READ SECTION 12.1 (pages 675-688)

• TAKE YOUR OWN NOTES OR ANNOTATE HANDOUT WITH YOUR NOTES

GiVEN)

- · FOLLOW INSTRUCTION IN NOTES
- . THEN DO PROBLEMS BELOW.

INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA

Aw, nuts! A company claims that each batch of its-deluxe mixed nuts-contains-52%-cashews, 27% almonds, 13% macadamia nuts, and 8% brazil nuts. To test this claim, a quality control inspector takes a random sample of 150 nuts from the latest batch. The one-way table below displays the sample data.

Nut:	Cashew	Almond	Macadamia	Brazil
Count:	83	29	20	18

- (a) State appropriate hypotheses for performing a test of the company's claim.
- (b) Calculate the expected counts for each type of nut. Show your work.
- Aw, nuts! Calculate the chi-square statistic for the SEE data in Exercise 1. Show your work.
 - (5) Aw, nuts! Refer to Exercises 1 and 3.
 - (a) Confirm that the expected counts are large enough to use a chi-square distribution. Which distribution (specify the degrees of freedom) should you use?
 - (b) Sketch a graph like Figure 11.4 (page 683) that shows the *P*-value.
 - (c) SEE 173683 find the P-value. Then use your calculator's χ^2 conmand.

12.1	A	HW
(A		

PREAMETER: Posts = true population propurtion of nuts

HYPOTHESIS: Ho: Peashew = .52 Palmond = .27

Pracedamia = . 13 Porazil = .08

Ha: at least one of the pi's is incorrect

B	NUT	# OBSERVED	expected	# EXPECTED	(0-E)Z
	Cashew	83	•52	78,0	0,3205
	Almond	29	. 27.	40,5	3.2654
	Macadamia	20	, 13	19.5	0.01282
	Brozil	18	,08	12.0	3.0
	Total	150	1.00	150	ZX= 6.599
LVa	1. 1. 1	1	1	1	1

Takeadventage of Calculator

(3)

(2)

13= 150(La)

L4 = (L-L3)2

IVARSTAT L4

2= .3205+3.2654+.01282+3.0=6.599 DOBY HAND - TIP USE LISTS IN CALC

 $\chi^{2} = \frac{(83-78)^{2}}{78} + \frac{(29-40.5)^{2}}{40.5} + \frac{(20-19.5)^{2}}{19.5} + \frac{(18-12)^{2}}{12} = (6.599)^{2}$

(5) The expected counts are all at least 5.

There are 4 cotegories - df=3 for X2 distribution.

(a) P(x27, 6.599) = .6858 7.05

x2 cd f(6.599, E99, 3)

D 2226,599 14

Chi-SQUARE distribution
With 3df

Since the prolon 7.05, we fail to reject the. We do not have enough evidence to say the companies claim about the distribution of nots is wrong.

12.18 Chi-Square Goodness-of-Fit Tests

of birds that were searching for seeds and insects in an Oregon forest. In this forest, 54% of the trees were Douglas firs, 40% were ponderosa pines, and 6% were other types of trees. At a randomly selected time during the day, the researchers observed 156 red-breasted nuthatches: 70 were seen in Douglas firs, 79 in ponderosa pines, and 7 in other types of trees. Do these data suggest that nuthatches prefer particular types of trees when they're searching for seeds and insects? Carry out a chi-square goodness-of-fit test to help answer this question.

HW

pg 688

9. No chi-square A school's principal wants to know if students spend about the same amount of time on homework each night of the week. She asks a random sample of 50 students to keep track of their homework time for a week. The following table

displays the average amount of time (in minutes) students reported per night:

Night: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Average 130 108 115 104 99 37 62

time:

Explain carefully why it would not be appropriate to perform a chi-square goodness-of-fit test using these

X 2 is Not appropriate because the data collected is NOT

Counts but average amount of time Spent on HW.

Mendel and the peas Gregor Mendel (1822–1884), an Austrian monk, is considered the father of genetics. Mendel studied the inheritance of various traits in pea plants. One such trait is whether the pea is smooth or wrinkled. Mendel predicted a ratio of 3 smooth peas for every 1 wrinkled pea. In one experiment, he observed 423 smooth and 133 wrinkled peas. The data were produced in such a way that the Random and Independent conditions are met. Carry out a chi-square goodness-of-fit test based on Mendel's prediction. What do you conclude?

Benford's law Faked numbers in tax returns, invoices, or expense account claims often display patterns that aren't present in legitimate records. Some patterns are obvious and easily avoided by a clever crook. Others are more subtle. It is a striking fact that the first digits of numbers in legitimate records often follow a model known as Benford's law. Gall the first digit of a randomly chosen record X for short. Benford's law gives this probability model for X (note that a first digit can't be 0):

First digit (X): 1 2 3 4 5 6 7 8 9

Probability: 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

A forensic accountant who is familiar with Benford's law inspects a random sample of 250 invoices from a company that is accused of committing fraud. The table below displays the sample data.

First digit:	1	2	3	4	5	6	7	8	9	
Count:	61	50	43	34	25	16	7	8	6 -	LZ

- (a) Are these data inconsistent with Benford's law? Carry out an appropriate test at the $\alpha=0.05$ level to support your answer. If you find a significant result, perform a follow-up analysis.
- (b) Describe a Type I error and a Type II error in this setting, and give a possible consequence of each. Which do you think is more serious?

L3= L1*250

	[12.18]
1	
	TREES IN FOREST BIRDS EXPECTED (O-E)2 3 OBSERVED # E
2,	2 DOUGLAS FIRS ,54 70 84,24 2,4071
2	PINES 170 19 62,90 4,416
	OTHER TYPES ,06 7 9,36 0,595
	1.00 156 156 Z7,418 = X2
	TEST: X2 GOVENESS OF FIT TEST FUE &= .05 Hypothesis P= true propurtion of trees inforest Ho: PFIRS = .54 Prines = .40 Pother HA: At least one of the Pb's is incorrect
1	Constitions Random - a random semple was used Independent - recouncible 156/10) = 1,560 red breasted nut hatches harge semple size - The expected counts in each category was greater than 5 (84.24, 62.4, 9.36) 1418 MECHANICS X2 = 7,418 & df = 2
	$p_{\text{value}} \rightarrow p(x^2 > 7.418) = 22cd + (7.418, E99, 2) = .0245$

Conclude: Since the pucture (,024s) & .05 We Beject Ho, and conclude these birds prefer particular types of trees when they are searching for food.

п	
(9)	See handou +
	See Have Go
(II)	Pargie = true proportion of Benford'slaw digit
	$H_0: P_1 = .301 P_3 = .125 P_5 = .079 P_7 = .058 P_9 = .046 P_{2} = .176 P_{4} = .097 P_{6} = .067 P_{8} = .051$
	HA: at least one of the Paigits is incorrect
7,	STATE TEST: CHISQUARE (X2) Goodness of fit test
	,0058
	CONDITIONS 72=21,563
	Random - random sample of 250 invoices
	Independent - reasonable their are 1012501-2500 invoices
	Independent - reasonable their are 10(250)=2500 invoices horge sample size - The expected counts at the company are at least 5:
must give	
all expe	
Counts a	of round) MECHANICS
2 decimo	$\frac{1}{2} = (0) = $
	$\frac{1}{\chi^{2} = Z} = \frac{(\text{observed} - \text{Expected})^{2}}{\text{Expected}} = \frac{(61 - 75, 25)^{2}}{75.25} + \frac{(6 - 11.5)^{2}}{11.5}$
	Con Shour 13. 4 1051
	X2=21,563 df=8
	pralue = P(x2 >21.563) = X2 df (21.563, E99,8) =.0058
	CONCLUDE: Since the puctue is less than .05, we
	reject Ho and conclude that the invoices are inconsistent
-	with Benford's Law

#11 cont

ANALYSIS:	DiciT	OB SERV	03	EXPECTED	X
	1	61		75.25	2,7
	2	50		44,00	0,8
Reviewing XZ	3	43	>	31, 25	4,4
contribution-	4	34	7	24,25	3,9 7
3,4,7 have the	5	25		19,75	1.4
largest Contribution.	6	16		16,75	0.03
Digits 3+4 have	7	7	- <	14,50	3,9 =
too many and	8	8		12.75	1,8
Digit 7 has	9	6		11.5	2.6
not enough.					
d					-

(11B) TYPE I ERROR: SAYS THAT THE COMPANY'S INVOICES

DID NOT FOLLOW BENFORDIS LAW

(SUGGESTING FRAND) WHEN IN FACT

THEY WERE CONSISTENT WITH

BENFORD'S LAW,

TYPE IL GEROR: SAYS THAT THE INVOICES WERE

CONSISTENTS WITH BENFORDIS LAW

(SUGGESTING FRAND) WHEN IN FACT

THEY WERE NOT!

ATTPET ERROR WOOLD BE MORE SERIOUS HERE,
ALL EGING THAT THE COMPANY HAD COMMITTED
FRAUD WHEN IT HAD NOT

112.1 B HW

[7]	TEST: X2 goodness-of-fit test 2=105
	HO! PSMOOTH = 075 PWRINKLED = 125 HA: AT LEAST ONE OF THE Pi'S IS INCORRECT.
	HA: AT LEAST ONE OF THE PI'S IS INCORRECT.
	CONDITIONS
	Rondom and Independent Conditions were given
	Large enough sample size-
	The expected counts 411 and 139 are
	both greater than 5.
	(2.5)2
	PEAS 90 OBS EXPECTED (O-E)
	SMOOTH 175 423 417 10863
	WRINKLED , 25 133 139 .2589
1	1.00 N=556 556 13452
	Mechanics
	$\chi^2 = 352$ df=1
	PVALUE = P(x22,0352) = xcdf(.3452, E99,1)=.5568
	Conclude:
	Since the puolue is very large and greater
	Since the pucture is very large and greater Than .05, we fail to reject to, we do not have enough evidence to dispute Mendel's
	have enough evidence to dispute Mendel's
	Deliet.