
#### ATOMIC STRUCTURE







### ...Always phrase your answers in the form of a question!





| Atomic      | Atomic |
|-------------|--------|
| Discoveries | Modele |

**Energy** Levels

The **Nucleus** 

Quantum **Theory** 

Models 

#### Atomic Discoveries for \$100

In his experiments with cathode ray tubes,
Thompson concluded that cathode rays were composed of these particles

What are..?

### Electrons



#### **Atomic Discoveries for \$200**

Milliken's experiment, which determined the charge on an electron, was named this

# Oil Drop Experiment



#### Atomic Discoveries for \$300

In Rutherford's gold foil experiment, a few alpha particles bounced off the gold due to their collision with this What is...?

# Gold atom's nucleus



#### Atomic Discoveries for \$400

Dalton's idea that all atoms of a given element are identical was defeated by the discovery of these

What are..?

## Isotopes



#### Atomic Discoveries for \$500

Milliken's ability to use his results to determine the charge on an electron depended on the results of this experiment What is..?

# Cathode Ray Tube (CRT) Experiment



#### Atomic Models for \$100

In the solar system model of the atom, protons are found in this location

### The nucleus



#### Atomic Models for \$200

In this atomic model, negatively charged electrons are embedded in a large, positively charged atom

# Thompson's Plum Pudding

# (Chocolate Chip Cookie) Model



#### Atomic Models for \$300

Bohr assigned electrons to these to explain why they didn't fall into the nucleus

What are...?

# Energy levels, OR orbits



#### Atomic Models for \$400

In the quantum mechanical model, electrons can be found in these regions around the nucleus

What are..?

### orbitals



#### Atomic Models for \$500

The quantum mechanical model of the atom uses this math principle to develop the idea of orbitals

## Probability



#### Energy Levels for \$100

This is the number of electrons that can be in the same orbital

### Two



# 

# DOUBLE

# Energy Levels for \$200 DAILY DOUBLE

Main energy levels are designated by this quantum number

# Principal quantum number,



#### Energy Levels for \$300

The second principle energy level contains these orbitals

What are..?

# S and p orbitals



#### Energy Levels for \$400

This series of numbers applies to the number of s, p, and d orbitals

## 1,3,5



#### Energy Levels for \$500

The energy of a set of orbitals decreases as its distance from the nucleus changes in this way

#### decreases



#### The Nucleus for \$100

This number describes the number of protons present in the nucleus of a given atom

## Atomic number



For an atom of the isotope

carbon-12, the 12 refers to the total number of these two particles

What are..?

## Neutrons and Protons



This number describes the total number of particles present in the nucleus of a given atom

## Mass Number



When writing the element symbol for Carbon, you should list this number as a subscript to the left of the symbol





The symbol below indicates that the atom has this number of neutrons

13 C





## Photons are packets of this type of energy

## Light (radiant energy)



This energy transition is caused when an electron absorbs a photon

## Ground state to excited state



A colored line can be seen when an atom of an element emits one of these

## photon



The different amounts of energy released from different excited to ground state energy transitions explains why each element has a unique one of these

What is a ...?

# Line spectrum



Light energy is available for atomic absorption in multiples of a number that has this name

## Planck's constant

