WS 3.1 Protons, Neutrons, Electrons 1. Fill in the table below with the correct numbers (first one is done as an example) | symbol | name | atomic
number | mass
number | charge | # of particles in nucleus | | # of
neutrons | # of
electrons | |--|--|---|--|---|--|---|-----------------------|-------------------| | ²³ Na | sodium-23 | 11 | 23 | 0 | 23 | 11 | 12 | 11 | | ⁶⁰ Cu | | | | | | | | | | | gold - 198 | | | | : | | | | | ³⁹ K | | | | | | | | | | 41K | | | | ļ | | | | | | ³⁹ K
⁴¹ K
⁴¹ K
⁴¹ K ¹⁺ | | | | | | | | | | | | 12 | 25 | 0 | | | | | | · | | 36 | | | | | 42 | 36 | | ·· ··································· | | | | .1- | 35 | | - | 18 | | | | | | | | 7 | 7 | 10 | | | | | h | 1+ | 1 | | | | | | | | | | 238 | 92 | | 92 | | ¹ ⁴ C | | | | | | ļ | | | | How ma
All chroi
(p, n, or
otope of t | any n's are there any total particles mium particles mine?) The # ofhat element, and has a mass # of | (p, n & e's
ust have t
determ
the # of _ | s) are in a
he same r
ines what
deten | n 0-16 at
number o
element
mines the | tom? li
f (p, n or e?)
a particle is,
e particle's ov | n a F-19 ^{1.}

the # of _
rerall char | ion?
determ
ge. | | | | e has 13 p, 14 n, | | | | | | | rae ? | | | ent is it? | | , | - 111000 11 | | оо ре | introlo o criq | 90 | | | e has 35 p, 45 n, | and 36 e; | what is it | s mass # | ? What | t is the par | rticle's char | ge? | | | ent is it? | | | | | | | | | | cury-198 atom we | | | | | | | | | | thium-6 atoms fu
rium-234 atom al | | | | | | | | | | | | mountion, | ir would t | become a | · · · | | | 12. If a uranium-238 atom were split into two equal halves, it would make two ## **Average Atomic Mass Worksheet** Rubidium has two common isotopes, ⁸⁵Rb and ⁸⁷Rb. If the abundance of ⁸⁵Rb is 72.2% and the abundance of ⁸⁷Rb is 27.8%, what is the average atomic mass of rubidium? 2) Uranium has three common isotopes. If the abundance of ²³⁴U is 0.01%, the abundance of ²³⁵U is 0.71%, and the abundance of ²³⁸U is 99.28%, what is the average atomic mass of uranium? 3) Titanium has five common isotopes: ⁴⁶Ti (8.0%), ⁴⁷Ti (7.8%), ⁴⁸Ti (73.4%), ⁴⁹Ti (5.5%), ⁵⁰Ti (5.3%). What is the average atomic mass of titanium? 4) Explain why atoms have different isotopes. In other words, how is it that helium can exist in three different forms? ## **Atomic Structure Worksheet** Fill in the blanks for the elements in this chart. For the purposes of this chart, round all atomic masses to the nearest whole number. | Element | Number of
Protons | Number of
Neutrons | Number of
Electrons | Mass 井 | Atomic
Number | |------------|----------------------|-----------------------|------------------------|------------------|------------------| | lithium | | | | 7 | | | carbon | | 6 | | | | | chlorine | | | | 35 | | | silver | | | | 35
108
207 | | | lead | · | | | 207 | | | calcium | | 2 Ten | | | | | tantalum | | | | 181 | | | radium | , | | | 226 | | | samarium | | | | 150 | | | uranium | | | | 238 | | | americium | | | | 243 | | | lawrencium | | | | 243
202 | | | Date: | | | | | | | | |----------|---|---|---|---------------------------|-----------------------------|------------------------------|--| | О | /rite a che | emical equile of nit | uation that rogen (N ₂) | represents
reacts with | the followin
3 molecules | g word equati
of hydrogen | ion: (H ₂) to form 2 molecules of | | 9. D | ifferentia
- | te betwee | en protons a | ind electror | is in terms o | f their relative | e charges. | |
מ מו | ecide wh | ether eacl | h of the fall | OWing stan | | ally neutral. | | | ٠٠. ب | Colde Wil | | Element | Protons | Electrons | Neutral? | ٦ | | | | - | Gold | 79 | 76 | INCULTAL? | _ | | | | | Helium | 2 | 2 | | | | | | | Fluorine | 9 | 10 | | | | | | | 1 100 1010 | | 10 | <u></u> | | | 11. Cl | lassify the | e followii | ng as anions
b. | s, cations, c | or electricall | y neutral aton | ns.
d. Ba ²⁺ | | | | | | | | | | | 12. W | | | | | | | owing atoms or ions: | | a. | helium | with one | proton and | one electr | on | ·· <u>·</u> | | | b. | lithium | midh dha | | | | | | | | | with thre | ee protons a | and two ele | ctrons | | • | | c. | | | | | ctrons | | | | 13. C | fluorine
omplete t | e with nir
he follow | ne protons a | ınd ten elec | trons | | he compound formed from the | | 3. C | fluoring
omplete to
llowing i | e with nir
he follow
ons. | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 3. C | fluoring
omplete to
llowing is
Cation | e with nir
he follow
ons. Anion | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 3. C | fluoring
omplete to
illowing in
Cation
Mg ²⁺ | e with nir
he follow
ons. | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 3. C | fluoring
omplete to
llowing is
Cation | e with nir
he follow
ons. Anion | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 3. C | fluoring
omplete to
illowing in
Cation
Mg ²⁺ | he follow
ons. Anion O ² | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 3. C | fluoring
omplete t
llowing i
Cation
Mg ²⁺ | e with nir he follow ons. Anion O ² Cl | ne protons a | ınd ten elec | trons | formula for th | he compound formed from the | | 4: As | fluoring omplete to flowing is Cation Mg ²⁺ Al ³⁺ Mg ²⁺ NH ⁴⁺ s an envir | he followons. Anion O ² CI NO ₃ CO ₃ Conmental perform | Formula I chemist, y the approprimed on a sa | ou are testi | ng for the p | formula for the | loride ion in samples of stream | | 4. As wa | fluoring complete to flowing is Cation Mg ²⁺ Al ³⁺ Mg ²⁺ NH ⁴⁺ s an envirater. You he same to What is | e with nir he follow ons. Anion O ² CI NO ₃ CO ₃ ² conmental perform est perfor s a precip | Formula I chemist, y the approprimed on a saitate? | ou are testi | ng for the p a sample fr | formula for the | loride ion in samples of stream and observe a white precipitate- |