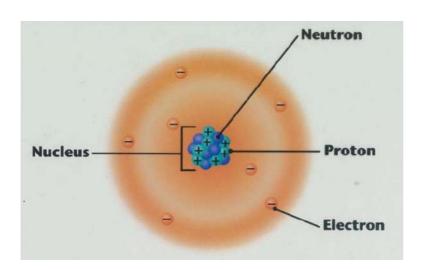
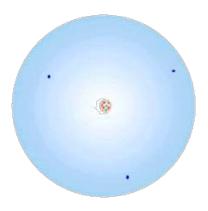

1909 Ernst Rutherford Gold Foil Experiment:

http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/ruther14.swf


Conclusions:

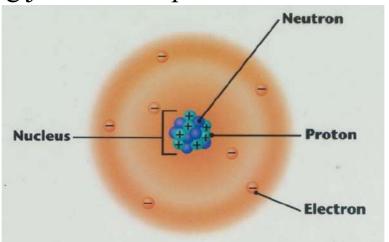
- atom is mostly empty space
- a few (very few) "+" α particles were deflected : atom must have a solid "+" center, the nucleus
- electrons on the outside account for the atoms' neutrality

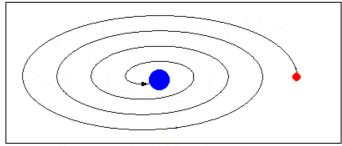
1911-Millikan oil drop experiment:


- measured charge and mass of an e⁻
- charge = $1.6 \times 10^{-19} \text{ c (coulomb)}$
- $m = 9.1 \times 10^{-28} g$

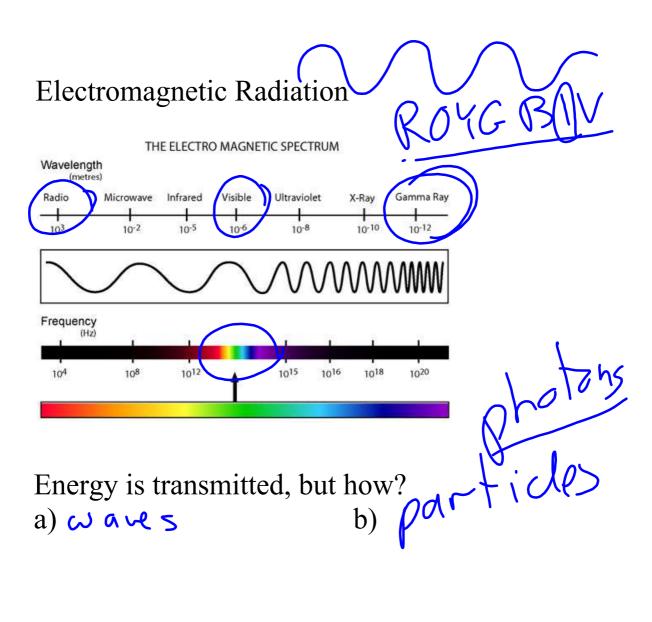
1932 - James Chadwick-discovered neutrons (n°)

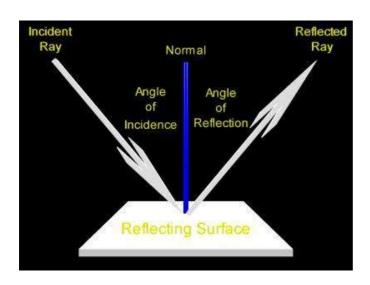
Particle	Relative Mass	Charge
Proton	1	+1
Neutron	1	0
Electron	1/1840	-1


Dual Nature of Light and Electrons

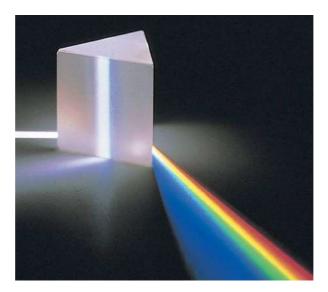

Rutherford Model of the atom

The problem with Rutherford's model: Why don't e⁻ fall towards the p⁺ nucleus?


Rutherford's explanation- the motion of e⁻ keep them circling just like the planets


BUT-Moving charges release energy in the form of electromagnetic radiation; therefore eventually atoms should collapse

The electron should fall on the nucleus.



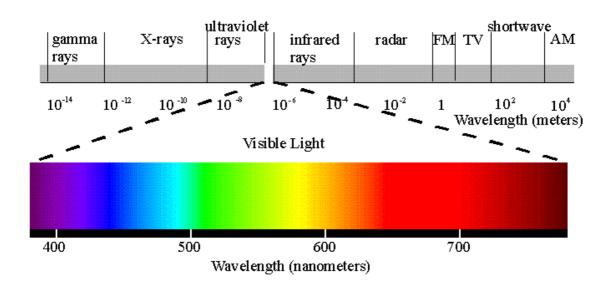
Light as waves: Reflection:

http://id.mind.net/~zona/mstm/physics/light/rayOptics/reflection/reflection1.html

Refraction:

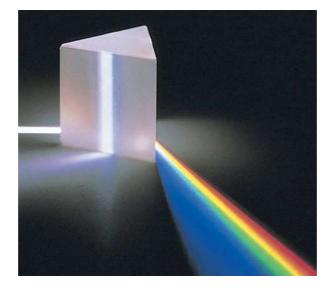
Light waves:

 Wavelength or λ: distance between 2 neighboring peaks or troughs

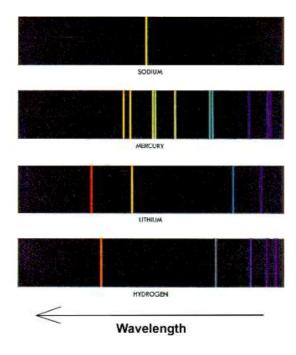

(meters/wave)

• Frequency or f: number of peaks that pass through a point each second

f = cycles (or waves)/sec (cps) or Hertz (Hz)http://id.mind.net/~zona/mstm/physics/waves/partsOfAWave/waveParts.htm


- v(wave velocity) is the distance a peak moves through a unit of time and = $f \times \lambda = \langle \rangle$ v = (meters/wave)x (waves/sec) = m/s
- for all light $v = 3 \times 10^8$ m/s = (speed of light)
- So if green light: $\lambda = 5 \times 10^{-7} \text{m}$ $f = ? cps or Hz (6 x 10^{14})$

Each color has is own f and λ ,



Rainbow spectrum can be obtained from white

light

But each individual element, when heated, will only give off light of certain λ and f called a bright line spectrum:

But light was also shown to behave like particles:

Photons:

- packets of energy (quanta)
- each packet contains different amounts of energy
- Max Planck developed a way to measure the energy of a photon:

E(energy) = f x h
h = Planck's constant =
$$6.6 \times 10^{-34} \text{J/Hz}$$

So how much energy is there is a photon of green light?

$$E = h x f; f = 6 x 10^{14} Hz$$

$$E = 6.6 \times 10^{-34} \text{J/Hz} \times 6 \times 10^{14} \text{Hz} = 3.96 \times 10^{-19} \text{ J}$$

Practice Problems:

1. Calculate the wavelength (in meters) of radiation with a frequency of 8.0×10^{14} hertz (Hz).

2.Calculate the energy of a photon of radiation with a frequency of 8.5 x 10^{14} hertz (Hz).

Homework:

- 1. Finish Practice Problems
- 2. Read textbook problems 323-327
- 3. Do Homework sheet