	- ozone			design and conduct an
	- acid rain			investigation into the
	- natural resource			impact of vegetation
	- renewable resource			and ground cover on
	- nonrenewable resource			soil erosion.
	- deforesatiaon			
	- erosion			
	- desertification			
	- sustainable			
	- sewage			
	- sediment			
	- thermal pollution			

Unit #8: Waves and Electromagnetic Radiation

Enduring Understandings:	Essential Questions:
 A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves. A sound wave needs a medium through which it is transmitted. 	 What are the properties of mechanical and electromagnetic waves? How does the structure of a wave impact it's behavior and characteristics? How do changes in one part of a wave affect other parts of a wave? How do waves interact with each other?

Interdisciplinary Connections

NJSLS Mathematics 6.RP.A.2: Understand the concept of a unit rate a/b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a reaction relationship.

• Example: Students will use the data from a table to examine relationships between wavelength and frequency, and between wavelength and speed. They will infer what the missing numbers are based on the data provided.

NJSLS Mathematics 7.RP.A.2 Recognize and represent proportional relationships between quantities.

• Example: Students will identify the proportional relationship between voltage and current by using the equation Voltage = current x resistance

Career/Real World Connections

Careers

- X-ray technicians are crucial members of many medical science teams. Their ability to help safety and accurately image parts of bodies can help doctors diagnose and treat many different conditions. Most work side-by-side with doctors to treat patients.
- A lighting designer plans how to light a stage or performance space. The designer uses three factors- color, intensity, and motion- to light a show in the most striking and effective way possible.

- Lasers are key components of many of the products that we use every day. Consumer products like Blu-Ray and DVD players rely on laser technology to read information from the disks. Barcode scanners rely on lasers for information processing. Lasers are also used in many surgical procedures such as LASIK eye surgery.
- Sound and light pollution Excessive sound waves, or sound pollution, can have a detrimental effect on quality of life by causing stress, while sound waves of excessive volume (i.e., amplitude) can damage hearing. Nighttime illumination can interfere with animal behavior and disrupt human sleep. Some cities have ordinances to control the levels of sound and light waves to reduce sound and light pollution.
- During a tsunami (tidal wave), waves in the deep ocean can interact via constructive interference, becoming massively powerful and causing a great deal of destruction. Tsunamis can damage roads and other means of transport, or block them with debris making reconstruction even more difficult. A warning system enables residents to seek shelter and safety early and reinforce their homes and businesses, reducing the damage of the wave and making it easier to resume their regular lives.
- The human ability to hear high frequencies generally degrades over time. A person's hearing range can also be impacted by hearing damage related to exposure to loud sounds. Listening to loud music or being near very loud sounds such as jet engines, can increase the rate of hearing loss.
- Music therapy- sound in the form of music has a strong connection with the brain. Scientists studying the brain found that when people hear music, the parts of their brain responsible for control of movement, emotions, and creativity become activated. Brain scientists have also found that the brain is more plastic (able to change) than once thought.
- The human eye focuses light in a number of steps to produce sharp images. Light enters the eye through the cornea, which refracts light due to its shape convex and to the differences in refraction indices between it and air. Light then moves through the pupil (controlled by muscles in the iris) and into the lens. Light then travels into the vitreous humor and the image is projected on the retina. Nerve impulse travel from the retina to the brain where a visual image is formed.

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	How can you use a simple	Students examine and model different	Phenomena:	Elevate Interactivities:	Open-ended quiz
PS4-1	model to describe a wave	properties of waves. They compare the	- Role of waves in a baseball game	- Describe the	
	and its features?	properties of different types of waves and	- Jets breaking the sound barrier	Properties of Waves	Think Pair Share
MS-		compare how they transfer energy.	(sonic boom)	- Modeling Waves	
PS4-2	How can you observe the		https://www.youtube.com/watch?	- Making Waves	Four corners
	properties of waves?	Students investigate the ways that waves can	v=6B4IVcCuIZE	- Light behavior	
MS-		react when they strike materials and the effects	- Rainbows and moonbows	- Model Wave	Science notebooks
PS4-3	What kinds of patterns	of interactions between waves.	- Cell phones networks (4G & 5G)	Interactions	
	can you predict based on		- Helium changing your voice	- Use Models to	Discussions/socratic
	wave properties?	Students investigate how sound waves interact	- Shark tracking	Describe Wave	seminars
		with matter through reflection, absorption,	https://www2.whoi.edu/site/osl/v	Behavior	
	How are sound waves	transmittal, and diffraction and how properties	ehicles/remus-sharkcam/	- Virtual Optics	Graphic Organizers
	reflected?	of materials affect the speed of sound.		- Reflection,	_
		_	SEP.2 Developing and Using	Transmission, and	Individual whiteboards
			Models		

How are sound waves	Students learn about the different types of	Develop and use a model to describe	Absorption of	Lab reports
affected by medium?	electromagnetic waves, how they compare, and	that waves are reflected, absorbed, or	Sound Waves	Ĩ
,	how they are used.	transmitted through various materials.	- Sound	open-ended
What factors affect the			- Doppler Effect	questioning
speed of sound waves?	Students model light-matter interactions to	SEP.5 Using Mathematics and	- Build an	1 0
1	determine how transparent, translucent, opaque,	Computational Thinking	Electromagnetic	Self assessments
What makes up an	and colored materials reflect and absorb light.	Use mathematical representations to	Wave	
electromagnetic wave?	Students also model how light interacts with	describe a simple model for waves that	- Models of Light	Peer assessments
	concave and convex lenses.	includes how the amplitude of a wave	- Describe	
How can you model		is related to the energy in a wave.	Electromagnetic	Show of hands/3-2-1
electromagnetic wave	CCC.1 Patterns		Waves	
behavior?	Students will identify patterns based on wave	Hands-On Labs	- Reflecting on	Exit slips
	properties such as how amplitude of a wave is		Reflections	-
What kinds of waves make	related to the energy in a wave.	Virtual Labs	- Describe the	Project rubrics
up the electromagnetic			Behavior of Light	,
spectrum?	CCC.6 Structure and Function	Online webquests	- Predicting the	Lesson quizzes and
-	Students will develop and use a model to		Behavior of Light	unit test
	describe that a structure of a wave can be	Topic Enrichments	Rays	
	modified to serve particular functions by taking	-		Lesson checks
	into account properties of different materials	Graphic Organizers	<u>Hands-On Labs:</u>	
	and how materials can be shaped and used.		- Waves and Their	Reading checks
		Scientific arguments (CER)	Characteristics	
	Key terms:		- Follow the	Design Challenge "Say
	- wave	Science Videos	Bouncing Ball	'Cheese'''
	- mecahnical wave		- Standing Waves and	
	- medium	Science Stations	Wave Interference	QUEST project -
	- electromagnetic radiation		- Understanding	"How Can you Design
	- transverse wave	Interactive Science Journals	Sound	a System to Stop a
	- amplitude		- Build a Wave	Thief?"
	- longitudinal wave	Digital Learning	- Light Interacting	
	- wavelength		With Matter	Performance-Based
	- frequency		- An Optimal Optical	Assessment "Making
	- reflection		Solution	Waves" - Students will
	- refraction			model the behavior of
	- diffraction		PBS- Making Waves	water waves and
	- absorption		with the	explain how the waves
	- interference		Electromagnetic	interact with each other
	- standing wave		Spectrum	and with objects in
	- resonance		https://whyy.pbslearni	their paths.
	- loudness		ngmedia.org/resource/	
	- intensity		phy03.sci.phys.energy.n	
	- decibel		asaspectrum/the-electr	
	- pitch			

- Doppler effect - electromagnetic wave	omagnetic-spectrum-n asa/	
- electromagnetic spectrum	CPalms- The	
- radio waves	Electromagnetic	
- microwaves	Spectrum	
- visible light	https://www.cpalms.or	
- ultraviolet rays	g/Public/PreviewReso	
- infrared rays	urceLesson/Preview/1	
- X-rays	<u>8939</u>	
- gamma rays		
	NASA- The	
	Electromagnetic	
	Spectrum Video Series	
	& Companion Book	
	https://science.nasa.go	
	<u>v/ems</u>	

Unit #9: Electricity and Magnetism

Enduring Understandings:	Essential Questions:				
• Forces that act at a distance (electric, magnetic, and gravitational) can be	• What factors affect the strength of electric and magnetic forces?				
explained by fields that extend through space and can be mapped by their	• How does electricity relate to magnetism?				
effect on a test object (a charged object, or a ball, respectively).	• How do magnetic poles interact?				
• A system of objects may also contain stored (potential) energy, depending on their relative positions.	• How do the properties of magnets allow them to be useful to society?				
• When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.					
• Electric and magnetic (electromagnetic) forces can be attractive or					
repulsive, and their sizes depend on the magnitudes of the charges,					
currents, or magnetic strengths involved and on the distances between the					
interacting objects.					
Interdisciplinary	Connections				
 NJSLS Mathematics 7.RP.A.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Example: Students will draw comparative inferences by using a data table to determine how current affects the strength of the magnetic field. 					
 NJSLS Mathematics 7.RP.A.2a Decide whether two quantities are in a proportional relationship. Example: Students will use an equation that shows the ratio of voltage in two coils is equal to the ratio of loops. They will show each proportional relationship as a fraction. 					

NJSLS Computer Science and Design Thinking 8.2.8.ED.4: Investigate a malfunctioning system, identify its impact, and explain the step-by-step process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.

• Example: Students will use an online virtual lab to hypothesize and troubleshoot the reason for a lightbulb not working properly.

Career/Real World Connections

<u>Careers</u>

- Electrical engineers design and develop a wide variety of electric systems. Transportation, communication, power transmission, and motor controls are some of the many types of systems an electrical engineermight work on.
- Robotic Engineers Electromagnets are commonly used in all kinds of robotic devices. The electromagnets create an electric current to power the robotics to make the motor spin and cause the robot to move. Robotics engineers design, test and build the robotic parts, which are able to operate on their own or are controlled by an individual. Robots are used in the aerospace, entertainment, automotive, computer, and nuclear industries.
- MRI Technicians Electromagnets are used in magnetic resonance imaging (MRI) machines to create a magnetic field around a patient and look inside a patient's body. The magnetic forces send radio waves throughout a patient's body and create pictures of the tissues. MRI technicians are responsible for

preparing and executing an MRI procedure. Not only do they explain the procedure to the patient, but they also help move the patient onto the MRI platform. Once the MRI procedure is complete, technicians develop the images and pass them on to physicians.

- "Maglev" trains In Japan, South Korea, and China, you can hop on a train that uses electromagnets to levitate above a rail above a rail and travel at incredibly high speeds. Magnetism is used to elevate this "maglev" train several centimeters above the tracks and also to propel it forward. The absence of friction between the train and the track allows the mangle train to achieve speeds up to 600 kilometers per hour.
- Animal Magnetism Scientists have discovered that some are able to use the magnetic field around Earth to navigate. Loggerhead turtle hatchlings, for example, use magnetism to travel thousands of miles through the ocean back to their birthplace. Homing pigeons use magnetism to find their way back home. Scientists hypothesize that art of this ability is due to small amounts of an iron-containing compound in the animals' brains that can sense and respond to Earth's magnetic field.
- Cosmic Rays Cosmic rays are high-energy protons and atomic nuclei which move through space at nearly the speed of light. They originate from the sun, from outside of the solar system, and from distant galaxies. The charged particles in cosmic rays are deflected by the magnetic field and many are prevented from hitting the atmosphere directly. Some particles in the Belts, the solar wind and cosmic rays, are deflected by the magnetic field to the North and South Poles, creating the auroras.

	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	What causes electric fields	Students identify evidence that electric force is	Phenomena:	Elevate Interactivities:	Open-ended quiz
PS2-3	and electric forces?	exerted by invisible fields that extend through	- Bumblebees respond to flowers'	- Electric Currents	
		space and model how the potential energy of	electrical fields	- Theremin	Think Pair Share
MS-	How is potential energy	two interacting electric charges changes when	- Wind turbines	- Charged	
PS2-5	affected by positions of	their position changes. Students differentiate	https://interactives.ck12.org/simul	Interactions	Four corners
	changes?	between static electricity and current.	ations/physics/wind-turbine/app/i	- Apply Electrical	
MS-			ndex.html?utm_source=projectphe	Forces	Science notebooks
PS3-2	How is static electricity	Students identify evidence that magnetic force is	nomena&utm_medium=website&	- Interactions of	
	different from current?	exerted by invisible fields that extend through	<u>utm_campaign=ngss</u>	Magnetic Fields	Discussions/socratic
9.4.8.		space and model how the potential energy of	- Auroras	- Modeling Magnetic	seminars
IML.3	How can you change the	two interacting magnets changes when their	- Magnetic slime	Fields	
	magnetic force and	position changes. Students identify evidence of	- Programmable magnets	- Electricity and	Graphic Organizers
	potential energy between	a planetary magnetic field around Earth.	https://www.youtube.com/watch?	Magnetism	
	objects?		v=drD416THU7Y&feature=youtu	- Electromagnetic	Individual whiteboards
		Students learn that a magnetic field is created by	<u>.be</u>	Evidence	
	How can you detect and	current, and they investigate this phenomenon		- Electric motors	Lab reports
	describe a magnetic field?	by building and determining how to control	SEP.1 Asking Questions and	- Generators	
		solenoids and electromagnets.	Defining Problems		open-ended
	How can you describe the		Ask questions about data to determine	<u>Hands-On Labs:</u>	questioning
	magnetic field produced	Students analyze diagrams of motors and	the factors that affect the strength of	- Magnetic Poles	
	by a current?	generators that show that an electromagnet	electric and magnetic forces.		Self assessments

		moves when it is placed in a magnetic field and		- Uncanny	
	That are the properties of	current flows through a conductor when there	SEP.2 Developing and Using	Attractions	Peer assessments
sol	plenoids and	is a relative motion between it and a magnetic	Models	- Detecting Charges	
ele	ectromagnets?	field. Students identify the energy	Develop a model to describe that	- Charged	Show of hands/3-2-1
		transformation that occurs in each device.	when the arrangement of objects	Interactions	
He	low do magnetic fields		interacting at a distance changes,	- Detecting Fake	Exit slips
aff	ffect moving charges?	CCC.2 Cause and Effect	different amounts of potential energy	Coins	-
		Students will describe what changes and what	are stored in the system.	- Tracking Levitation	Project rubrics
He	low do generators and	occur in the magnetic field when a current flows		- Electric Current	
tra	ansformers work?	in the opposite direction.	SEP.3 Planning and Carrying Out	and Magnetism	Lesson quizzes and
			Investigations	- Build an	unit test
		CCC.4 Systems and System Models	Conduct an investigation and evaluate	electromagnet	
		Students will draw the magnetic field lines	the experimental design to provide	- Electric, Magnetic	Lesson checks
		around a nail which has its head as its north	evidence that fields exist between	Motion	
		pole and its point as its south pole to model the	objects exerting forces to each other		Reading checks
		electromagnetic field.	even though the objects are not in	Exploratorium	
		_	contact.	https://www.explorato	Scientific arguments
		Key Terms:		rium.edu/snacks/subje	(CER)
		- electron	Hands-On Labs	ct/electricity-and-magn	
		- electric force		etism	QUEST Project "How
		- electric field	Virtual Labs		can you lift an object
		- electric current		STEM Learning-	without making
		- conductor	Online webquests	Electricity and	contact?"
		- static electricity		Magnetism	
		- magnet	Topic Enrichments	https://www.stem.org.	Performance-Based
		- magnetism		uk/best/physics/big-id	Assessment "Planetary
		- magnetic force	Graphic Organizers	ea-electricity-and-magn	Detective" - Students
		- magnetic pole		<u>etism</u>	will build a simple
		- magnetic field	Scientific arguments (CER)		magnetometer to
		- electromagnetism		Science Buddies -	detect magnetic fields
		- solenoid	Science Videos	Electricity, Magnetism,	to test models of three
		- electromagnet		& Electromagnetism	planets. They will use
			Science Stations	Tutorial	evidence from their
				https://www.sciencebu	investigation to decide
			Interactive Science Journals	<u>ddies.org/science-fair-</u>	which planets have
				projects/references/ele	magnetic fields and
			Digital Learning	ctricity-magnetism-elec	which one most likely
				tromagnetism-tutorial#	could support life.
				introduction	

Unit #10: Information Technologies

Unit #10: Informa	non recinologies
 Enduring Understandings: Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. 	 Essential Questions: Why are digital signals a reliable way to produce, store, and transmit information? How are instruments that transmit and detect waves used to expand human senses?
Interdisciplinar	y Connections
 NJSLS Mathematics 7.RP.A.2 Recognize and represent proportional relationship Example: Using Ohm's law, students will demonstrate simple calculations t changes in voltage and current. NJSLS Computer Science and Design Thinking 8.1.8.CS.1: Recommend improvement 	that show patterns between changes in resistance and current and between
 Example: Students will compare bandwidth sizes and how an increase in b 	
Career/Real Wor	rld Connections
 for granted such as apps, social media, personal calendars, etc. Hardware engineers draw on computer engineering to develop hardware, engineers work in teams with other technology professionals and entirely new hardware. Hardware engineers work with the goals of maximit technological needs. Data scientists direct the gathering and application of data for a variety of approach the retrieval, storage, and implementation of data and data system 	our virtual lives. Software developers invent the technologies we sometimes take either for use within an organization, or as a product to be sold commercially. Id scientists to design, build, and troubleshoot existing computer hardware or izing technological efficiency, minimizing issues and errors, and meeting current organizations, includingcorporations and government agencies. Data scientists ms from a broad view. They work to develop large-scale models of how an of data mining, methods of storage and conveyance, hardware and software,
 Real World Connections Inventors - Making electricity work requires both scientists and inventors. electricity generation. 	Thomas Edison and Nikola Tesla are two well-known inventors who worked on
• CDC Decide and the sheet of a sector of the CDC to determine the	in la setiere CDS has 24 setellites and itime the Earth. Each setellite secretarely

• GPS - People use the global positioning system, or GPS, to determine their location. GPS has 24 satellites orbiting the Earth. Each satellite constantly sends out radio signals with information about current time and the signals with information about current time and the signals with information. A GPS receiver

receives these signals from the satellites that are closest to it. The receiver can determine its distance from those satellites by using the time of travel of the signal.

• Cell Phones - The number of cell phones used worldwide is almost 5 billion. It's the cell in cell phones that makes these devices work. Cells are small hexagona areas of land, each equipped with its own cell tower. Every cell phone caller must use a frequency different from other nearby callers; within each cell all frequencies can be used. When a person makes a call, the cell tower near them receives their signal and relays it to the cell tower that is near the person they are calling.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
MS-	What are the components	Students identify the three components of	Phenomena:	Elevate Interactivities:	Open-ended quiz
PS4-3	of a circuit?	electric circuits and describe relationships	- Pacemakers	- Electric Circuits	
		among voltage, current, and resistance.	- High-Definition TV's	- Light the Lights	Think Pair Share
9.4.8.	How does Ohm's law	Students model series and parallel circuits.	- Analog vs. Digital Televisions	- Electricity Your	
IML.12	apply to circuits?		https://thewonderofscience.com/	Heartbeat	Four corners
		Students describe the possible ways that	phenomenon/2018/7/7/analog-vs	- Analog and Digital	
	What is the difference	information signals can be sent and model the	-digital-television	Signals	Science notebooks
	between a series circuit	encoding of information into analog and digital		- I've Got to Take	
	and a parallel circuit?	signals.	SEP.8 Obtaining, Evaluating and	This Call	Discussions/socratic
			Communicating Information	- Digitized Images	seminars
	How is information sent	Students describe different kinds of	Integrate qualitative scientific and	- Analog and Digital	
	as signals?	communication technologies and mode the	technical information to support the	Recordings	Graphic Organizers
		transmission of analog and digital signals in	claim that digitized signals are a more	- Technology and	
	What are digital and	order to compare their reliability and security.	reliable way to encode and transmit	Communication	Individual whiteboards
	analog signals?		information than analog signals.	- Film Cameras and	
		CCC.6 Structure and Function		Digital Cameras	Lab reports
	How are signals	Students will be able to explain the cause of a	Hands-On Labs	- Signal Reliability	
	transmitted?	malfunctioning light bulb in their construction			open-ended
		of a parallel circuit.	Virtual Labs	<u>Hands-On Labs:</u>	questioning
				- Continuous or	
		Key terms:	Online webquests	Discrete?	Self assessments
		- electrical circuit		- Do the Lights Keep	
		- voltage	Topic Enrichments	Shining?	Peer assessments
		- resistance		- Electric Current	
		- Ohm's law	Graphic Organizers	and Voltage	Show of hands/3-2-1
		- series circuit		- Constructing a	
		- parallel circuit	Scientific arguments (CER)	Microphone	Exit slips
		- wave pulse		- Constructing a	-
		- electronic signal	Science Videos	Simple Computer	Project rubrics
		- electromagnetic signal		Circuit	

	- digital signal	Science Stations	- Let the Music Play	Lesson quizzes and
	- analaog signal			unit test
	- pixel	Interactive Science Journals	PBS Electric Circuits	
			https://nj.pbslearning	Lesson checks
		Digital Learning	media.org/resource/ph	
			<u>y03.sci.phys.mfe.lp_ele</u>	Reading checks
			ctric/electric-circuits/	
				QUEST project "What
			How is Electricity	is the best way to
			Generated?	record sound for my
			https://www.earthecho	scenario?"
			.org/educator-resource	
			<u>s/how-is-electricity-gen</u>	Performance-Based
			erated-middle-school-le	Assessment "Over and
			<u>sson-plan</u>	Out" - Students will
				design models that
			Teach Engineering -	help visitors recognize
			What is Electricity?	that digital signals are a
			https://www.teachengi	more valuable way than
			neering.org/lessons/vi	analog signals to
			ew/ucd_electricity_less	transmit data and
			<u>on01</u>	information.
			Get Connected With	
			Ohm's Law	
			https://tryengineering.	
			org/teacher/get-conne	
			<u>cted-ohms-law/</u>	

General Differentiated Instruction Strategies			
• Leveled texts	• Repeat, reword directions		
Chunking texts	 Brain breaks and movement breaks 		
Choice board	Brief and concrete directions		
Socratic Seminar	 Checklists for tasks 		
Tiered Instruction	Graphic organizers		
Small group instruction	 Assistive technology (spell check, voice to type) 		
Guided Reading	Study guides		
• Sentence starters/frames	Tiered learning stations		
Writing scaffolds	Tiered questioning		
Tangible items/pictures	Data-driven student partnerships		
• Adjust length of assignment	• Extra time		

Possible Additional Strategies for Special Education Students, 504 Students, At-Risk Students, and English Language Learners (ELLs)				
Time/General	Processing	Comprehension	Recall	
 Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline 	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklist Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers 	
Assistive Technology	Assessments and Grading	Behavior/Attention	Organization	
 Computer/whiteboard Tape recorder Spell-checker Audio-taped books 	Extended timeStudy guidesShortened testsRead directions aloud	 Consistent daily structured routine Simple and clear classroom rules Frequent feedback 	 Individual daily planner Display a written agenda Note-taking assistance Color code materials 	

Enrichment

The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

- Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.
- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.
- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options
- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interest in greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and makingconnections.
- The inclusion of additional subject areas and/or activities (cross-curricular).
- Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources

- Learning style quiz for students- http://www.educationplanner.org/students/self-assessments/learning-styles-quiz.shtml
- "Word clouds" from text that you provide-http://www.wordle.net/
- Bilingual website for students, parents and educators: http://www.colorincolorado.org/
- Learn a language for FREE-www.Duolingo.com
- Time on task for students-http://www.online-stopwatch.com/
- Differentiation activities for students based on their Lexile-www.Mobymax.com

- WIDA-http://www.wida.us/
- Everything ESL http://www.everythingESL.net
- ELL Tool Box Suggestion Site http://www.wallwisher.com/wall/elltoolbox
- Hope4Education http://www.hope4education.com
- Learning the Language http://blogs.edweek.org/edweek/learning-the-language/
- FLENJ (Foreign Language Educators of NJ) 'E-Verse' wiki: http://www.flenj.org/Publications/?page=135
- OELA http://www.ed.gov/offices/OBEMLA
- New Jersey Department of Education-Bilingual Education information http://www.state.nj.us/education/bilingual/

Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combining with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/
- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. <u>http://www.edutopia.org/</u>
- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embed media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/