Need 2 Yellow "TEST OF STON FLANCE TEMPLATES"

71] Sweetening colas Cola makers test new recipes for loss of sweetness during storage. Trained tasters rate the sweetness before and after storage. From

Exercises

SECTION 10.3A

experience, the population distribution of sweetness losses will be close to Normal. Here are the sweetness losses (sweetness before storage minus sweetness after storage) found by tasters from a random sample of 10 batches of a new cola recipe:

2.0 0.4 0.7 2.0 -0.4 2.2 -1.3 1.2 1.1 2.3

Are these data good evidence that the cola lost sweetness? Carry out a test to help you answer this question.

73. Healthy bones The recommended daily allowance (RDA) of calcium for women between the ages of 18 and 24 years is 1200 milligrams (mg). Researchers who were involved in a large-scale study of women's bone health suspected that their participants had significantly lower calcium intakes than the RDA. To test this suspicion, the researchers measured the daily calcium intake of a random sample of 36 women from the study who fell in the desired age range. The Minitab output below displays descriptive statistics for these data, along with the results of a significance test.

1711 Complete TEST TEMPILE

 N
 Mean SE Mean StDev
 Min
 Q1
 Med
 Q3
 Maximum

 Calcium
 36
 856.2
 51.1
 306.7
 374.0
 632.3
 805.0
 1090.5
 1425.0

	One-S	ample	T: Calciu	ım intake	(mg)	
Test of	mu =	12.00	vs < 1	200		
Variable	N	Mean	StDev	SE Mean	Τ.	Р
Calcium	36	856.2	306.7	51.1	-6.73	0.000

(a) Determine whether there are any outliers. Show your work.

(b) Interpret the P-value in context.

(c) Do these data give convincing evidence to support the researchers' suspicion? Carry out a test to help you answer this question.

[73A] Show Work here

73B+C COMPLETE TEMPLATE

IQR=Q3-Q1=1090.5-632.3=458.2 Q3+1.5 IQR= 1090.5+1.5(458.2) = 1777.8 > max = 1425 (NO OUTLIER) Q1-1.5 IQR = 632.3-1.5(458.2) = -55 < min = 374.0 (No OUTLIER) [7.3B] The output shows a prelue = 0.000. IF THE MEAN DAILY CALCIUM INTAKE FOR WOMEN 18 to 24 IS REALLY 1200 mg, then the likelihood of getting a sample of 36 Women WITH A MEAN INTAKE OF 856.2 mg or smeller is ROUCHLY O. OVER ->

#77 answer below

75. Growing tomatoes An agricultural field trial compares the yield of two varieties of tomatoes for commercial use. Researchers randomly select 10 Variety A and 10 Variety B tomato plants. Then the researchers divide in half each of 10 small plots of land in different locations. For each plot, a coin toss determines which half of the plot gets a Variety

A plant; a Variety B plant goes in the other half. After harvest, they compare the yield in pounds for the plants at each location. The 10 differences (Variety A – Variety B) give $\bar{x} = 0.34$ and $s_x = 0.83$. A graph of the differences looks roughly symmetric and single-peaked with no outliers. Is there convincing evidence that Variety A has the higher mean yield? Perform a significance test using $\alpha = 0.05$ to answer the question.

B 2 Ways to increase power Dincrease the sample size increase the significance level (2)

77] The power of tomatoes The researchers who carried out the experiment in Exercise 75 suspect that the large P-value (0.114) is due to low power. (a) Describe a Type I and a Type II error in this setting. Which type of error could you have made in Exercise 75? Why? (b) Explain two ways that the researchers could have increased the power of the test to detect $\mu = 0.5$. (TYPE I EREOR: Experts conclude that Voriety A has a higher mean yield When it actually doesn't TYPE IF EREVE : EXPERTS Conclude that there is no men difference in yield When in fact Variety A has a higher men yield We could have made type I error Since we filled to reject Ho

(10.2) REVIEW TESTS ABOUT PROPORTIONS

53 Do you Twitter? In late 2009, the Pew Internet and American Life Project asked a random sample of U.S. adults, "Do you ever . . . use Twitter or another service to share updates about yourself or to see updates about others?" According to Pew, the resulting 95% confidence interval is (0.167, 0.213).¹⁵ Can we use this interval to conclude that the actual proportion of U.S. adults who would say they Twitter differs from 0.20? Justify your answer. AN SURR BELOW

The 95% Confidence interval is (1167,213).

We can not justify the 20 diffes since it is included in the interval 55. Teens and sex The Gallup Youth Survey asked a random sample of U.S. teens aged 13 to 17 whether they thought that young people should wait to have sex until marriage.¹⁷ The Minitab output below shows the results of a significance test and a 95% confidence interval based on the survey data.

(a) Define the parameter of interest.

(b) Check that the conditions for performing the significance test are met in this case.

(c) Interpret the P-value in context.

(d) Do these data give convincing evidence that the actual population proportion differs from 0.5? Justify your answer with appropriate evidence.

COMPLETE TEST TEMPLETE

Test of Significance Template

Parameter of Interest	M=actual mean amount of sweetness loss sweetness before storage minus sweetness atter storage)						
Choice of Test	I SAMPLE TTEST FORM						
Level of Significance	d=105 Since & was not given						
Null	English:						
Hypothesis	Symbols: $H_0: \mathcal{M} = 0$						
Alternative Hypothesis	Symbols: HA: MYO						
Conditions of Test	 (i) E 15 UNKNOWN (Tinference) (i) Normal-Previous experience, population distribution is Normal (i) Random sample of 10 batches (ii) And of there are at least 10(10) = 100 batches (iii) The pendent - there are at least 10(10) = 100 batches (i) The new Soda available. 						
Sampling Distribution	Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating the mean: $u = 10^{\pm .05}$ $P = .012^{2}$ u = 1.02 $1 \neq 2$ (ENTER DATE INT LI)						
TestStatistic	Formula: $t = \frac{\overline{X} - \mu}{5\pi/n}$ Plug-ins & Value: $\mu = 0$ $S_{X} = 1.196$ $t = \frac{1.02 - 6}{1.196}$ $t = \frac{1.02}{1.96} = \frac{1.02}{3782} = 2.70$						
P-value	Use correct probability notation. P(t, 7, 2, 70) = tcdf(2, 70, E99, 9) = 10122						
Meaning of the P-value	Since p=.0122 L 2=.05, Reject Ho						
	Reject null hypothesis Significant result						
	Fail to reject null hypothesis Not Significant result						
Conclusions	English: Since the pulloe is less then the 105						
	Significance level, we Reject Ho, It appears						
Kilon	that there is an average loss of						
	Sweetness for this Cola.						

Data 1= 3,70 No=0 P=.0122

10,3A

廿71

TATO CALC

10, 3A HW

Test of Significance Template

	3					
Parameter of Interest	M= the actual mean daily ealing intake of women 18-24					
Choice of Test	I SAMPLE T TEST FOR M					
Level of Significance	d=,05 (since not given)					
Null Hypothesis	English: Symbols: $H_0 = 1300 \text{ mg}$					
Alternative	Symbols: to : 1200 mg English:					
Hypothesis	Symbols: HA: ML 1200 mg					
(Conditions of	DE IS UNKNOWN (TINFERENCE) Dendom somple of 36 Women 3 Normal - the sample was Large enough n=36730					
Test	3 Normal - the sample was suge another (4) Independent - there are clearly more than					
	(4) Independent 360 (36-10) women in the U.S.					
<u></u>	Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating					
Sampling	the mean:					
Sampling	- T= /					
Distribution	They u					
	7-					
	856.2 1200					
	Formula: Plug-ins & Value: \$51.2-1200					
Test Statistic	Formula: $t = \frac{\overline{x} - \mu}{s_x/r}$ $h = 1200 \overline{x} = 856.2 t = \frac{856.2 - 1200}{306.7/56} = -6.73$					
P-value	Use correct probability notation. $P(+ \leq -6.73) = tcdf(-1899, -6.73, 35) = 0$					
Meaning of the P-value	The puclue is extremely small (about 0) so Reject the					
	Reject null hypothesis					
Conclusions	Since pivelve is extremely small, we Reject Ho.					
	It appears that women in this age group					
2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Since pivolve is extremely small, we Reject Ho. It appears that women in this age group are yetting less than 1200 mg calcium daily,					
	on overage.					

10.	3A HW					
200	(#75)	Test of Significance Template				
	Parameter of Interest	M= the true mean difference in yield between Variety A + B tomato plants				
	Choice of Test	one sample + - test for ll				
	Level of Significance	d=.05				
	_Null Hypothesis	English:				
5	Alternative	Symbols: $H_0 : \mathcal{M} = 0$ English:				
	Hypothesis	Symbols: HA: M>0				
t=1, 295 p=,1137	Conditions of	DRandom - There was random assignment (2) 6 in un known (t inference) (3) Independent - There are more than 100 of each variety of plants				
4A K	Test	(4) normal-Graphs were done and there				
.)		Were no outliers and they were roughly symmetric Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating				
-	Sampling Distribution	the mean: $P = , 1130$				
5x=, 83 n=10 >40		- 11 Vira				
	Test Statistic	Formula: $t = \frac{\bar{X} - \mu}{5x/n}$ Plug-ins & Value: $\mu = 0$ $\eta = 10$ $t = \frac{34 - 0}{63} = 0.34$ $\bar{X} = 0.34$ \bar				
5+=+5 160=0 X=:3+	P-value	Use correct probability notation. $P = P(\pm 7 .30) = \pm cdf(1.3, \pm 99, 9) = .1130$				
TTest	Meaning of the P-value	Since the puctue is large and greater than &, FAil TO REJECT Ho				
F		i// 30 7,05				
(n)		Reject null hypothesis Significant result Fail to reject null hypothesis Not Significant result				
TAT		English:				
SA	Conclusions	Since the puclue is larger than 2=.05, we FAIL to Reject Ho,				
\cup		We do not have enough evidence to conclude				
		that Variety A has a higher mean				
		Vield than Voriety Bi				

10.3A HW #85

Test of Significance Template

P = the true proportion of teens who think that young people should wait to have sex until marriage. Parameter of Interest Choice of One scomple Z test for P Test Level of d = 05 Significance English: Null Hypothesis Ho: P=.5 Symbols: Note: Can only find CI for 2 teil tests. English: Alternative HA: PF.5 Hypothesis Symbols: () Render Sample 439 US teens 13-17 2) Independent - The pupulition of us teens is Conditions of greater than 4,390 (439.10) Test (3) normal condition men np = 439 (,s) = 219.5 7,10 ng = 439 (s) = 219.5 7/10 Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating 1. 不知道: the mean: P=,006 Sampling Distribution ITT 15 Plug-ins & Value: $n = 439 \quad \hat{P} = \frac{246}{439} = .56 \quad Z = \frac{.56 - .5}{\sqrt{(.5)(.5)}} = \frac{.06}{.0239} = 2.51$ Formula: 🖊 **Test Statistic** P=15 9=15 Use correct probability notation. P-value P(Z5-2.51) OR P(Z), 2.51) = normal colf (2.51, E99, 0, 1) =, UUL *2 P=,012 since p is smaller than &, Reject to Meaning of the P-value 10122,05 Reject null hypothesis Significant result - years Fail to reject null hypothesis Not Significant result Since the puclue is less thin d=.05, Reject Ho. English: Conclusions We conclude that the actual proportion of teens Who think that young people should wait 15 not .50,