ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

MATHEMATICS

Math 7

Board of Education

Mr. Vito Gallucio, President Mr. Christopher Emigholz, Vice President Ms. Jane Luciano Ms. Lisa Temple Mr. Richard Young Mr. Scott Veisz Ms. Maxine Fox Ms. Tanya Lehmann Mr. Jai Gulati Mr. Brian Betze, Superintendent Dr. Kimberly Tew, Assistant Superintendent

Curriculum Writing Committee

Daniel Hughes Claire Johnson

Supervisor Mrs. Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE:

Course Philosophy

The content of a mathematics course is brought to life when the student is involved in investigating real-world applications using inductive reasoning, cooperative learning, and critical thinking skills. To be able to communicate effectively in mathematics, a student needs to have a conceptual understanding of the mathematical topics. Use of technology and the use of real-world data will expand the students' mathematics experience so that they are able to solve real problems, reason effectively, make logical connections, and think mathematically.

Course Description

Math Seven is a 7th Grade Mathematics course that is aligned to the Common Core Standards. Students will be using problem solving and critical thinking skills to develop a foundation of algebraic concepts. The course content will include, but is not limited to:

- Ratios, Rates, & Proportions
- Percentages
- Integers
- Rational Numbers
- Expressions
- Equations
- Inequalities
- Geometry
- Data
- Probability & Statistics

Core and Supplemental Instructional Materials

Core Materials	Supplemental Materials
 Course 2 Textbook (EdGems) Course 2 Workbook (EdGems) Google Classroom Chromebooks Mathematics Notebook 	 EdGems Online Resources IXL Account Resources Anchor Charts in Classroom Headphones and External Mouse Calculators Whiteboards, Markers, Erasers Correction Pen/Highlighters/Art Supplies

Social Emotional Learning Connections

Below are the five core SEL Competencies as outlined by CASEL, and examples of how each may be addressed within this curriculum

Self-awareness: The ability to accurately recognize one's emotions and thoughts and their influence on behavior. This includes accurately assessing one's strengths and limitations and possessing a well-grounded sense of confidence and optimism.

Example 1: Students use self-reflection strategies to understand their strengths and areas of need within each given standard. Example 2: Students take mathematical risks with confidence and optimism without fear of consequence.

Self-management: The ability to regulate one's emotions, thoughts, and behaviors effectively in different situations. This includes managing stress, controlling impulses, motivating oneself, and setting and working toward achieving personal and academic goals.

Example 1: Students individually or collaboratively analyze a situation and formulate a plan before executing a solution strategy. Example 2: Students are provided various strategies throughout their learning process such as step by step directions, guided notes, and graphic organizers to help them manage stress and achieve personal goals.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students share their personal perspectives within their family, school, and community groups to promote global awareness. Example 2: Students analyze and appreciate the mathematical approaches of their peers, especially ones different from their own.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1:Students work collaboratively to make connections and provide support within their peer groups. Example 2: Students listen carefully to peer thoughts and ask appropriate questions to further the conversation.

Responsible decision-making: The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of self and others.

Example 1: Students develop class norms and work collaboratively to hold each other accountable to class standards. Example 2: Students develop higher-order thinking skills, which enhances learning and achievement across content areas, when working collaboratively and being held accountable for supporting their ideas.

Integration of 21st Century Themes and Skills

I	NJSLS-CLKS 9.4: Life Literacies and Key Skills			
Creativity and Innovation • 9.4.8.Cl.1: Assess data gathered on varying perspectives on causes of climate change (e.g., cross cult gender-specific, generational), and determine how the data can best be used to design multiple potential • 9.4.8.Cl.2: Repurpose an existing resource in an innovative way. • 9.4.8.Cl.3: Examine challenges that may exist in the adoption of new ideas. Example: Students work collaboratively to design a solution to a problem with limited Can be found in unit: 1, 2, 6, 7, 8, 9				
Critical Thinking and Problem Solving	 9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective. 9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most plausible option. 9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a positive or negative outcome. Example: Students analyze and compare international savings accounts to choose the most effective interest-earning account over their lifetime. (Unit 2) Can be found in unit: All Units 			
Digital Citizenship	 9.4.8.DC.4: Explain how information shared digitally is public and can be searched, copied, and potentially seen by public audiences. 9.4.8.DC.5: Manage digital identity and practice positive online behavior to avoid inappropriate forms of self-disclosure. 9.4.8.DC.6: Analyze online information to distinguish whether it is helpful or harmful to reputation 9.4.8.DC.7: Collaborate within a digital community to create a digital artifact using strategies such as crowdsourcing or digital surveys. 9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate change (e.g., smart cities). Example: Students appropriately share ideas, strategies, and feedback in class message boards to support each other while they are not together. 			

	Can be found in unit: All units
Global and Cultural Awareness	 9.4.8.GCA.1: Model how to navigate cultural differences with sensitivity and respect. 9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.
	Example: Students work together to create class/group norms, which emphasize inclusion and acceptance.Can be found in unit: All units
Information and Media Literacy	 9.4.8.IML.3: Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping (e.g., 6.SP.B.4, 7.SP.B.8b). 9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations. 9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data. Example: Students create and implement a statistical question to collect data on a current world issue. They will analyze the data, form conclusions, and present their findings to the group. Can be found in unit: 9
Technology Literacy	 •9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based decision-making. •9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4, 6.1.8.EconET.1, 6.1.8.CivicsPR.4). •9.4.8.TL.3: Select appropriate tools to organize and present information digitally. Example: Students collect and analyze data to create a visual presentation for their peers involving a current world issue. Can be found in unit: 9

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist . . . using technologies that haven't been invented . . . in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Personal Financial Literacy Standards 9.1					
9.1.8.CDM.1: Compare and contrast the use of credit cards and debit cards for specific purchases and the advantages and disadvantages of using each.	Students learn the difference between credit vs. debit and the accompanying interest.				
9.1.8.CDM.2: Demonstrate an understanding of the terminology associated with different types of credit (e.g., credit cards, installment loans, mortgages, lines of credit) and compare and calculate the interest rates associated with each.	Students learn to calculate and compare interest amounts in various types of situations.				
9.1.8.CDM.3: Compare and contrast loan management strategies, including interest charges and total principal repayment costs.	Students compare loans and savings accounts to choose the most profitable scenarios.				
9.1.8.CP.1: Compare prices for the same goods or services.	Students compare prices to determine a better buy with unit rates.				
• 9.1.8.PB.1: Predict future expenses or opportunities that should be included in the budget planning process.	Students budget for a cross-country road trip.				
• 9.1.8.PB.2: Explain how different circumstances can affect one's personal budget.	Students learn how personal experiences could cause their personal budget to be different from their peers.				
• 9.1.8.PB.3: Explain how to create a budget that aligns with financial goals.	Students learn how to save towards a goal.				
• 9.1.8.PB.4: Construct a simple personal savings and spending plan based on various sources of income and different stages of life (e.g. teenager, young adult, family).	Students learn how to balance credits and expenses to meet a monthly goal.				
• 9.1.8.PB.6: Construct a budget to save for short-term, long term, and charitable goals.	Students learn the difference between saving for a short-term or long-term goal.				
• 9.1.8.RM.4: Explain the purpose of insurance products and the reasons for property product and liability insurance protection.	Students learn why insurance is necessary and how it is calculated into a monthly budget.				

Career Awareness and Planning Standards 9.2				
• 9.2.8.CAP.2: Develop a plan that includes information about career areas of interest.	Students learn about careers with a central focus on mathematics.			
• 9.2.8.CAP.3: Explain how career choices, educational choices, skills, economic conditions, and personal behavior affect income.	Students learn about the financial benefits of being proficient in mathematics.			
• 9.2.8.CAP.12: Assess personal strengths, talents, values, and interests to appropriate jobs and careers to maximize career potential.	Students learn how mathematics is connected to an occupational field they are interested in.			
• 9.2.8.CAP.20: Identify the items to consider when estimating the cost of funding a business. Students research and create a business plan while analyzing costs vs. income.				

Robbinsville Public Schools Scope, Sequence and, Assessment

Course Name MATH 7

TT .		Recommended		As	sessments	
Unit Title	Unit Understandings and Goals	Duration	Formative	Summative	Common Benchmark	Alternative Assessment
Unit #1: Ratios and Proportional Reasoning	Students will extend their understanding of ratios and develop understanding of proportionality to solve real-world and mathematical problems. They will engage in instructional tasks that provide them with the opportunities to recognize and represent proportional relationships between quantities. Proportional relationships express how quantities change in their relationship to each other.	25 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #2: Percents	Students will extend their knowledge of percentages and learn the different types of percent problems and how to represent the percent equations algebraically. They will also learn how to solve real-world application problems involving percents.	25 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #3: Integers	Students will extend their knowledge of integers to understand that operations of whole numbers are extended to integers by requiring that operations continue to satisfy properties of operation.	25 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #4 Rational Numbers	Students will build on their knowledge of whole numbers, integers, fractions, and decimals. They will represent all rational numbers as the quotient of two whole numbers. They will solve real-world and mathematical problems involving the four operations with rational numbers.	15 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation

Unit #5 Expressions	Algebraic expressions are used to model real-life problems and represent quantitative relationships, so that the numbers and symbols can be manipulated to make sense of the relationship.	17 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #6 Equations	Algebraic Equations are used to model real-life problems and represent quantitative relationships, so that the numbers and symbols can be manipulated to reach a solution.	24 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #7 Inequalities	Students will build on and apply their knowledge of equations to writing and solving inequalities. Students will demonstrate that the solution to a one-variable inequality is more than just one number and needs to be represented on a number line.	15 Days	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #8 Geometry (Unit spread throughout the year)	Throughout the year, students will be introduced to various aspects of Geometry. Students will calculate perimeter, area, volume, and surface area for basic geometric shapes. Students will work with circles (area and circumference).	Infused into units throughout the year.	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation
Unit #9 Analyzing Data, Probability & Statistics	Throughout the year, students will provide analysis of graphs and tables. They will make predictions based on data and forecast how graphs will behave in the future. Additionally, students will calculate probabilities of both independent and dependent events to calculate the odds of real world events.	Infused into units throughout the year.	Quizzes Check - Ins Class discussions Observations Review Games Short Responses Group Work Exit Slips	Unit Test Unit Project	Cummulative Exam Final Exam	3 Act Tasks Anticipatory Set/Warm Up HW Quiz Open Ended Questions Partner Quiz Student Presentation

Unit #1: Ratios and Proportional Reasoning

Enduring Understandings: Students will extend their understanding of ratios and develop understanding of proportionality to solve real-world and mathematical problems. They will engage in instructional tasks that provide them with the opportunities to recognize and represent proportional relationships between quantities. Proportional relationships express how quantities change in their relationship to each other.	 Essential Questions: What is the relationship between a ratio and a proportion? How do ratios relate to fraction and division? How does a proportion compare two equivalent ratios? In what ways can students apply proportional reasoning to solve real-world problems? 			
quantities change in their relationship to each other. Interdisciplinary Connections SCI (MS-ESS1-3): Recognize and represent proportional relationships between quantities. Example: Students use proportional reasoning to find a scale factor between two quantities. ELA (CCSS.ELA-LITERACY.RST.6-8.7) Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Example: Students will represent the constant of proportionality on a graph, in a table, and in an equation.				
Career/Real World Connections				

Example: Understanding of ratios and proportional reasoning are crucial in the real world. Any time you are comparing a part-whole relationship or trying to scale a quantity proportionally, you are using skills from this unit. A discipline that would frequently use ratios and proportional reasoning is a chef scaling quantities of a recipe to fit the needs of his restaurant.

	Topical Questions with cific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.RP.1 7.RP.2	What is a ratio and how can it be	Write Ratios in simplest form	Powerpoint Presentation	Sample problems from T.E Prentice Hall	Checkpoint exercises
7.RP.2a 7.RP.2	expressed?	Find Unit rates and use them to compare	Lesson Tutorial Videos	Course 2 Mathematics Common Core	Extra examples in packet/worksheets
7.RP.2c	When expressing	quantities	Hands-On Lab: Identifying and		puoliet, worldholeeto
7.G.1 8.EE.B.5	equivalent ratios, what pattern do you		Writing Proportions	www.brainingcamp.co m (Rates)	Homework quick check
	notice?	Proportion is an equation stating that two ratios are equivalent.	Technology Lab: Solving Proportions		Mid-Chapter Quizzes
	How can calculating a unit rate help us		Hands-On Lab: Similar Figures and Proportions	Dunk Tank! pbslearningmedia.org	Tests/Standard Tests
	make efficient	Determine if ratios are proportional from a	1		
	decisions when shopping?	table, equation, or graph.	Hands-On Lab: Using Similar Figures	www.brainpop.org	Chapter Reviews
			Hands-On Lab: Making Scale	Ratio Rumble	Extension Projects
	How can we identify	Identify Proportional relationships by graphing			
	a relationship as	in the coordinate plane.	Drawings and Models		
	proportional?		Hands-On Lab: Use Scale Drawings	Building Map, Graph Paper and Measuring Tape (Scale Drawings)	

In what ways can you	Identify constant rates of change using tables,		
represent and analyze	graphs, and verbal descriptions.	<u>www.mathplayground.c</u>	
the relationship		om Dirt Bike	
between independent		Proportions	
and dependent	Use proportions to solve real world problems	-	
variables?		IXL - solving	
		proportions	
How can	Find missing side lengths of similar figures		
proportional	using proportions.		
relationships be used			
to scale quantities?			
-	Calculate the scale factor of similar figures.		
If figures are similar,			
what properties do			
you notice about			
them?			

Unit #2 : Percentages

Enduring Understandings: Students will extend their knowledge of percentages and learn the different types of percent problems and how to represent the percent equations algebraically. They will also learn how to solve real-world application problems involving percentages.	 Essential Questions What method can be used to convert between fractions, decimals, and percents? How can proportions be used to solve percent problems? What is percent of change and how is it calculated? What are real-world applications that involve percent? How can percent be used to calculate interest or tax?
Interdisciplinar	
SCI (MS-PS2-2): Solve multi-step real-life and mathematical problems posed with positive	
operations to calculate with numbers in any form; convert between forms as appropriate; and	nd assess the reasonableness of answers using mental computation and estimation
strategies.	

Example: Students will solve percent problems using proportions or equations in which different forms of a number are used in order to compute accurately.

TECH 8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.

Example: Students who solve percent problems with equations must convert percentages into decimals before calculating. Students who solve percent problems by using proportions must convert decimals to percentages after calculating.

Career/Real World Connections

Example: Percentages are a key part of everyday life with a specifically strong connection to finance. We use percentages to calculate tax, interest, commission, tips, and much more. Among the disciplines that frequently use percentages include Loan Officers, Financial Analysts, Data Engineers, etc.

	Topical Questions with ecific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.EE.B.3	How can a ratio be	Read, write, and convert between decimals,	Interactive 3 - column table. Students	store ads/magazines	
7.EE.2	expressed as a	percents, and fractions	work in groups to create and fill in	menus (gratuity)	Checkpoint exercises
7.NS.1d	percentage?		different representations of the same		
7.RP.3			number throughout the table.	www.mathplayground.c	Extra examples in
	What are some	Estimate percentages.		om percent shopping	packet/worksheets
	benchmark		Students estimate real world quantities	& math at the mall	
	percentages that we		(stock market gains and losses, calorie		Homework quick
	can quickly use to	Distributive Property and Multiplication	intake, etc) by using compatible		check
	estimate using	Property of Equality	numbers and percentages.	Visnos.com/demos	
	fractions or decimals?			Percent Fraction	Mid-Chapter Quizzes
			Students translate words to	Decimal Table	
	How can a	Solve equations with percentages	mathematical symbols to set up		Tests/Standard Tests
	percentage problem		equations involving percentages.		
	be expressed as a			www.shepardsoftware.c	Chapter Reviews
	proportion or a	Calculate Percent of Change	Mail Man Story to represent the	om Matching Game	
	multiplication		distributive property (deliver to each	percents fractions and	Extension Projects
	equation?		house)	decimals	
		Percent applications (tax, discount, etc)			
			Percent Shopping		

	lo we use			Quia - Simple Interest	
percentag	ges to quantities in	Calculate Simple Interest	IXL - Percent of Change Problems	Rates Battleship	
the real v			Math Playground - Math at the Mall	Sample problems from	
			Tax Tip Discount	T.E Prentice Hall	
	es percent of			Course 2 Mathematics	
Ū.	iffer from			Common Core	
percent o	of a whole?				
How can	percentages				
be effect	ive in				
-	ng different				
size quan	ntities?				

Unit # 3: Integers

 Enduring Understandings:. Students will extend their knowledge of integers to understand that operations of whole numbers are expanded to integers by requiring that operations continue to satisfy properties of operation. Students will build on their knowledge of whole numbers, integers, fractions, and decimals. They will represent all rational numbers as the quotient of two whole numbers. They will solve real-world and mathematical problems involving the four operations with rational numbers. 				
<i>Example:</i> Students must follow the order of TECH • 8.1.8.AP.4: Decompose problem	Interdisciplinary 3 Follow precisely a multistep procedure when carr of operations in a specific order to accurately simplify as and subproblems into parts to facilitate the design operations in error analysis. When students have to	rying out experiments, taking measuremen fy a mathematical problem. n, implementation, and review of program	ns.	
followed the order of operations correctly Example: Integers are found in the real w		1 Connections y, the introduction of negative numbers sh		
Guiding / Topical Questions with Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies

7.NS.1	How can a number	Compare and Order Integers on a number line	Power Presentation	Index Cards for	Checkpoint exercises
7.NS.1.b	line be a useful visual			Human Number Line	-
7.NS.1.c	to compare integers?		Lesson Tutorial Videos		Extra examples in
7.NS.2		Determine and define the absolute value of a		Playing Cards for	book and worksheets
7.NS.2.a	When can the	number	Integer War game	Integer War or Integer	
7.NS.2.b	absolute value of a			Blackjack	Homework quick
7.NS.2.c	number be a more		Integer Black Jack		check
7.NS.3	appropriate			Integer Counting	
7.NS.3 7.NS.3	representation of the number?	Add and Subtract Integers	Whiteboard activity	Chips	Mid-Chapter Quizzes
			Hands on Lab: Model Integer	www.Khanacademy.co	Tests/Standard Tests
	Why are "opposites"		Addition	<u>m</u> (all operations of	
	or "zero-pairs"	Multiply and Divide Integers		integers)	Chapter Reviews
	helpful when adding		Extension: Additive Inverse and		-
	integers?		Absolute Value	www.math-play.com	Extension Projects
				integer games	
	What pattern do you	Use inverse operations to solve equations with	Hands On Lab: Model Integer		
	see when you	integers and rational numbers	Subtraction	IXL - Integer Games	
	multiply even or odd				
	amounts of negative		Hands On Lab: Model Integer		
	numbers?		Multiplication and Division		
	How can integer		Hands On Lab: Model Integer		
	operations be infused		Equations		
	into our previous		Equations		
	knowledge of		Technology Lab: Explore Order of		
	equations?		Operations		
	equations:		Operations		
			Extension: Additive Inverse and		
			Absolute Value		

Unit # 4: Applying Rational Numbers

Enduring Understandings:	Essential Questions:
Students will build on their knowledge of whole numbers, integers, fractions, and	• What is a rational number?
decimals. They will represent all rational numbers as the quotient of two whole numbers.	• Why can't the denominator of a rational number be zero?
They will solve real-world and mathematical problems involving the four operations with	 How do you compare and order rational numbers?
rational numbers.	 What is different about adding/subtracting rational numbers and
	multiplying/dividing them?
	 How can you determine if two rational numbers are equal?

Interdisciplinary Connections

SCI (MS-PS2-2) Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

Example: Students will solve problems with rational numbers by applying the order of operations and also converting between different forms of a number.

TECH 8.1.8.DA.3: Identify the appropriate tool to access data based on its file format.

Example: Students will determine the most appropriate method to solve a problem based on the number forms presented in the problem (i.e. a fraction that is a repeating decimal cannot be converted into a decimal).

Career/Real World Connections

Example: Diving deeper through Integers, Rational Number Application can be found anywhere that we use real numbers. Our focus becomes on numbers that are not whole. The financial world is a perfect example of applying operations on rational numbers. We use rational numbers to represent and perform calculations on costs and rates that are not whole.

	Topical Questions with ecific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.NS.1 7.NS.2	How can the number sets be visually	Use Number Sets to classify Numbers	Bullseye Diagram Activity for number sets. Students use post-it notes to put	Bullseye chart with Number Set Labels	• Checkpoint exercises
7.EE.4 7.NS.1	represented containing each		numbers in the right area.	Trumber Set Labers	• Extra examples in packet/worksheets
7.NS.2	other?	Locate Rational Numbers on a number line			
7.EE.4 8.NS.A.1	How many numbers		IXL - Identify Rational Numbers	IXL website - classify and identify rational	• Homework quick check
8.NS.A.2	are between 0 and 1	Approximate Irrational Numbers (Square		numbers	
	on a number line?	Roots)	Students balance a checkbook for adding and subtracting decimals.		• Mid-Chapter Quizzes
	What are the properties of an irrational number	Add and Subtract Rational Numbers	Students will scale recipes up or down	Fake bank statements with purchases and	• Tests/Standard Tests
	and how can we estimate them?		by multiplying or dividing the amount for each ingredient (Fractions)	deposits.	• Chapter Reviews
	What strategies can we use to calculate	Multiply and Divide Rational Numbers		Recipes pulled from cookbooks (or have	• Extension Projects

sum, d	lifference,		Sweeney Math Blog Rainbow Rule for	students bring their	
produc	ct, and		complex Fractions	own)	
quotier	nt with rational	Simplify Complex Fractions			
numbe	ers?			Sweeney Math Blog	
			Unit Conversions: Propose the idea of	(Rainbow Rule	
How c	can reciprocals		your long lost cousin coming over to	Fractions)	
be used	d to simplify	Convert Units of Measurement	the US from another country with		
comple	ex fractions?		different units of measure. We need to	Quia website unit	
			help him out by converting his strange	conversion game	
How c	can we use		units of measure.		
known	n unit rates to	Solving equations with rational numbers using			
conver	rt units of	inverse operations.			
measur	re?				
How ca	an the common				
denomi	inator be used				
	lify equations				
with fra	actions?				

Unit #5: Expressions

Enduring Understandings:	Essential Questions:
Algebraic expressions are used to model real-life problems and represent quantitative	• Within a single problem, does the value of a variable change?
relationships, so that the numbers and symbols can be manipulated to make sense of the	 What are synonyms for mathematical operations?
relationship.	 How do you evaluate an algebraic expression for a given value?
	 Why is combining terms helpful when working with expressions?
	• Why is it important to distinguish "like terms"?

Interdisciplinary Connections

TECH 8.1.8.AP.1: Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode. *Example:* Students create algebraic expressions to represent unknown values and relationships between quantities.

SCI MS-PS2-1: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

Example: Students must define a variable and set up an equation when solving word problems.

Career/Real World Connections

Example: Algebraic expressions can be found in almost every profession. While we may not always write them down, many occupations require evaluation of a simple expression. An example would be a carpenter providing an estimate for a new bathroom. The calculations would include an expression for the amount of materials and labor needed for the total cost of the job.

0	Topical Questions with cific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.EE.A.1 7.EE.A.2 7.EE.B.3 7.EE.B.4	How can we use the properties to mentally simplify expression?	Identify Properties	Flashard Activity - Students have multiple cards and hold up the card that corresponds with the problem shown on the projector.	Property Flashcards Algebraic Expressions	Flashcard observations Class Discussion
	What key words translate to mathematical symbols or	Translating between verbal phrases and algebraic expressions Evaluate Algebraic Expressions (Substitution)	Table of operational words where students create examples for each word	Millionaire www.math-play.com www.algebra4children.c	Matching activity
	operations? What connection can be found between input/output tables	Simplify Algebraic Expressions (Combine Like Terms)	Substitution scavenger hunt	om Math Basketball with algebraic expressions	Collect final results
	and evaluating algebraic expressions?	Generate equivalent expressions	Matching Game (Memory)	Scavenger hunt cards Memory Cards	Game Winners

What is the difference between variables and constants? Why can't they be combined?	Illuminations Activity with algebraic expressions	Sample problems from T.E Prentice Hall Course 2 Mathematics Common Core	Exit Ticket
Is there another (or multiple) way(s) to represent a given algebraic expression?		The variable machine - illuminations	

Unit #6: Equations

Enduring Understandings:	Essential Questions:				
Algebraic Equations are used to model real-life problems and represent quantitative • Within a single problem, does the value of a variable change?					
relationships, so that the numbers and symbols can be manipulated to reach a solution. • What are synonyms for mathematical operations?					
	• What are inverse operations?				
	• How are inverse operations used to solve equations?				
 How do you know if your solution is reasonable? 					
Interdisciplinary Connections					
TECH 8.1.8.AP.1: Design and illustrate algorithms that solve complex problems using flow	vcharts and/or pseudocode.				
Example: Students create algebraic expressions to represent unknown values and relationship	ps between quantities.				
SCI MS-PS2-1: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning					
about the quantities.					
Example: Students must define a variable and set up an equation when solving word problems.					
Career/Real World Connections					

Example: Similar to expressions, algebraic equations are found all over the real world. Many professions model problems and utilize equations to come up with exact solutions. Such fields include Predictive Modeling, Market Research Analyst, Computer Engineers, Economists, Electricians, and Home Inspectors.

Guiding / Topical Questions with Specific Standards		Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.EE.A1 7.EE.A2	What are inverse operations?	Solve One Step Equations	See Saw Story (Balance) Gallery Walk (Finding errors)	Chart Paper & Examples	Gallery Walk guided notes and results
7.EE.B.3 7.EE.B.4 8.EE.C.7	What does a solution to an equation look like?			Problem Cards	Game Results
0.EE.O.7	How do I solve two-step equations? What order do you complete the steps for	Solve Two Step Equations	Game of Risk: Students risk an amount of points on each problem and compete against each other.	Whiteboards &	Communicators
	solving the equation? What are different methods	Salar Barrison and Distribution Data		Markers	Students assess each other
	I can use to solve this problem? Does it matter what step I do first?	Solve Equations w/ Distributive Prop	Mail-Man Story (Deliver to each house)	Dating Cards	Group discussion and assessments
	How do I solve multi-step equations?	Solve Multi Step Equations	Speed Dating - Exchange digits and solve each other's equation	Knovel Interactive equations app	
	How do you move variables from one side of an equation to the other	Solve Equations with variables on both sides	solve each other's equation	BrainPop Distributive Property Activity	

side? Are there different	Pass the problem Groups of four	https://phet.colorado.	
ways to solve this problem?	take turns solving equations	edu/en/simulation/ba	
		lancing-chemical-equat	
		ions Students explore	
		balancing equations	
		through chemistry	

Unit #7: Inequalities

Enduring Understandings:	Essential Questions:
Students will build on and apply their knowledge of equations to writing and solving inequalities. Students will demonstrate that the solution to a one-variable inequality is more than just one number and needs to be represented on a number line.	 What are the symbols used for inequalities and what do they represent? How do you know if a value is part of the solution set? How do inequalities differ from equations? When does the inequality sign change and why? When can inequalities be useful in a real world situation?

Interdisciplinary Connections

ELA CCSS.ELA-Literacy.RI.7.7 Compare and contrast a text to an audio, video, or multimedia version of the text, analyzing each medium's portrayal of the subject *Example*: Students will write and solve inequalities resulting from content presented in various media and formats.

Career/Real World Connections

Example: Inequalities help us compare quantities that might not be equal. You might see a sign at the amusement park that reads "You must be at least 54 inches tall to ride". A few professions that make use of inequalities are Statisticians, Cashiers, Financial Advisors, Nutritionists, etc.

	Topical Questions with ecific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.EE.A.1	What is an inequality?	Write and graph inequalities	Discuss real world scenarios where	www.mangahigh.com	Students create their
7.EE.A.2	How many solutions		problems can have multiple	Graphing Inequalities	own real world
7.EE.B.3	does an inequality have?		solutions "You need at least \$40 to	game	inequalities
7.EE.B.4	How do you graph the		buy something" How could we		
	solution? When do you		represent that algebraically?	Genius Boxing	
	use closed circles?			www.mrnussbaum.co	
	Open circles?	Solve inequalities by adding or subtracting		<u>m</u> Solving Inequalities	
			Recall steps for solving equations and		Communicators
	How do I get a variable by		apply to this concept	Sample problems from	
	itself when there is an			T.E Prentice Hall	
	inequality symbols? What	Solve inequalities by multiplying or dividing		Course 2 Mathematics	
	are the similarities and differences between		Speed dating, scavenger hunt, gallery	Common Core	Activity observations and results
			walk are all good options	Whiteboards and	and results
	solving equations and			Markers (sample	
	inequalities?	Solve multi-step inequalities		problems Course 2	
	Why do you need to flip	Solve multi-step mequanties		Mathematics T.E.)	
	the inequality symbol			Mathematics 1.12.)	
	when multiplying or			Scavenger Hunt Index	
	dividing by a negative?			Cards around the	
	currening by a negative:			room	
	What order should we			100111	
	solve multi-step				
	inequalities?				

Unit #8: Geometry

Enduring Understandings: Throughout the year, students will be introduced to various aspects of Geometry. Students will calculate perimeter, area, volume, and surface area for basic geometric shapes. Students will work with circles (area and circumference).	 Essential Questions: : To what measure do the three angles of a triangle always sum to? What are complementary/supplementary angles? How can we use knowledge of rectangular area to find the area of a parallelogram? What is the formula for the area of a triangle? Explain the meaning of Pi with respect to the circumference of a circle. How is a net constructed and what does it represent? How can the volume of three-dimensional figures be determined? How can the surface area of three-dimensional figures be determined? How do two-dimensional and three-dimensional figures differ? 			
	Ŭ			
Interdisciplinary Connections				

Interdisciplinary Connections

TECH 8.1.8.AP.1: Design and illustrate algorithms that solve complex problems using flowcharts and/or pseudocode.

Example: Students will construct geometric figures such as polygons given specific parameters (i.e. an obtuse triangle, a square pyramid, a polygon with fifteen sides, etc.)

Career/Real World Connections

Example: Geometry is one of the most useful fields of mathematics. It can be found in the construction of every building and bridge in the world. Professions that specialize in geometry include Architects, Contractors, Animator, Video Game Developer, Interior Designer, etc.

	Topical Questions with ecific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.G.A.1	What is a	Angle Relationships (Vertical, Complimentary,	Student exploration to find that	www.geogebra.com	Mathcing game
7.G.A.2	complementary	Supplementary, Adjacent)	vertical angles will always be		
7.G.A.3	angle?		congruent		
7.G.B.4	Supplementary				
7.G.B.5	angle?	Find the area and circumference of circles		String and Soup Can	Group Results
7.G.B.6	Vertical angle?		Student exploration to connect Pi to	www.mathgoodies.co	
8.G.C.9	Adjacent angle?		its meaning the number of times	<u>m</u> Pi day activities	
	How can I find		the diameter fits around the circle.		
	missing angles?				
		Construct nets and cross sections for 3D		Boxes and other	Partners Construction
	What is	figures		cardboard 3D figures	of Nets and cross
	perimeter/circumferenc		Use boxes to have students take apart	_	sections
	e and how do you find		and construct nets.		
	it?	Find the volume and surface area of 3D figures	"slice" open 3D objects to explore		
	What formulas do you	involving (prisms, pyramids, and cylinders)	cross sections	https://illuminations.n	
	have to know in order			ctm.org/uploadedFiles	
	to find area of 2			/Content/Lessons/Re	Popcorn guesses and
	dimensional figures?			sources/6-8/Popcorn-	explanations
	Ŭ			AS-Cylinders.pdf	Calculations after

What is a net? How do	Popcorn activity to explore volumes of different shaped figures. Try to	Illuminations Popcorn activity	
you use a net to help you find surface area?	derive formulas	Domaoun Pass	
How do you find the		Popcorn Bags Construction Ppaer	
volume of 3D figures		Construction 1 pact	

Unit #9: Data Analysis, Probability & Statistics

Enduring Understandings: Throughout the year, students will provide analysis of graphs and tables. They will make predictions based on data and forecast how graphs will behave in the future. Additionally, students will calculate probabilities of both independent and dependent events to calculate the odds of real world events.	 Essential Questions: What is a random sample? What are the characteristics of a good survey question? How can you describe a set of data using the measures of center? How can we make inferences about population from data? Why do we use proportions to estimate population size? What is probability? What is the complement of an event? What is the difference between experimental and theoretical probability? How is the counting principle used? What is the difference between independent and dependent events? 		
Interdisciplinary Connections			

TECH: 8.1.8.AP.3: Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

Example: Students will use computers to generate a random sampling for experimental probability.

Career/Real World Connections

Example: The field of Statistics and Data Analysis is invaluable to the world. Almost every business in the world has a team dedicated to research and data analysis. Companies use data to drive planning and future decisions. Fields that specialize in data analysis and statistics are Marketing, Data Engineers, Software Design, Risk Management, Insurance Agencies, Store Managers, etc.

Guiding	g / Topical Questions with Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
7.SP.A.1 7.SP.A.2 7.SP.B.3 7.SP.B.4 7.SP.B.5 7.SP.B.6	What are outcomes, events, and complements of an event in probability? How do you find probability? What is a sample space?	Find the probability and complement of an event occuring	Real World Examples (Die, Cards, Flipping a coin, etc)	Die, Cards, Coins, Etc Bag (non-transparent) and items	Students should be able to predict what SHOULD happen
7.SP.B.7 7.SP.B.8	What is the counting principle? What is a compound event?	Create and use a sample space and the counting principle	Introduce tree diagrams, charts, and tables to help with the counting principle	Probability Fair http://mrnussbaum.c om/probfair/	Students list all possible outcomes of an event.
	When are two events independent or dependent? How do you find the probability of dependent events?	Find the probability of independent and dependent events	"What's in the bag?" Activity. Pull objects from the bag and have students create probabilities of what will be pulled next. Use examples with and without replacement.	Probability Spinner (twister game) or use Illuminations Adjustable spinner https://illuminations.n ctm.org/adjustablespi nner/	Calculations and predictions

General Differentiated Instruction Strategies			
 Leveled texts Chunking texts Choice board Socratic Seminar Tiered Instruction Small group instruction Guided Reading Sentence starters/frames Writing scaffolds Tangible items/pictures Adjust length of assignment 	 Repeat, reword directions Brain breaks and movement breaks Brief and concrete directions Checklists for tasks Graphic organizers Assistive technology (spell check, voice to type) Study guides Tiered learning stations Tiered questioning Data-driven student partnerships Extra time 		

Possible Additional Strategies for Special Education Students, 504 Students, At-Risk Students, and English Language Learners (ELLs)

Time/General	Processing	Comprehension	Recall
 Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline 	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklist Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers
Assistive Technology	Assessments and Grading	Behavior/Attention	Organization
 Computer/whiteboard Tape recorder Spell-checker Audio-taped books 	 Extended time Study guides Shortened tests Read directions aloud 	 Consistent daily structured routine Simple and clear classroom rules Frequent feedback 	 Individual daily planner Display a written agenda Note-taking assistance Color code materials

Enrichment

The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

- Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.
- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.
- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options

- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interest in greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and making connections.
- The inclusion of additional subject areas and/or activities (cross-curricular).
- Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources

- Learning style quiz for students- http://www.educationplanner.org/students/self-assessments/learning-styles-quiz.shtml
- "Word clouds" from text that you provide-http://www.wordle.net/
- Bilingual website for students, parents and educators: http://www.colorincolorado.org/
- Learn a language for FREE-www.Duolingo.com
- Time on task for students-http://www.online-stopwatch.com/
- Differentiation activities for students based on their Lexile-www.Mobymax.com
- WIDA-http://www.wida.us/
- Everything ESL http://www.everythingESL.net
- ELL Tool Box Suggestion Site Http://www.wallwisher.com/wall/ell toolbox
- Hope4Education http://www.hope4education.com
- Learning the Language http://blogs.edweek.org/edweek/learning-the-language/
- FLENJ (Foreign Language Educators of NJ) 'E-Verse' wiki: http://www.flenj.org/Publications/?page=135
- OELA http://www.ed.gov/offices/OBEMLA
- New Jersey Department of Education-Bilingual Education information http://www.state.nj.us/education/bilingual/

Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combining with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/
- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. <u>http://www.edutopia.org/</u>
- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embedded media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/