AT Biology Midterm Topics 2013-2014

- 1) Ch. 2 Inorganic Chemistry
 - a. Atomic structure
 - b. Isotopes
 - i. Isotope applications
 - c. Bonds
 - i. Ionic Bonds
 - ii. Covalent Bonds
 - 1. Polar covalent
 - 2. Non-polar covalent
 - iii. H Bonds
 - iv. Van der waals
- 2) Ch. 3 Water
 - a. Properties of water due to H bonds
 - i. Adhesion
 - ii. Cohesion
 - iii. High surface tension
 - iv. High specific heat
 - v. High heat of vaporization
 - 1. Evaporative cooling
 - vi. Ice floats
 - vii. Good solvent
 - b. pH
- 3) Ch. 4 Carbon
 - a. Tetravalent
 - b. Isomers (structure vs. function)
 - i. Structural
 - ii. Geometric
 - iii. Enantiomers
 - c. Functional groups
 - i. Hydroxyl
 - ii. Carboxyl
 - iii. Carbonyl
 - iv. Amino
 - v. Sulfhydryl
 - vi. Phosphate
 - vii. Methyl
- 4) Ch. 5 Biological Molecules
 - a. Monomer vs. Polymer
 - b. Dehydration synthesis vs. Hydrolysis
 - c. Macromolecules
 - i. Carbohydrates
 - 1. Mono-, di-, polysaccharides. Example of each
 - 2. Function of carbohydrates
 - a. Energy
 - b. Structural components
 - i. Cellulose

- ii. Chitin
- 3. Ratio between C, H and O
- ii. Lipids
 - 1. Function of lipids
 - a. Energy
 - b. Cell membrane component (phospholipid)
 - c. Some are steroid hormones
 - 2. Triacylglyceride
 - a. 1 glycerol + 3 fatty acids
 - 3. Saturated vs. Unsaturated fats
 - 4. Cholesterol
- iii. Proteins
 - 1. Functions of proteins
 - a. Enzymatic
 - b. Structural
 - c. Storage
 - d. Transport
 - e. Hormonal
 - f. Receptor
 - g. Contractile/Motor
 - h. Defensive (antibody)
 - 2. Structure of proteins
 - a. Monomer = amino acid (know the structure)
 - b. Polymer = polypeptide
 - c. Amino acid categories = nonpolar, polar, charged (acidic, or basic)
 - d. Four levels of protein structure
 - i. Primary sequence of amino acids
 - ii. Secondary interactions between backbone (H bonds)
 - 1. Alpha helix
 - 2. Beta pleated sheats
 - iii. Tertiary interactions between R groups
 - 1. H Bonds
 - 2. Disulfide bonds
 - 3. Hydrophobic interactions
 - 4. Ionic bond
 - iv. Quaternary interactions between multiple polypeptides
 - e. Denaturation
 - 3. Nucleic Acid
 - a. Function of nucleic acid carries genetic code
 - b. Monomer = nucleotide
 - c. DNA vs. RNA
- 5) Ch. 6 Cells
 - a. Microscopes
 - i. Light Microscope
 - ii. Transmission Electron Microscope (TEM) vs. Scanning electron microscope (SEM)
 - b. Prokaryotic cell vs. Eukaryotic cell
 - c. Cell membrane structure (Phospholipid bilayer, fluid mosaic model)

- d. Why do cells have to be small? SA/Vol ratio
- e. Animal vs. Plant cell
- f. Organelles and their function
 - i. Nucleus and nuclear envelope
 - ii. Ribosomes (free vs. bound to RER)
 - iii. Endoplasmic reticulum (ER)
 - 1. Smooth ER
 - 2. Rough ER
 - iv. Golgi apparatus
 - v. Lysosome
 - vi. Vacuole
 - vii. Mitochondria
 - viii. Chloroplast
 - ix. Peroxisome
 - x. Centrioles
- g. Endomembrane system
- h. Endosymbiotic theory
- i. Cytoskeleton
 - i. Three components
 - 1. Microtubules
 - 2. Microfilaments
 - 3. Intermediate filaments
 - ii. Role of motor proteins
- 6) Ch. 7 Membrane structure, function and transport
 - a. Cell membrane structure
 - b. Membrane fluidity
 - i. Role of cholesterol
 - ii. Movement of phospholipids
 - iii. Role of saturated vs unsaturated phospholipids
 - c. Transmembrane proteins
 - d. Membrane protein function
 - i. Transport
 - ii. Enzymatic
 - iii. Signal transduction
 - iv. Cell-cell recognition
 - v. Intercellular junction
 - vi. Attachment to cytoskeleton and extracellular matrix (ECM)
 - e. Membrane "sidedness".
 - f. Membrane Transport
 - i. Factors that affect molecule transport
 - 1. Size
 - 2. Polarity/Charge
 - 3. Concentration gradient
 - ii. Passive transport (no energy required, down concentration gradient)
 - 1. Diffusion
 - 2. Osmosis
 - a. Water potential (Go over diffusion lab)
 - i. Water potential = pressure potential + solute potential

- 3. Facilitated transport
- iii. What happens to a plant/animal cell in a hypertonic, hypotonic, isotonic solution
- iv. Plasmolysis
- v. Cyclosis
- vi. Channel protein vs. Carrier protein
- vii. Active transport (requires energy)
 - 1. Against concentration gradient
 - 2. Endocytosis
 - a. Phagocytosis
 - b. Pinocytosis
 - c. Receptor mediated endocytosis
 - 3. Exocytosis
- viii. Ion pumps
 - ix. Electrochemical gradient
 - x. Electrogenic pump
 - xi. Cotransport
 - 1. Symport
 - 2. Antiport
 - 3. Uniport
- 7) Ch. 8 Metabolism (Go over enzyme lab)
 - a. Metabolic pathways
 - b. Catabolism vs. anabolism
 - c. Types of energy
 - i. Potential
 - ii. Kinetic
 - iii. Chemical
 - iv. Heat
 - d. First law of thermodynamics
 - e. Second law of thermodynamics
 - f. Exergonic vs. endergonic reactions
 - g. Energy diagrams
 - h. ATP structure, function, examples of when it is used, the ATP cycle, how it is used in energy transfer
 - i. Energy coupling
 - j. Redox reactions (reduction, oxidation, transfer of energy)
 - k. Electron carriers (NADPH, NADH, FADH)
 - 1. Activation energy
 - m. Enzymes biological catalysts that lower activation energy
 - i. Active site
 - ii. Induced fit vs. Lock and key model
 - iii. Effect of
 - 1. pH
 - 2. Temperature
 - 3. Enzyme concentration
 - 4. Substrate concentration
 - n. Cofactors vs. coenzymes
 - o. Competitive vs. noncompetitive inhibitors
 - p. Allosteric regulation of enzymes

- q. Cooperativity
- r. Feedback inhibition in a metabolic pathway
- 8) Ch. 9 Cellular respiration (Go over cell respiration lab)
 - a. Aerobic vs. Anaerobic respiration (know chemical equations, purpose)
 - b. Substrate level phosphorylation vs. Oxidative phosphorylation
 - c. Stages of aerobic respiration (know what enters and exits each stage)
 - i. Glycolysis
 - ii. Formation of Acetyl CoA
 - iii. Krebs cycle (also known as citric acid cycle)
 - iv. Electron transport chain (ETC)
 - 1. Chemiosmosis
 - 2. ATP Synthase
 - d. Types of anaerobic respiration
 - i. Lactic acid fermentation
 - ii. Alcoholic fermentation
 - e. What happens to the pyruvate during fermentation and why?
 - f. Obligate anaerobes vs. Facultative anaerobes
 - g. Catabolism of proteins, fats, carbs for energy
- 9) Ch. 10 Photosynthesis (Go over photosynthesis lab)
 - a. Autotrophs
 - i. Chemoautotrophs vs. photoautotrophs
 - b. Know chemical equation for photosynthesis
 - c. Leaf anatomy (From top to bottom: cuticle, upper epidermis, palisade mesophyll, spongy mesophyll, vein with xylem and phloem, lower epidermis with stomates and guard cells)
 - d. Electromagnetic spectrum
 - e. Absorption spectrum
 - f. Engelmann's experiment
 - g. Chlorophyll a/b structure
 - h. Photosystem structure
 - i. Stages of photosynthesis
 - i. Light dependent reactions
 - 1. PII (P680)
 - 2. PI (P700)
 - 3. Chemiosmosis
 - 4. Linear electron flow vs. Cyclic electron flow
 - 5. How are ATP and NADPH formed?
 - ii. Light independent reaction (Calvin cycle)
 - 1. Carbon fixation
 - 2. Reduction
 - 3. Regeneration of RUBP (CO₂ acceptor)
 - 4. Rubisco (Ribulose bisphosphate carboxylase)
 - 5. RUBP
 - 6. Glyceraldehye-3-phosphate (G3P)
 - 7. Role of ATP and NADP

10) Ch11 – Cell Communication

- a. Local Signaling
 - i. Paracrine signaling
 - ii. Synaptic signaling

- b. Long-Distance Signaling
 - i. Hormonal signaling
- c. Three stages of cell signaling
 - i. Reception
 - 1. Membrane Protein Receptors
 - a. G Protein-Coupled Receptors
 - b. Receptor Tyrosine Kinases
 - c. Ion Channel Receptors
 - 2. Intracellular Receptors
 - ii. Transduction
 - 1. Phosphorylation cascade
 - a. Protein kinases
 - b. Protein phosphatases
 - 2. Second messengers
 - a. Cyclic AMP
 - b. Calcium ions
 - iii. Response
 - 1. Nuclear responses
 - 2. Cytoplasmic responses
- d. Amplification of cell signal
- e. Specificity of cell signal
- f. Apoptosis as an example of cell signaling
- g. Viagra example of cell signaling
- 11) Ch.12 Cell Cycle
 - a. Functions of cell division
 - i. Reproduction
 - ii. Growth and development
 - iii. Tissue renewal
 - b. Eukaryotic chromosome structure: histone, nucleosome
 - c. Chromosome
 - d. Chromatid
 - i. Sister vs. Nonsister chromatids
 - e. Centromere
 - f. Kinetochores
 - g. Kinetochore microtubules
 - h. Non kinetochore microtubules
 - i. Sister Chromatids
 - j. Stages of cell cycle (what happens in each phase, be able to identify phases)
 - i. Interphase
 - 1. G1
 - 2. S
 - 3. G2
 - ii. Mitotic (M) phase
 - 1. Mitosis
 - a. Prophase
 - b. Metaphase
 - c. Anaphase
 - d. Telophase

- 2. Cytokinesis
- k. Plant vs. Animal cytokinesis
 - i. Cell plate vs. cleavage furrow
- 1. Binary fission
- m. Cell cycle control
 - i. G1 checkpoints
 - ii. Growth factors
 - iii. Density dependent inhibition
 - iv. Anchorage dependent
- n. Cancer
- 12) Ch. 13 Meiosis (Go over sordaria lab)
 - a. Diploid vs. haploid
 - b. Somatic vs. Sex cells (gametes)
 - c. Karyotype
 - d. Homologous chromosomes
 - e. Tetrad
 - f. Synapsis
 - g. Crossing over
 - h. Chiasma
 - i. Recombinant chromosomes
 - j. Phases of Meiosis (know what is happening in each phase, be able to identify phase)
 - i. Meiosis I
 - 1. Prophase I (interphase precedes Prophase I)
 - 2. Metaphse I
 - 3. Anaphase I
 - 4. Telophase I and cytokinesis
 - ii. Meiosis II
 - 1. Prophase II
 - 2. Metaphse II
 - 3. Anaphase II
 - 4. Telophase II and cytokinesis
 - k. Compare mitosis with meiosis
 - 1. Sources of genetic variation
 - i. Mutations
 - ii. Crossing over
 - iii. Independent assortment
 - iv. Random fertilization
- 13) Ch. 14 Mendel and the Gene Idea
 - a. What makes a good animal model to study genetics and why?
 - b. Genes
 - c. Alleles
 - d. Homozygous
 - e. Heterozygous
 - f. Genotype vs. Phenotype
 - g. Law of dominance
 - h. Law of segregation
 - i. Law of independent assortment
 - j. 3:1 ratio

- k. 9:3:3:1 ratio
- 1. Monohybrid crosses
- m. Dihybrid crosses
- n. Testcross
- o. Rules of probability Addition and Multiplication
- p. Complete dominance
- q. Incomplete dominance
- r. Codominance
- s. Multiple alleles
 - i. Rabbit fur color
 - ii. Human ABO blood system
- t. Epistasis
- u. Polygenic Inheritance
- v. Pleiotropy
- w. Effect of environment on phenotype
- 14) Ch. 15 The Chromosomal Basis of Inheritance
 - a. Karyotype
 - b. Autosomes
 - c. Sex chromosomes
 - d. Hemizygous
 - e. Autosomal Recessive Disorders
 - i. Albinism
 - ii. Cystic Fibrosis
 - iii. PKU (Phenylketonuria)
 - iv. Tay Sachs
 - f. Autosomal Dominant Disorders
 - i. Achondroplasia
 - ii. Huntington's Disease
 - iii. Hypercholesterolemia
 - g. X-linked Recessive Traits
 - i. Colorblindness
 - ii. Hemophilia
 - iii. Duchenne Muscular Dystrophy
 - h. Pedigrees
 - i. Dosage Compensation
 - i. X Inactivation
 - 1. Barr bodies
 - j. Linked genes
 - k. Recombinants
 - 1. Parentals
 - m. Recombination frequency
 - n. Map units
 - o. Meiotic Nondisjunction
 - i. Aneuploidy
 - 1. Monosomy
 - 2. Trisomy
 - ii. Down's Syndrome
 - iii. Klinefelter's Syndrome (XXY)

- iv. Turner's Syndrome (XO)
- p. Polyploidy
- q. Alteration of Chromosome structure
 - i. Deletion
 - ii. Duplication
 - iii. Inversion
 - iv. Reciprocal Translocation
 - v. Nonreciprocal Translocation
- r. Genomic Imprinting
 - i. Methylation of DNA
 - ii. Angelmann's syndrome vs. Prader-Willi syndrome
- s. Be able to use Chi-square analysis
- 15) Ch. 16 The Molecular Basis of Inheritance
 - a. Frederick Griffith (1928) Transformation experiment
 - b. Oswald Avery, Colin Macleod, Maclyn McCarty
 - c. Alfred Hershey and Martha Chase Experiment (1952)
 - d. Erwin Chargaff Chargaff's rules
 - e. Rosalind Franklin
 - f. James Watson and Francis Crick
 - g. Nucleic Acids
 - i. DNA
 - ii. RNA
 - h. Nucleotide Structure
 - i. DNA double helix structure
 - i. Antiparallel
 - j. Purine vs. Pyrimidine
 - k. Base pairing rules
 - 1. Three models of DNA replication
 - i. Conservative model
 - ii. Semiconservative model
 - iii. Dispersive model
 - m. Matthew Meselson and Franklin Stahl
 - n. Semiconservative DNA Replication
 - i. Origin of replication
 - ii. Replication is bidirectional
 - iii. Leading Strand
 - iv. Lagging Strand
 - v. Okazaki fragments
 - vi. New strands built in $5' \rightarrow 3'$ direction
 - vii. Enzymes and proteins involved
 - 1. Helicase
 - 2. Single-strand binding proteins
 - 3. Topoisomerase
 - 4. Primase
 - 5. DNA polymerase III
 - 6. DNA polymerase I
 - 7. DNA ligase
 - o. DNA proofreading

- p. Mismatch repair
- q. Excision repair
- r. Nuclease
- s. Telomeres
- t. Telomerase
- u. Chromatin packing in a eukaryotic chromosome
 - i. Histones
 - ii. Nucleosomes
- v. Euchromatin
- w. Heterochromatin
- 16) Ch. 17 From Gene to Protein
 - a. Beadle and Tatum (1941) experiment
 - b. Changes made to the one gene one enzyme hypothesis
 - c. Central dogma of genetic information flow
 - i. DNA \rightarrow mRNA \rightarrow protein
 - d. The genetic code
 - i. Redundancy
 - e. Codon
 - i. Start codon
 - ii. Stop codon
 - f. Transcription
 - i. Prokaryotic cell vs. Eukaryotic cell
 - ii. Promoter
 - iii. Transcription Unit
 - iv. Stages of transcription
 - 1. Initiation
 - a. Eukaryotic cell
 - i. TATA box
 - ii. Transcription factors
 - 2. Elongation
 - 3. Termination
 - g. Eukaryotic RNA processing
 - i. 5' cap
 - ii. 3' poly-A tail
 - iii. RNA splicing
 - 1. Intron
 - 2. Exon
 - 3. snRNPs
 - 4. Spliceosomes
 - 5. Alternative RNA splicing
 - a. Antibody variation
 - iv. Ribozymes
 - h. Translation
 - i. tRNA structure and role in translation
 - ii. Anticodon
 - iii. Wobble
 - iv. Aminoacyl-tRNA synthetase
 - v. Ribosome structure

- 1. Large subunit
 - a. E site
 - b. P site
 - c. A site
- 2. Small subunit
- vi. Stages of translation
 - 1. Initiation
 - 2. Elongation
 - a. Codon recognition
 - b. Peptide bond formation
 - c. Translocation
 - 3. Termination
- i. Polyribosomes
- j. Signal mechanism for targeting proteins to the ER
 - i. Signal peptide
 - ii. Signal recognition particle (SRP)
 - iii. SRP receptor protein
- k. Point mutations
 - i. Base-Pair Substitution
 - 1. Silent
 - 2. Missense
 - 3. Nonsense
 - ii. Base-pair insertion or deletion
 - 1. Frameshift causing immediate nonsense
 - 2. Frameshift causing extensive missense
 - 3. No frameshift but one amino acid missing (3 base-pair deletion)
- 1. Mutagens
- m. Coupled transcription and translation in bacteria
- 17) Ch. 18 Regulation of Gene Expression
 - a. Negative Gene Regulation in prokaryotic cells
 - i. Repressible Operon
 - 1. Trp operon
 - a. Regulatory gene
 - b. Promoter
 - c. Repressor
 - d. Operator
 - e. Anabolic pathways
 - ii. Inducible Operon
 - 1. Lac operon
 - a. Regulatory gene
 - b. Promoter
 - c. Repressor
 - d. Operator
 - e. Catabolic pathways
 - b. Positive Gene Regulation in prokaryotic cells
 - i. Activator
 - ii. Positive control of lac operon by CAP "dimmer switch"

- 1. Lactose present, glucose scarce, cAMP level high, abundant lac mRNA synthesized
- 2. Lactose present, glucose present, cAMP level low, little lac mRNA synthesized
- c. Regulation of gene expression in eukaryotic cells results in differential gene expression
 - i. Chromatin modification
 - 1. Acetylation of histone tails
 - 2. DNA methylation
 - 3. Epigenetic inheritance
 - ii. Transcription
 - 1. Control elements
 - a. Proximal control elements
 - b. Distal control elements
 - i. Enhancers
 - 2. Activators
 - iii. Alternative RNA processing
 - iv. Transport to cytoplasm
 - v. Translation
 - vi. Protein processing
 - vii. Degradation of RNA
 - viii. Degradation of protein
 - 1. Ubiquitin
 - 2. Proteasome
 - ix. Noncoding RNA
 - 1. RNA interference (RNAi)
 - a. MicroRNAs (miRNAs)
 - b. Small interfering RNAs (siRNAs)
- d. Sources of developmental information for early embryo
 - i. Cytoplasmic determinants in the egg
 - ii. Induction by nearby cells
- e. Pattern formation
 - i. Maternal effect genes
 - 1. Creates morphogen gradient
 - 2. Also called egg-polarity gene
 - ii. Segmentation genes
 - 1. Gap genes
 - 2. Pair-rule genes
 - 3. Segment polarity genes
 - iii. Homeotic genes
- 18) Ch. 19 Viruses
 - a. Viral Structure
 - i. Capsid
 - ii. Capsomeres
 - iii. Viral envelopes
 - b. Viral reproductive cycle
 - i. Lytic Cycle
 - ii. Lysogenic Cycle
 - c. Classes of Animal viruses

- i. Double stranded DNA (dsDNA)
- ii. Single-stranded DNA (ssDNA)
- iii. Double-stranded RNA (dsRNA)
- iv. Single-stranded RNA (ssRNA) serves as mRNA
- v. ssRNA (template for mRNA synthesis)
- vi. ssRNA (template for DNA synthesis) retroviruses

19) Ch. 20 – Biotechnology

- a. Cloning genes using recombinant DNA technology
 - i. Reasons for cloning genes
 - ii. Techniques for cloning genes recombinant DNA technology (Go over transformation lab)
 - 1. Cloning a eukaryotic gene in a bacterial plasmid
 - a. Role of the following
 - i. Restriction enzymes
 - ii. Plasmids as cloning vector
 - iii. Ligase
 - iv. Sticky ends vs. Blunt ends
 - b. How do you know you were successful?
 - i. Role of antibiotics
 - iii. Genomic library
 - iv. Role of cDNA
 - 1. Use of reverse transcriptase
- b. Screening for clones carrying gene of interest
 - i. Nucleic acid probe
 - ii. Nucleic acid hybridization
- c. Polymerase Chain Reaction (PCR)
 - i. When is it used and why?
 - ii. Steps involved in PCR
- d. Gel Electrophoresis (Go over gel electrophoresis lab)
 - i. When is it used and why?
 - ii. Steps involved in gel electrophoresis
 - iii. SNPs
 - iv. RFLPs
- e. Southern Blotting
- f. Dideoxy chain termination method for sequencing DNA
- g. Analyzing gene expression
 - i. RT-PCR analysis of expression of single genes
 - ii. In-situ hybridization using probes tagged with fluorescent dyes
 - iii. DNA microassay of gene expression levels

20) Review following labs

- a. Scientific method plop, plop, fizz, fizz
- b. Diffusion/Osmosis
 - i. Jello SA/Vol ratio
 - ii. Dialysis bags various solutions inside and outside bag, water potential
- c. Enzyme turnip peroxidase, guaiacol, colorimeter, factors affecting enzyme rate
- d. Cell respiration use of O₂ and CO₂ probes, factors affecting cell respiration
- e. Photosynthesis DPIP, chlorophyll extract, spectrophotometer
- f. Mitosis and Meiosis

- g. Crossing over and meiosis in Fungi (sordaria)
- h. Transformation
- i. Gel Electrophoresis DNA fingerprint

21) Lab skills

- a. Graphing
 - i. Plotting
 - ii. Analysis, finding pattern
- b. Determining rate/slope
- c. Experimental design controls, independent variable, dependent variable, constants
- d. Tables creating tables and reading tables
- e. Calculating mean (average)
- f. When and how to use chi-square