ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

Mathematics

Honors Calculus

Board of Education

Mr. Vito Gallucio, President Mr. Christopher Emigholz, Vice President Ms. Jane Luciano Ms. Lisa Temple Mr. Richard Young Mr. Scott Veisz Ms. Maxine Fox Ms. Tanya Lehmann Mr. Jai Gulati Mr. Brian Betze, Superintendent Dr. Kimberly Tew, Assistant Superintendent

Curriculum Writing Committee

Morgan Sawin

Supervisors Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE:

Course Philosophy

Every individual develops an understanding of the concepts of calculus and gains experience with its methods and applications. This understanding and experience is achieved through a multi-representational approach, which emphasizes the relationships between graphical, numerical, analytical, and verbal representations of concepts, problems, and solutions. The connections among the multiple representations of concepts and functions are strengthened by the regular use of technology by students and teachers. Technology also plays a key role in verifying written work and in aiding in the interpretation of experimentation results. Several unifying themes serve to bring cohesion to the course. These themes include derivatives, integrals, limits, approximation, and applications and modeling. They are developed using all of the major mathematical functions with which students are already familiar.

Through engagement in mathematics learning outlined in this curriculum, the students of Robbinsville Public Schools will acquire the mathematical skills, understandings and reasoning to be successful citizens of the world.

Course Description

Grade: 11-12 Credits: 5

Course Length: 1 year Prerequisite(s): Grade of A or B in Pre-Calculus or completion of Pre-Calculus Honors

Calculus begins with a review of precalculus concepts followed by an introduction to limit theory and continuity. This is followed by an in-depth study of techniques of differentiation and integration. Throughout the year, application of differentiation and integration will be emphasized, including examples of optimization, related rates, area, and volumes of solids. Graphing calculators are used throughout the course. This course is weighted like an honors course.

Core and Supplemental Instructional Materials

Core Materials	Supplemental Materials
• Textbook	 Graphing websites (geogebra.com, desmos.com, etc.) Graphing calculator Online Resources Guided Notes Mimeo

Social Emotional Learning Connections

Below are the five core SEL Competencies as outlined by CASEL, and examples of how each may be addressed within this curriculum

Self-awareness: The ability to accurately recognize one's emotions and thoughts and their influence on behavior. This includes accurately assessing one's strengths and limitations and possessing a well-grounded sense of confidence and optimism.

Example 1: Students will discuss "what went well" at the end of class to assess their own understanding. **Example 2:** Students will analyze their own errors and determine *why* they made a mistake so they can determine their level of understanding, strengths, and areas that need improvement in the unit.

Self-management: The ability to regulate one's emotions, thoughts, and behaviors effectively in different situations. This includes managing stress, controlling impulses, motivating oneself, and setting and working toward achieving personal and academic goals.

Example 1: Students will have projects that will require steps and checkpoints. Completing the steps on time and remaining on task will require both self-motivation and regulation.

Example 2: Students will be given ample time in class to complete independent and group work. They must manage their time appropriately in order to keep up with the pace of the class.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students will research other cultures and how different traditions and ways of life contribute to disease spread or population growth **Example 2:** Students will learn about each other's diverse backgrounds and where to go at school and in the community if they need support.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1: Instruct students how to effectively communicate with the teacher when conflicts arise. For example, if there is a conflict with academics and extracurricular activities, they will learn to be proactive and discuss how to resolve the conflict with the teacher. **Example 2:** Students will work side by side with one another in order to discover theorems and solve problems **Responsible decision-making:** The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of self and others.

Example 1: Instruct students to embrace mistakes and not to criticize others when taking risks with new material **Example 2:** Teach students that every action, whether intentional or not, has consequences, and that they should be mindful of what they say and how they act around others

Integration of 21st Century Themes and Skills

NJSLS-CLKS 9.4: Life Literacies and Key Skills				
Creativity and Innovation	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 3,4,7			
Critical Thinking and Ducklass Salarian	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
Critical Thinking and Problem Solving	Can be found in unit: 1,2,3,4,5,6,7			
Digital Citizenship	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: n/a			
Global and Cultural Awareness	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 3,7			
Information and Media Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit			
	Can be found in unit: 2,5,6,7			
Technology Literacy	See specific standards and their connections/examples for this disciplinary concept listed within each individual unit Can be found in unit: 2,3,4,6,7			

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist . . . using technologies that haven't been invented . . . in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Career Awareness and Planning Standards 9.2	
9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.	Example : Students learn about different available careers in mathematics and engineering and explore pathways of school and/or life experiences needed to pursue one of these careers
9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.	Example: In units 3,6, and 7, students will explore real-world topics in and how they can apply calculus. Examples are rate of change, work performed, maximizing profits, and exponential growth/decay (such as disease spread)

Robbinsville Public Schools Scope, Sequence, Pacing and Assessment

Honors Calculus

Unit Title	Unit Understandings and Goals	Recommended Duration/ Pacing	Assessments
Unit 1: Limits and Their Properties	 Develop the connection between Pre-Calculus & limits, and Calculus Find limits graphically and numerically Evaluate limits analytically Determine continuity at a point and on an open interval Determine one-sided limits Determine infinite limits and find vertical and horizontal asymptotes 	9 blocks	Formative • Unit Quizzes • Open-Ended Questions • Class Discussion • In-class Assignments: (Group-work, Mini-Projects, Practice Material) • Review Games • Exit Slips • Chapter Test Summative • • Unit Test with Varying Types of Questions • Projects • Authentic Assessments • Core Assessments • Common Benchmark Assessments (mid/end of course) • Cumulative Exams • Final Exam Alternative Assessments (projects, etc when appropriate) • Application Projects • Graphing explorations • Anticipatory Set/Warm Up • Homework Quizzes • Open-Ended Leading Questions Highlighting Prior Knowledge • Student interview/presentation of works
Unit 2: Differentiation	• Find the derivative of a function using the limit definition	15 blocks	Formative Unit Quizzes Open-Ended Questions

	 Describe the relationship between continuity and differentiability Find the derivative of a function using basic differentiation rules Find the derivative of a function using the Product Rule and Quotient Rule Find the derivative of a function using the Chain Rule and General Power Rule Find the derivative of a function using implicit differentiation Evaluate Related Rates 		 Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Review Games Exit Slips Chapter Test Summative Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments Core Assessments Common Benchmark Assessments (mid/end of course) Cumulative Exams Final Exam Alternative Assessments (projects, etc when appropriate) Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge Student interview/presentation of works
Unit 3: Applications of Differentiation	 Use a derivative to locate the minimum and maximum values of a function on a closed interval Solve applications of Rolle's Theorem and the Mean Value Theorem Use the first derivative to determine whether a function is increasing and decreasing Use the second derivative to determine whether the graph of a function is concave upward or concave downward Analyze a function and sketch its graph based on data from the first and second derivative test Solve optimization problems Use approximation techniques and differential equations to solve problems 	12 blocks	Formative · Unit Quizzes · Open-Ended Questions · Class Discussion · In-class Assignments: (Group-work, Mini-Projects, Practice Material) · Review Games · Exit Slips · Chapter Test Summative · · Unit Test with Varying Types of Questions · Projects · Authentic Assessments · Core Assessments Common Benchmark Assessments (mid/end of course) · Cumulative Exams · Final Exam Alternative Assessments (projects, etc when appropriate) · Application Projects · Graphing explorations

			 Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge Student interview/presentation of works
Unit 4: Integration	 Evaluate indefinite integrals using basic integration rules Evaluate a sum and approximate the area of a plane region Evaluate a definite integral using a limit Evaluate a definite integral using the Fundamental Theorem of Calculus Evaluate different types of definite and indefinite integrals using a variety of methods such as the Trapezoidal Rule and Simpson's Rule 	10 blocks	Formative Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Review Games Exit Slips Chapter Test Summative Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments Common Benchmark Assessments (mid/end of course) Cumulative Exams Final Exam Alternative Assessments (projects, etc when appropriate) Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge Student interview/presentation of works
Unit 5: Exponential and Logarithmic Functions and Calculus	 Recognize, evaluate, and graph exponential and logarithmic functions Use properties of logarithms to evaluate, rewrite, expand, or condense logarithmic functions Solve exponential and logarithmic equations Use exponential growth models, exponential decay models, Gaussian models, logistic growth models, and logarithmic models to solve real-life problems 	14 blocks	 Formative Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Review Games Exit Slips Chapter Test Summative Unit Test with Varying Types of Questions Projects Authentic Assessments

	 Find the derivative and antiderivative of the natural exponential function Find the derivative of the natural logarithmic functions, use logarithms as an aid in differentiating non logarithmic functions, and find the derivatives of exponential and logarithmic functions in bases other than <i>e</i> 		Core Assessments Common Benchmark Assessments (mid/end of course) Cumulative Exams Final Exam Alternative Assessments (projects, etc when appropriate) Application Projects Graphing explorations Anticipatory Set/Warm Up
	• Use an exponential function to model growth and decay		 Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge Student interview/presentation of works
Unit 6: Trigonometry Review, Functions, and Calculus	 Describe angles using radian and degree measures Evaluate trigonometric functions using the unit circle Use fundamental trigonometric identities Evaluate trigonometric functions of acute angles Use reference angles to evaluate trigonometric functions of any angle Sketch the graphs of sine, cosine, tangent, cotangent, secant, and cosecant functions Evaluate inverse trigonometric functions Use the fundamental trigonometric identities Use the fundamental trigonometric functions Evaluate inverse trigonometric functions Use the fundamental trigonometric identities Use standard algebraic techniques to solve trigonometric equations Solve trigonometric functions of quadratic type and involving multiple angles Use inverse trigonometric functions to solve trigonometric equations Determine limits of trigonometric functions Find derivatives of trigonometric functions Find antiderivatives of trigonometric functions Find derivatives of trigonometric functions Find derivatives of inverse trigonometric functions Find derivatives of trigonometric functions 	13 blocks	Formative • Unit Quizzes • Open-Ended Questions • Class Discussion • In-class Assignments: (Group-work, Mini-Projects, Practice Material) • Review Games • Exit Slips • Chapter Test Summative • • Unit Test with Varying Types of Questions • Projects • Authentic Assessments • Core Assessments • Common Benchmark Assessments (mid/end of course) • Cumulative Exams • Final Exam Alternative Assessments (projects, etc when appropriate) • Application Projects • Graphing explorations • Anticipatory Set/Warm Up • Homework Quizzes • Open-Ended Leading Questions Highlighting Prior Knowledge • Student interview/presentation of works

	 Find antiderivatives involving inverse trigonometric functions 		
Unit 7: Applications of Integration (Time Permitting)	 Use a definite integral to find the area of a region bounded by two curves Find the volume of a solid of revolution by the disk and shell methods Find the length of a curve and the surface area of a surface of revolution Find the work done by a constant force and by a variable force 	9 blocks	Formative • Unit Quizzes • Open-Ended Questions • Class Discussion • In-class Assignments: (Group-work, Mini-Projects, Practice Material) • Review Games • Exit Slips • Chapter Test Summative • • Unit Test with Varying Types of Questions • Projects • Authentic Assessments • Core Assessments • Cormon Benchmark Assessments (mid/end of course) • Cumulative Exams • Final Exam Alternative Assessments (projects, etc when appropriate) • Application Projects • Graphing explorations • Anticipatory Set/Warm Up • Homework Quizzes • Open-Ended Leading Questions Highlighting Prior Knowledge • Student interview/presentation of works

Ont #1. Linus and Then Toperties			
Enduring Understandings:	Essential Questions:		
• Develop the connection between Pre-Calculus & limits, and Calculus	• What is the difference between average and instantaneous rate of		
• Find limits graphically and numerically	change?		
• Evaluate limits analytically	• How does the limit of a function correlate with end behavior?		
• Determine continuity at a point and on an open interval	• How can one sided limits and the limit of a function at a value be		
• Determine one-sided limits	used to determine the continuity of a function at a single point?		
• Determine infinite limits and find vertical and horizontal asymptotes	• How is the instantaneous rate of change of a curverelated to the		
	slope of a line tangent to the curve?		
	• How do combinations of functions both graphically and algebraically		
	affect the value of the limit of a function at a givenpoint?		

Unit #1: Limits and Their Properties

Interdisciplinary Connections

ELA NJSLSA.SL3. Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric.

Example: Students will discuss different ways to solve the same problem, and determine the best method when appropriate

Sci HS-PS2-1. Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Example: Students will use derivatives to model the rate of change of an object

Career/Real World Connections

Example: Among the disciplines that utilize calculus include physics, engineering, economics, statistics, and medicine. It is used to create mathematical models in order to arrive at an optimal solution.

Guidin wit	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
A-APR.	What is the limit of a	Understand what Calculus is and how it	Anticipatory sets to measure	Worksheets and sample	Written tests and
B.3	function?	compares with Precalculus, such as the tangent	background knowledge and engage	problems to analyze	quizzes
		line problem and the area problem and their	students	step-by-step solutions	
F-IF.B.	How do the basic	essential ties to Calculus.		of the problems	Worksheets
4	operations of algebra		Use guided and independent practice		
	apply to limits?	Estimate a limit using a numerical or graphical	activities	Textbook & associated	Notebook assessments
		approach.		materials	
	What are the geometric		Use the Mimeo, whiteboard, and		Response to discussion
	and numeric relationships	Determine ways for a limit to fail to exist.	worksheets to reinforce the concepts	Teacher created	questions
	of the limit of a function?			worksheets	

		Evaluate limits using their properties.	Use cooperative learning activities		Anticipatory Sets/Do
				Mimio lessons	Now Problems
		Develop and use a strategy for finding limits and	Use discovery based learning activities	Geometer's Sketchpad	
		evaluate a limit using dividing out and	that require students to make		Diagnostic
		rationalizing techniques.	conjectures and investigate patterns	GeoGebra	Assessments to
					determine readiness
			Use whiteboards to show immediate	TI Smart View with TI	
			feedback on questions	84 Graphing	Closure question/ Exit
				Calculators	Slips
				Desmos	
F-IF.B.	How is a limit used to	Determine continuity at a point and continuity	Same as above	Same as above	Same as above
4	determine continuity?	on an open interval.			
	What does it mean to be	Determine one-sided limits and continuity on a			
	continuous?	closed interval and use properties of continuity.			
	How can limits he used to	Understand and apply the Intermediate Value	Sama as above	Sama as above	Sama as abova
D_{6}	find vertical and horizontal	Theorem	Same as above	Same as above	Same as above
D.0	asymptotes of a function?	Theorem.			
A_APR	asymptotes of a function.	Determine infinite limits from the left and from			
D7	What is the application of	the right			
D . (the Intermediate Value				
	Theorem?	Find and sketch vertical and horizontal			
		asymptotes of the graph of a function.			

Unit #2: Differentiation

Enduring Understandings: Essential Questions:				
 Find the derivative of a function using the limit definition Describe the relationship between continuity and differentiability Find the derivative of a function using basic differentiation rules Find the derivative of a function using the Product Rule and Quotient What are the necessary conditions for a derivative to exist? 				
 Rule Find the derivative of a function using the Chain Rule and General Power Rule Find the derivative of a function using implicit differentiation Find the derivative of a function using implicit differentiation Evaluate Related Rates How can you recognize and apply the appropriate scenario for the various rules of differentiation of polynomial functions? How can the derivative of a function be taken with respect to variables other than x? How are derivatives used to model and solve real world problems 				
Interdisciplinary Connections				
Tech 8.2.12.A.3 The relationships among technologies and the connections between technology and other fields of study <i>Example</i> : Students will use technology to graph multiple function types and analyze, compare and contrast the graphs				

9.3.12.BM-MGT.2 Access, evaluate, and disseminate information for business decision making. *Example:* Students will access, evaluate, and disseminate information given related rates problems

Career/Real World Connections

Example: Since polynomials are used to describe curves of various types, people use them in the real world to graph curves. For example, roller coaster designers may use polynomials to describe the curves in their rides. Additionally, polynomials are used in physics to describe the trajectory of projectiles. Rational functions can represent direct, inverse, and joint variation in the real world. From anesthesia to economics, rational functions are used in multiple areas of study to help predict outcomes.

Guidi wit	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
S-ID.C.	How do the slope of a	Find the slope of a tangent line to a curve, use	Anticipatory sets to measure	Worksheets and sample	Written tests and
7	graph and the slope of a	the limit definition to find the derivative of a	background knowledge and engage	problems to analyze	quizzes
	tangent line compare?	function, at a point.	students	step-by-step solutions	
A-APR.				of the problems	Worksheets
C.5	What is the importance of	Use the limit definition to find the derivative of	Use guided and independent practice	-	
	limits in finding the	a function.	activities	Textbook & associated	Notebook assessments
F-IF.B.	derivative?			materials	
6					

	What is a derivative?	Find the derivative using the various rules of	Use the Mimeo, whiteboard, and	Teacher created	Response to discussion
		differentiation: Constant Rule, Power Rule,	worksheets to reinforce the concepts	worksheets	questions
	What are the rules for	Constant Multiple Rule, Sum/Difference Rules,			
	differentiation?	Product Rule, and Quotient Rule.	Use cooperative learning activities	Mimio lessons	Anticipatory Sets/Do
				Geometer's Sketchpad	Now Problems
	What is the meaning of	Find a higher order derivative of a function.	Use discovery based learning activities		
	second, third or higher	Find the derivative of a composite function	that require students to make	GeoGebra	Diagnostic
	order derivatives?	using the Chain Rule.	conjectures and investigate patterns		Assessments to
				TI Smart View with TI	determine readiness
	Why do some functions	Distinguish between functions written in	Use whiteboards to show immediate	84 Graphing	
	require the need to have	implicit form and explicit form and use implicit	feedback on questions	Calculators	Closure question/ Exit
	their derivatives	differentiation where appropriate to find the		D	Sups
	determined implicitly?	derivative.		Desmos	
S-ID.C.	How can a derivative fail to	Analyze the relationship between	Same as above	Same as above	Same as above
7	exist?	differentiability and continuity.			
	XX771 1 1 1 .				
A-APK.	What is the relationship				
B.3	between the derivative of a				
EIED	of a function				
Г-П'.D. Л	or a function.				
S-IDC	How can derivatives be used	Find a related rate and use related rates to solve	Same as above	Same as above	Same as above
7-11 D .C.	to model and solve real world	real world problems	Same as above	Same as above	Same as above
1	problems?	real world problems			
A-REL	F				
A.1					

Unit #3: Applications of Differentiation

Enduring Understandings:	Essential Questions:
• Use a derivative to locate the minimum and maximum values of a	• How are derivatives used to model and solve real world problems?
function on a closed interval	• How do the graphs of <i>f</i> , <i>f</i> ', and <i>f</i> '' relate to one another?
• Solve applications of Rolle's Theorem and the Mean Value Theorem	• How does the range of <i>f</i> correlate to the graph of <i>f</i> ?
• Use the first derivative to determine whether a function is increasing and	• How does the range of f" correlate to the graph of f?
decreasing	• How can the second derivative be used to identify a critical point as a
• Use the second derivative to determine whether the graph of a function	maximum or minimum value of the function?
is concave upward or concave downward	• How do the Mean Value and Rolle's Theorem aid in determining
• Analyze a function and sketch its graph based on data from the first and	intervals in which the function is increasing, decreasing or constant?
second derivative test	• What does it mean to be "Locally Linear"?
Solve optimization problems	• How can linearization of differential equations be used to
 Use approximation techniques and differential equations to solve 	approximate values of a function?
problems	
Interdisciplinary	Connections

9.3.12.BM-**MGT.2** Access, evaluate and disseminate information for business decision making. Students will solve optimization problems to determine maximum profit and other business-related problems.

8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change. Students will use technology to visualize the rate of change and the slope of a tangent line, and howderivatives change as a function of time.

Career/Real World Connections

Example: Students will access, evaluate, and disseminate information for decision making on a regular basis as they apply the skills learned in

Guidi wit	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
A-APR. B.3 F-IF.B.	How does the derivative of a function provide information about the shape of the graph?	Develop the definition of relative extrema on an open interval, absolute extrema on a closed interval.	Anticipatory sets to measure background knowledge and engage students	Worksheets and sample problems to analyze step-by-step solutions of the problems	Written tests and quizzes Worksheets
5	1 0 1	Use first and second derivative tests to find extrema of a function as well as intervals of increasing, decreasing and constant.	Use guided and independent practice activities	Textbook & associated materials	Notebook assessments

F-IF.B.	What information can be		Use the Mimeo, whiteboard, and		Response to discussion
6	determined by the first	Analyze and sketch the graph of a function.	worksheets to reinforce the concepts	Teacher created	questions
	derivative test?		Ĩ	worksheets	1
			Use cooperative learning activities		Anticipatory Sets/Do
	What information can be			Mimio lessons	Now Problems
	determined by the second		Use discovery based learning activities	Geometer's Sketchpad	
	derivative test?		that require students to make		Diagnostic
			conjectures and investigate patterns	GeoGebra	Assessments to
					determine readiness
			Use whiteboards to show immediate	TI Smart View with TI	
			feedback on questions	84 Graphing	Closure question/ Exit
				Calculators	Slips
				Desmos	
S-ID.C.	How can derivatives be used	Use calculus to solve applied maximum and	Same as above	Same as above	Same as above
7	to model and solve real world	minimum problems.			
	problems?				
SIDC		Develop the concept of tennent line		S	S
s-iD.C.	How can the tangent line to a	Develop the concept of tangent line	Same as above	Same as above	Same as above
0	curve be used to model other	differential with the actual change to estimate			
EIEB	points on the curve:	the error created by using the differential			
л-ш.р. Л	What is a differential	the error created by using the unreferitual.			
4	equation and how can it be				
	used to approximate the				
	values of a function?				

Unit #4: Integration

Enduring Understandings:	Essential Questions:
 Evaluate indefinite integrals using basic integration rules Evaluate a sum and approximate the area of a plane region Evaluate a definite integral using a limit Evaluate a definite integral using the Fundamental Theorem of Calculus Evaluate different types of definite and indefinite integrals using a variety of methods such as the Trapezoidal Rule and Simpson's Rule 	 What is the value of the Fundamental Theorem of Calculus?Why is it important to the development of Calculus? How is the Fundamental Theorem of Calculus influential in the ability to problem solve? What is the necessity of an initial condition when integrating an indefinite integral? What is the graphical representation of a definite integral? How can you recognize and apply the appropriate scenario for the various rules of differentiation of polynomial functions? What are the methods for approximating the value of a definite integral? In which situations are each of the approximations more exact?

Interdisciplinary Connections

Tech HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Example: Students will graph complex functions but use Reimann sums to approximate area under the curve, then interpret the result.

9.3.12.ED.2 Demonstrate effective oral, written, and multimedia communication in multiple formats and contexts. *Example:* Students will work together to explore anti-differentiation and create a list of rules that can be applied to solve definite integrals.

Career/Real World Connections

Example: Students will have to use problem solving skills in this unit while collaborating with classmates. They will have to determine the most efficient method for solving and reason with their peers about each method. These are skills that they will need in any future job when working with coworkers.

Guidi wit	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
A-APR	What is an integral of a	Write the general solution of a differential	Anticipatory sets to measure	Worksheets and sample	Written tests and
.B.3	function?	equation and use definite integral notation for	background knowledge and engage	problems to analyze	quizzes
		antiderivatives.	students	step-by-step solutions	1
A-APR.	What are the rules for			of the problems	Worksheets
D.6	antidifferentiation?	Use basic integration rules to find	Use guided and independent practice	-	
		antiderivatives.	activities	Textbook & associated	Notebook assessments
A-APR.	What is the difference			materials	
D.7	between a definite and	Develop the concept of area under the curve	Use the Mimeo, whiteboard, and		Response to discussion
	indefinite integral?	and use rectangles to approximate the area of a	worksheets to reinforce the concepts	Teacher created	questions
F-IF.C.		plane region.		worksheets	
7	Why is it necessary for		Use cooperative learning activities		Anticipatory Sets/Do
	integration to require a	Find the area of a plane region using limits.		Mimio lessons	Now Problems
F-IF.C.	change of variables?		Use discovery based learning activities	Geometer's Sketchpad	
9		Develop the definition of a Riemann sum and	that require students to make		Diagnostic
	What is the geometric	evaluate a definite integral using limits.	conjectures and investigate patterns	GeoGebra	Assessments to
	analogy for an integral?				determine readiness
		Evaluate a definite integral using properties of	Use whiteboards to show immediate	TI Smart View with TI	
	How do the basic	definite integrals.	feedback on questions	84 Graphing	Closure question/ Exit
	operations of algebra			Calculators	Slips
	affect integration?	Use pattern recognition to find an indefinite			
		integral.		Desmos	
	What methods for				
	approximations are there	Use a change of variables to find an indefinite			
	for integration?	integral.			
		Use the General Power Rule for Integration to			
		find an indefinite integral.			
		Use a change of variables to evaluate a definite			
		integral and evaluate a definite integral involving			
		an even or odd function.			
		Approximate a definite integral using the			
		Trapezoidal Rule and Simpson's Rule.			

F-BF-A	How does the Fundamental	Evaluate a definite integral using the	Same as above	Same as above	Same as above
.1	Theorem of Calculus relate	Fundamental Theorem of Calculus.			
	differential and integral				
	calculus?				
	What is the significance of				
	the Fundamental Theorem of				
	Calculus?				
F-IF.B.	How is the Mean Value for	Use the Mean Value Theorem for Integrals and	Same as above	Same as above	Same as above
6	Integrals applied?	find the average value of a function over a			
		closed interval.			
	What is the Net Change				
	Theorem?	Use the Second Fundamental Theorem of			
		Calculus and understand and use the Net			
		Change Theorem.			

Unit #5: Exponential and Logarithmic Functions and Calculus

Enduring Understandings:	Essential Questions:
 Recognize, evaluate, and graph exponential and logarithmic functions Use properties of logarithms to evaluate, rewrite, expand, or condense logarithmic functions Solve exponential and logarithmic equations Use exponential growth models, exponential decay models, Gaussian models, logistic growth models, and logarithmic models to solve real-life problems 	 What is the relationship between an exponential and logarithmic function? How do exponential functions and their graphs help us interpret events that occur in the world around us (population and calculating interest)? How are the properties of logarithms with the same base related to the properties of exponents with the same base? How can you find the derivative and antiderivative of exponential and logarithmic functions? How are logarithms useful in differentiating and integrating functions that are non logarithmic?
T	

Interdisciplinary Connections

Tech HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Example: Students will graph exponential functions and discuss the real world factors that affect rate of growth or decay

Science HS-ESS3-6 Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity (i.e., climate change).

Example: Students will study the spread of disease to a population as exponential growth, and how human activity can affect spread

Career/Real World Connections

Example: Covid-19 is a global pandemic that exemplifies exponential growth. Human behavior, among other factors, can affect the rate of infection. Students can study different states and countries to see how their behavior changed the course of the virus

Guidi wit	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
F-LE.A	How is a logarithmic	Graph exponential and logarithmic functions.	Anticipatory sets to measure	Worksheets and sample	Written tests and
.1-4	graph related to an		background knowledge and engage	problems to analyze	quizzes
	exponential graph?		students	step-by-step solutions	
F-IF.B.				of the problems	Worksheets
4	How are exponential	Recognize and evaluate exponential and	Use guided and independent practice		
	functions written in	logarithmic functions.	activities	Textbook & associated	Notebook assessments
	logarithmic form?			materials	

F-IFB. 5 A-SSE. B.3c	How are the properties of logarithmic functions related to the properties of exponents?	Use properties of logarithms to evaluate, rewrite, expand or condense logarithmic expressions.	Use the Mimeo, whiteboard, and worksheets to reinforce the concepts Use cooperative learning activities Use discovery based learning activities that require students to make conjectures and investigate patterns Use whiteboards to show immediate feedback on questions	Teacher created worksheets Mimio lessons Geometer's Sketchpad GeoGebra TI Smart View with TI 84 Graphing Calculators	Response to discussion questions Anticipatory Sets/Do Now Problems Diagnostic Assessments to determine readiness Closure question/ Exit Slips
				Desmos	
F-LE.A .1-4 F-LE.B .5 F-BF.B. 4 F-BF.B. 5	How are exponential and logarithmic equations solved? In what ways can you verify algebraic techniques for solving exponential equations using technology? How can we use the properties of logarithms to solve logarithmic equations? What real-world phenomenon can be modeled using exponential and logarithmic equations?	Solve exponential and logarithmic equations. Use exponential and logarithmic models to solve real-life problems.	Same as above	Same as above	Same as above
F-LE.A .1-4 F-BF.B. 4 F-BF.B. 5	How can we differentiate and integrate a natural exponential function?	Differentiate natural exponential functions. Integrate natural exponential functions	Same as above	Same as above	Same as above

F-LE.A	What are the rules for	Differentiate natural logarithmic functions.	Same as above	Same as above	Same as above
.1-4	differentiating a natural				
	logarithm?	Use logarithmic differentiation to differentiate			
A-SSE.		non logarithmic functions.			
B.3c	How does logarithmic				
	differentiation enable us to	Differentiate exponential and logarithmic			
	differentiate non logarithmic	functions for bases other than e.			
	functions?				
	What is unique in				
	differentiating exponential				
	and logarithmic functions for				
	bases other than e? How is it				
DID 4	done?			0 1	0 1
F-LE.A	What is the Log Rule for	Use the Log Rule for Integration to integrate a	Same as above	Same as above	Same as above
.1-4	Integration?	rational function.			
	Llarra in the Lara Darla for a	Internet and the first fractions for here other			
	How is the Log Rule for	Integrate exponential functions for bases other			
	Integration used to integrate	than e			
	a radonal function?				
	How can exponential				
	functions with bases other				
	than e be integrated?				
F-LE.A	How can simple differential	Use separation of variables to solve simple	Same as above	Same as above	Same as above
.1-4	equations be solved using the	differential equations.			
	separation of variables	1			
F-LE.B	technique?	Use exponential functions to model growth and			
.5	1	decay.			
	What real world	-			
	phenomenon can be solved				
	using exponential functions?				

Unit #6: Trigonometry Review, Functions, and Calculus

Enduring Understandings: Essential Ouestions:					
 Describe angles using radian and degree measures Evaluate trigonometric functions using the unit circle Use fundamental trigonometric identities Evaluate trigonometric functions of acute angles Use reference angles to evaluate trigonometric functions of any angle Sketch the graphs of sine, cosine, tangent, cotangent, secant, and cosecant functions Evaluate inverse trigonometric functions Use the fundamental trigonometric identities to evaluate, simplify, and rewrite trigonometric expressions Verify trigonometric equations of quadratic type and involving multiple angles Use inverse trigonometric functions to solve trigonometric equations Determine limits of trigonometric functions Find derivatives of trigonometric functions Find antiderivatives involving inverse trigonometric functions Find antiderivatives involving inverse trigonometric functions 	 How is a trigonometric function evaluated? How is an inverse trigonometric function evaluated? What is the relationship between the two? How can you verify a trigonometric function as an identity? What are the similarities and differences between the trigonometric functions and their reciprocals (graphically, numerically, and algebraically)? How do the limits of trigonometric functions affect the derivative of a trigonometric function? How are the rules for the derivatives and antiderivatives of trigonometric and inverse trigonometric functions related to their graphs and properties? 				
Interdisciplinary Connections					
ELA NJSLSA.SL2. Integrate and evaluate information presented in diverse media a	ELA NJSLSA.SL2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally.				
<i>Example</i> : Students will use previously learned identities to solve problems presented in new ways.					

ELA NJSLSA.SL3. Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric.

Example: Students will discuss different ways to solve the same problem, and determine the best method when appropriate

Career/Real World Connections

Example: Students will have to use problem solving skills in this unit while collaborating with classmates. They will have to determine the most efficient method for solving and reason with their peers about each method. These are skills that they will need in any future job when working with coworkers.

Guidi wi	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
F-TF.A.	What are the domain and	Describe angles.	Anticipatory sets to measure	Worksheets and sample	Written tests and
1	range of trigonometric	_	background knowledge and engage	problems to analyze	quizzes
	functions?	Convert between degrees and radians.	students	step-by-step solutions	
F-TF.A.				of the problems	Worksheets
2	How can trigonometric	Describe the relationship between real numbers	Use guided and independent practice		
	functions be evaluated	and the unit circle.	activities	Textbook & associated	Notebook assessments
F-TF.A.	using the unit circle?			materials	
3		Evaluate trigonometric functions using the unit	Use the Mimeo, whiteboard, and		Response to discussion
	What other techniques	circle.	worksheets to reinforce the concepts	Teacher created	questions
F-TF.A.	(reference angles, period,			worksheets	
4	domain, calculator) can be	Use domain and period to evaluate sine and	Use cooperative learning activities		Anticipatory Sets/Do
	used to evaluate	cosine functions.		Mimio lessons	Now Problems
G-SRT.	trigonometric functions of		Use discovery based learning activities	Geometer's Sketchpad	
C.6	any angle?	Evaluate trigonometric functions of angles.	that require students to make		Diagnostic
			conjectures and investigate patterns	GeoGebra	Assessments to
		Use fundamental trigonometric identities.			determine readiness
			Use whiteboards to show immediate	11 Smart View with 11	
		Use reference angles to evaluate trigonometric	feedback on questions	84 Graphing	Closure question/ Exit
		functions.		Calculators	Slips
		Use trigonometric functions to model and solve real-life problems.		Desmos	
F-TF.B.	How are the sine and cosine	Graph sine, cosine, tangent, cotangent, secant,	Same as above	Same as above	Same as above
5	functions generated from the	and cosecant functions.			
	unit circle?				
F.IF.C.7		Use sine and cosine to model real-life data.			
	What are the parent graphs				
F.BF.B.	and transformations of the				
4	sine, cosine, tangent,				
	cotangent, secant, and				
	cosecant function?				
F-TEB.	What restrictions on the	Evaluate and graph inverse trigonometric	Same as above	Same as above	Same as above
6	domain are necessary to	tunctions.			
	graph inverse trigonometric				
F-TF.B.	functions?	Evaluate and graph compositions of			
7		trigonometric functions.			
	How does the domain				
	change when trigonometric				
	functions are composed?				1

G-SRT. C.8 F-TF.C. 8	How can trigonometric expressions be simplified using the fundamental trigonometric identities and algebraic techniques?	Use the fundamental trigonometric identities to evaluate trigonometric functions and simplify and rewrite trigonometric expressions. Verify trigonometric identities.	Same as above	Same as above	Same as above
F-TEC. 9 A.SSE. A.2	What strategies are helpful in verifying trigonometric identities effectively? What algebraic techniques are used to solve trigonometric equations? How can the solution of	Solve trigonometric equations using standard algebraic techniques, quadratic types, multiple angles, and inverse trigonometric functions.			
	trigonometric equations be verified using technology?				
A-CED .A.2 F-BF.B. 4 F-IF.C. 7	What are the geometric and numeric relationships of the limit of a trigonometric function?	Determine the limits of trigonometric functions.	Same as above	Same as above	Same as above
F-TE.C. 8 F-TE.C. 9 F-IF.C. 7	What are the derivatives of the trigonometric functions? How are they derived? What information can be determined by the first derivative test	Find and use the derivatives of the sine, cosine, and other trigonometric functions. Apply the First Derivative Test to find the minima and maxima of a function.	Same as above	Same as above	Same as above
A.SSE. A.1 A.SSE. A.2	What are the rules for antidifferentiation of trigonometric functions? What is u-substitution? How is it used to integrate trigonometric functions?	Integrate trigonometric functions using trigonometric identities and u-substitution. Use integrals to find the average value of a function.	Same as above	Same as above	Same as above

F-TF.B.	What are the derivative rules	Differentiate an inverse trigonometric function	Same as above	Same as above	Same as above
/		and review the basic differentiation rules for			
	functions? How are they	elementary functions.			
F-TF.C.	derived?				
8					
F-TF.C.					
9					
F-IF.C.					
7					
F-TF.B.	What are the rules for	Integrate functions whose antiderivatives	Same as above	Same as above	Same as above
7	antidifferentiation of inverse	involve inverse trigonometric functions.			
	trigonometric functions?	0			
A.SSE.		Use the method of completing the square to			
A.1	How is completing the	integrate a function.			
	square used to assist in the	-			
A.SSE.	integration of a function?	Review the basic integration rules involving			
A.2		elementary functions.			

Unit #7: Applications of Integration (*Time Permitting)

 Enduring Understandings: Use a definite integral to find the area of a region bounded by two curves Find the volume of a solid of revolution by the diskand shell methods Find the length of a curve and the surface area of a surface of revolution 	 Essential Questions: How can we use known formulas: such as the area of a rectangular region, the volume of a circular disk, or work done by a constant force in application problems to create a new integration formula? 				
• Find the work done by a constant force and by a variable force	• How can you use an integral to represent change over time?				
	• How can integrals be used to determine the volume of three dimensional solida formed by the rotation of two dimensional				
	functions?				
	 How are integrals used to determine the length of a curve and area of 				
	a surface?				
Interdisciplinary Connections					
Sci HS-PS2-1. Analyze data to support the claim that Newton's second law of motio	on describes the mathematical relationship among the net force on a				
macroscopic object, its mass, and its acceleration.					
Example: Students will calculate the work done by a constant and a variable force					
Tech 8.2.12.A.3 The relationships among technologies and the connections between technology and other fields of study					
Example: Students will use technology to graph functions and then find the volume when revolved around different axes using the disc or washer method					
Career/Real World Connections					

Example: Disc and washer methods can be used to find volume of obscure shapes, rather than typical solids (cube, cylinder, etc.), which is what is more likely to come up in the real world

Guidi wi	ing / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
A.SSE.	What is a surface of	Find the area of a region between two curves	Anticipatory sets to measure	Worksheets and sample	Written tests and
A.2	revolution?	using integration.	background knowledge and engage	problems to analyze	quizzes
			students	step-by-step solutions	
A-CED	How can known formulas	Describe integration as an accumulation		of the problems	Worksheets
.A.2	for area aid in the	process.	Use guided and independent practice	-	
	determination of the		activities	Textbook & associated	Notebook assessments
F.IF.C.7	volume of a solid?	Find the volume of a solid of revolution with		materials	
		the Disk, Washer and Shell Methods.	Use the Mimeo, whiteboard, and		Response to discussion
F.IF.C.8			worksheets to reinforce the concepts		questions

C CM	How can an integral be	Find the volume of a solid with known cross		Teacher created	
D.A.1	used to determine volume?	sections.	Use cooperative learning activities	worksheets	Anticipatory Sets/Do Now Problems
	How can an integral be	Find the arc length of a smooth curve.	Use discovery based learning activities	Mimio lessons	
G-GM	used to determine the		that require students to make	Geometer's Sketchpad	Diagnostic
D.A.3	length of a curve?	Find the area of a surface of revolution.	conjectures and investigate patterns		Assessments to
				GeoGebra	determine readiness
G-GM	How can an integral be		Use whiteboards to show immediate		
D.B.4	used to determine the area		feedback on questions	TI Smart View with TI	Closure question/ Exit
	of a surface?			84 Graphing	Slips
				Calculators	
				Desmos	
G-MG.	How can an integral be used	Find the work down by a constant and by a	Same as above	Same as above	Same as above
A.1	to calculate the work done on	variable force.			
	an object?				
G-GM					
D.B.4					

General Differentiated Instruction Strategies				
 Leveled texts Chunking texts Choice board Socratic Seminar Tiered Instruction Small group instruction Guided Reading Sentence starters/frames Writing scaffolds Tangible items/pictures Adjust length of assignment 	 Repeat, reword directions Brain breaks and movement breaks Brief and concrete directions Checklists for tasks Graphic organizers Assistive technology (spell check, voice to type) Study guides Tiered learning stations Tiered questioning Data-driven student partnerships Extra time 			

Possible Additional Strategies for Special Education Students, 504 Students, At-Risk Students, and English Language Learners (ELLs)						
Time/General	Processing	Comprehension	Recall			
 Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline 	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklist Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers 			
Assistive Technology	Assessments and Grading	Behavior/Attention	Organization			
 Computer/whiteboard Tape recorder Spell-checker Audio-taped books 	Extended timeStudy guidesShortened testsRead directions aloud	 Consistent daily structured routine Simple and clear classroom rules Frequent feedback 	 Individual daily planner Display a written agenda Note-taking assistance Color code materials 			

Enrichment

The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

- Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.
- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.

- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options
- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interestin greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and makingconnections.
- The inclusion of additional subject areas and/or activities (cross-curricular).
- Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources

- Learning style quiz for students- http://www.educationplanner.org/students/self-assessments/learning-styles-quiz.shtml
- "Word clouds" from text that you provide-http://www.wordle.net/
- Bilingual website for students, parents and educators: http://www.colorincolorado.org/
- Learn a language for FREE-www.Duolingo.com
- Time on task for students-http://www.online-stopwatch.com/
- Differentiation activities for students based on their Lexile-www.Mobymax.com
- WIDA-http://www.wida.us/
- Everything ESL http://www.everythingESL.net
- ELL Tool Box Suggestion Site http://www.wallwisher.com/wall/elltoolbox
- Hope4Education http://www.hope4education.com
- Learning the Language http://blogs.edweek.org/edweek/learning-the-language/
- FLENJ (Foreign Language Educators of NJ) 'E-Verse' wiki: http://www.flenj.org/Publications/?page=135
- OELA http://www.ed.gov/offices/OBEMLA
- New Jersey Department of Education-Bilingual Education information http://www.state.nj.us/education/bilingual/

Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combine them with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/
- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. <u>http://www.edutopia.org/</u>
- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embed media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, from early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/