ACTIVITY #11: REVIEW - SLINKY[™] WAVES

PURPOSE:

MATERIALS & PROCEDURES:

- Hold a super slinkyTM stretched 2/3 of the way across the room. 1.
- 2.
- Create a transverse wave in the slinkyTM. Create a longitudinal wave in the slinkyTM. Record the differences. 3.
- Create different size transverse waves in the slinky[™]. Time them going the same distance. 4. Compare them. Record any differences.
- Generate high frequency and then low frequency waves in the slinky[™]. Compare the 5. wavelengths. Record the relative wavelength sizes.
- At the same time have the partners send pulses toward each other from opposite sides. 6. (Several pulses form a wave.) Record their interaction point data.
- Send a pulse in towards one end of the slinkyTM while the partner holds that end rigid. Record 7. the reflected wave data.
- Send a pulse in towards one end of the slinkyTM to which a long string has been attached. 8. (Less rigid medium) Record the reflected wave data.
- Connect two coils (SlinkyTM & Snaky) together and send several pulses down from the large 9. diameter coil to the longer one. Record your wave-transfer observations.

DATA:

Transverse vs. Longitudinal Waves:

- 1. The medium vibrates _______ to the direction of propagation in a transverse wave. Mechanical waves such as _____ or _____ waves are transverse. One wave that is transverse but not mechanical is a/an wave. It has no _____.
- 2. The medium vibrates ______ to the direction of propagation in a longitudinal wave. Mechanical waves such as ______ waves are longitudinal. There are no longitudinal waves, which are not waves.

Speed of Waves:

- If the slinkyTM is kept at a constant tension and transverse pulses are sent down the slinkyTM, 1. it takes seconds for a large amplitude pulse to go about meters. It takes a small amplitude pulse ______ seconds to go the same distance. The speed of the pulse (wave) is (independent of, dependent upon) the amplitude. Vary the frequency of the pulse. When the frequency is high, the wavelength is What is the relationship between frequency and wavelength? What is the equation, which shows this relationship? _____ The speed of a pulse in a particular medium is . a) determined by frequency b) determined by amplitude c) determined by the medium
- The speed of any wave in a particular medium, v, equals the , f, times 2. the _____ , λ .

Interference of Waves:

1.	When two waves meet, their amplitudes	
	pulses on the right side of the slinky TM meet and form a/an	·
	But two equal pulses, which meet coming from opposite sides of the	slinky ^{TM} form a
	when they meet.	
2.	After the pulses meet, they each	other and are
	(unchanged, different). Draw the "after" sides.	
	BEFORE AFTER	
		••-
	BEFORE DURING	<u>AFTER</u>
		•••••
	During AFTE	R

<u>Reflection of Waves:</u>

- If there is a significant difference between the two media, a wave will show much reflection at the boundary. A transverse wave reflected from a rigid boundary _____. a.) does not change phase (0° change) b.) does change phase (180° change)
- A transverse wave that reflects off a less rigid boundary _____. a.) does not change phase (0⁰ change) b.) does change phase (180⁰ change)
 Draw the reflected pulse in the diagram below.

3. A slinkyTM pulse as shown in the diagram below, meets a string at the boundary. There is ______ reflection and partial ______ at the boundary. The reflected wave will return on the _____ (top, bottom).

Transference of Waves into a New Medium:

- 1. When a wave reaches a boundary, there is partial _____ and partial
- A wave entering a new medium changes its _____, but it retains its original _____, but it retains its original ______, therefore the ______ changes too.

QUESTIONS:

1. SlinkyTM waves are _____. a.) mechanical b.) electromagnetic

a.) longitudinal b.) transverse

3.	CILLOILL is awave.	
	a.) longitudinal b.) transverse	
4.	The speed of a wave is equal to times and	
	(does, does not) change if the wave remains in a particular medium. However, if the wave	
	goes into a new medium; the changes as well as the	
	The stays the same.	
5.	Waves can pass through each other without being	
CONCLUSION:		
	List several/many universal behavioral characteristics of waves.	
1.		
2.		
_		
8.		

The Surfer's Handbook (Rules of Wave Behavior)

- 1. The speed of a wave is a function of the medium. All waves of the same kind travel though a given medium at the same speed regardless of their wavelength, frequency or amplitude.
- 2. Two waves can pass through one another (i.e., interfere) but are completely undisturbed by the event. After the waves have passes through each other, they are exactly the same as they were before meeting.
- Whenever a wave reached as boundary, it is always partially reflected and practically transmitted. (Light and Sound behaves this way.)
- 4. A wave reflected from a more rigid medium (A medium where the wave travels slower.) returns inverted, waves reflected from a less rigid medium (A medium where the wave travels faster) return erect.
- 5. When a wave enters a new medium its frequency cannot change because it is generated by the original wave and must, therefore have the same frequency as the original wave. Since the wave has a different speed in the new medium, and $v = f\lambda$, the wavelength must change, and is proportional to the speed.