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Chapter 6
Random Variables

 6.1 Discrete and Continuous Random Variables

 6.2 Transforming and Combining Random Variables

 6.3 Binomial and Geometric Random Variables
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Random Variable and Probability Distribution

A probability model describes the possible outcomes of a chance 
process and the likelihood that those outcomes will occur.

A numerical variable that describes the outcomes of a chance process 
is called a random variable.  The probability model for a random 
variable is its probability distribution

Definition:

A random variable takes numerical values that describe the outcomes 
of some chance process. The probability distribution of a random 
variable gives its possible values and their probabilities.

Example: Consider tossing a fair coin 3 times.
Define X = the number of heads obtained

X = 0: TTT
X = 1: HTT THT TTH
X = 2: HHT HTH THH
X = 3: HHH Value 0 1 2 3

Probability 1/8 3/8 3/8 1/8

2
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+Discrete Random Variables

There are two main types of random variables: discrete and 
continuous. If we can find a way to list all possible outcomes 
for a random variable and assign probabilities to each one, we 
have a discrete random variable.
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A discrete random variable X takes a fixed set of possible values with 
gaps between. The probability distribution of a discrete random variable 
X lists the values xi and their probabilities pi:

Value: x1 x2 x3 …
Probability: p1 p2 p3 …

The probabilities pi must satisfy two requirements:

1. Every probability pi is a number between 0 and 1.

2. The sum of the probabilities is 1.

To find the probability of any event, add the probabilities pi of the particular 
values xi that make up the event.

Discrete Random Variables and Their Probability Distributions

3

+Example: Babies’ Health at Birth

Read the example on page 343.

(a)Show that the probability distribution for X is legitimate.

(b)Make a histogram of the probability distribution. Describe what you see.

(c)Apgar scores of 7 or higher indicate a healthy baby. What is P(X ≥ 7)?

(a) All probabilities 
are between 0 and 1 
and they add up to 1. 
This is a legitimate 
probability 
distribution. 

(b) The left-skewed shape of the distribution suggests a randomly 
selected newborn will have an Apgar score at the high end of the scale. 
There is a small chance of getting a baby with a score of 5 or lower.

(c) P(X ≥ 7) = .908
We’d have a 91 % 
chance of randomly 
choosing a healthy 
baby.

Value: 0 1 2 3 4 5 6 7 8 9 10

Probability: 0.001 0.006 0.007 0.008 0.012 0.020 0.038 0.099 0.319 0.437 0.053

4
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+Mean of a Discrete Random Variable

When analyzing discrete random variables, we’ll follow the same 
strategy we used with quantitative data – describe the shape, 
center, and spread, and identify any outliers.

The mean of any discrete random variable is an average of the 
possible outcomes, with each outcome weighted by its 
probability.
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Definition:

Suppose that X is a discrete random variable whose probability 
distribution is

Value: x1 x2 x3 …
Probability: p1 p2 p3 …

To find the mean (expected value) of X, multiply each possible value 
by its probability, then add all the products:

x  E(X)  x1p1  x2 p2  x3 p3  ...

 xi pi

5

+Example: Apgar Scores – What’s Typical?

Consider the random variable X = Apgar Score

Compute the mean of the random variable X and interpret it in context.

Value: 0 1 2 3 4 5 6 7 8 9 10

Probability: 0.001 0.006 0.007 0.008 0.012 0.020 0.038 0.099 0.319 0.437 0.053

x  E(X)  xi pi
 (0)(0.001)  (1)(0.006) (2)(0.007)  ... (10)(0.053)
 8.128

The mean Apgar score of a randomly selected newborn is 8.128. This is the long-
term average Agar score of many, many randomly chosen babies.

Note: The expected value does not need to be a possible value of X or an integer! 
It is a long-term average over many repetitions.

6
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+Standard Deviation of a Discrete Random Variable

Since we use the mean as the measure of center for a discrete 
random variable, we’ll use the standard deviation as our measure of 
spread. The definition of the variance of a random variable is 
similar to the definition of the variance for a set of quantitative data.
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Definition:

Suppose that X is a discrete random variable whose probability 
distribution is

Value: x1 x2 x3 …
Probability: p1 p2 p3 …

and that µX is the mean of X. The variance of X is

Var(X)  X
2  (x1 X )2 p1  (x2 X )2 p2  (x3 X )2 p3  ...

 (xi X )2 pi

To get the standard deviation of a random variable, take the square root 
of the variance.

7

+Example: Apgar Scores – How Variable Are They?

Consider the random variable X = Apgar Score

Compute the standard deviation of the random variable X and interpret it in 
context.

Value: 0 1 2 3 4 5 6 7 8 9 10

Probability: 0.001 0.006 0.007 0.008 0.012 0.020 0.038 0.099 0.319 0.437 0.053

X
2  (xi X )2 pi
 (08.128)2(0.001) (18.128)2(0.006) ... (108.128)2(0.053)

 2.066

The standard deviation of X is 1.437. On average, a randomly selected baby’s 
Apgar score will differ from the mean 8.128 by about 1.4 units.

 X  2.066 1.437

Variance

8
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+Continuous Random Variables

Discrete random variables commonly arise from situations that 
involve counting something. Situations that involve measuring 
something often result in a continuous random variable.
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The probability model of a discrete random variable X assigns a 
probability between 0 and 1 to each possible value of X.

A continuous random variable Y has infinitely many possible values. 
All continuous probability models assign probability 0 to every 
individual outcome.  Only intervals of values have positive probability.

Definition:

A continuous random variable X takes on all values in an interval of 
numbers. The probability distribution of X is described by a density 
curve. The probability of any event is the area under the density curve 
and above the values of X that make up the event.

9

+Example: Young Women’s Heights

Read the example on page 351. Define Y as the height of a randomly chosen 
young woman.  Y is a continuous random variable whose probability 
distribution is N(64, 2.7).

What is the probability that a randomly chosen young woman has height 
between 68 and 70 inches?

P(68 ≤ Y ≤ 70) = ???

z 
68  64

2.7
1.48

z 
70 64

2.7
 2.22

P(1.48 ≤ Z ≤ 2.22) = P(Z ≤ 2.22) – P(Z ≤ 1.48)

= 0.9868 – 0.9306

= 0.0562

There is about a 5.6% chance that a randomly chosen young woman 
has a height between 68 and 70 inches.

10
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Section 6.1
Discrete and Continuous Random Variables

In this section, we learned that…

 A random variable is a variable taking numerical values determined 
by the outcome of a chance process. The probability distribution of 
a random variable X tells us what the possible values of X are and 
how probabilities are assigned to those values.

 A discrete random variable has a fixed set of possible values with 
gaps between them. The probability distribution assigns each of 
these values a probability between 0 and 1 such that the sum of all 
the probabilities is exactly 1.

 A continuous random variable takes all values in some interval of 
numbers.  A density curve describes the probability distribution of a 
continuous random variable.

Summary

11

+
Section 6.1
Discrete and Continuous Random Variables

In this section, we learned that…

 The mean of a random variable is the long-run average value of 
the variable after many repetitions of the chance process. It is also 
known as the expected value of the random variable.

 The expected value of a discrete random variable X is

 The variance of a random variable is the average squared 
deviation of the values of the variable from their mean. The standard 
deviation is the square root of the variance. For a discrete random 
variable X,

Summary

x  xi pi  x1p1  x2 p2  x3 p3  ...

X
2  (xi X )2 pi  (x1 X )2 p1  (x2 X )2 p2  (x3 X )2 p3  ...

12
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+ Section 6.2
Transforming and Combining Random Variables

After this section, you should be able to…

 DESCRIBE the effect of performing a linear transformation on a 
random variable

 COMBINE random variables and CALCULATE the resulting mean 
and standard deviation

 CALCULATE and INTERPRET probabilities involving combinations 
of Normal random variables

Learning Objectives
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 Linear Transformations

In Section 6.1, we learned that the mean and standard deviation give us 
important information about a random variable. In this section, we’ll 
learn how the mean and standard deviation are affected by 
transformations on random variables.

In Chapter 2, we studied the effects of linear transformations on the 
shape, center, and spread of a distribution of data.  Recall:

1. Adding (or subtracting) a constant, a, to each observation:
• Adds a to measures of center and location.
• Does not change the shape or measures of spread.

2. Multiplying (or dividing) each observation by a constant, b:
• Multiplies (divides) measures of center and location by b.
• Multiplies (divides) measures of spread by |b|.
• Does not change the shape of the distribution.
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+ Linear Transformations

Pete’s Jeep Tours offers a popular half-day trip in a tourist area. There 
must be at least 2 passengers for the trip to run, and the vehicle will 
hold up to 6 passengers. Define X as the number of passengers on a 
randomly selected day.
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Passengers xi 2 3 4 5 6

Probability pi 0.15 0.25 0.35 0.20 0.05

The mean of X is 3.75 and the standard 
deviation is 1.090.

Pete charges $150 per passenger.  The random variable C describes the amount 
Pete collects on a randomly selected day.

Collected ci 300 450 600 750 900

Probability pi 0.15 0.25 0.35 0.20 0.05

The mean of C is $562.50 and the standard 
deviation is $163.50.

Compare the shape, center, and spread of the two probability distributions.

+ Linear Transformations

How does multiplying or dividing by a constant affect a random 
variable?
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Multiplying (or dividing) each value of a random variable by a number b:

• Multiplies (divides) measures of center and location (mean, median, 
quartiles, percentiles) by b.

• Multiplies (divides) measures of spread (range, IQR, standard deviation) 
by |b|.

• Does not change the shape of the distribution.

Effect on a Random Variable of Multiplying (Dividing) by a Constant

Note: Multiplying a random variable by a constant b multiplies the variance 
by b2.
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+ Linear Transformations

Consider Pete’s Jeep Tours again. We defined C as the amount of 
money Pete collects on a randomly selected day.
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It costs Pete $100 per trip to buy permits, gas, and a ferry pass.  The random 
variable V describes the profit Pete makes on a randomly selected day.

Collected ci 300 450 600 750 900

Probability pi 0.15 0.25 0.35 0.20 0.05

The mean of C is $562.50 and the standard 
deviation is $163.50.

Compare the shape, center, and spread of the two probability distributions.

Profit vi 200 350 500 650 800

Probability pi 0.15 0.25 0.35 0.20 0.05

The mean of V is $462.50 and the standard 
deviation is $163.50.

+ Linear Transformations

How does adding or subtracting a constant affect a random variable?
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Adding the same number a (which could be negative) to 
each value of a random variable:

• Adds a to measures of center and location (mean, 
median, quartiles, percentiles).

• Does not change measures of spread (range, IQR, 
standard deviation).

• Does not change the shape of the distribution.

Effect on a Random Variable of Adding (or Subtracting) a Constant
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+ Linear Transformations

Whether we are dealing with data or random variables, the 
effects of a linear transformation are the same.
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If Y = a + bX is a linear transformation of the random 
variable X, then

• The probability distribution of Y has the same shape 
as the probability distribution of X.

• µY = a + bµX.

• σY = |b|σX (since b could be a negative number).

Effect on a Linear Transformation on the Mean and Standard Deviation

+Combining Random Variables

So far, we have looked at settings that involve a single random variable. 
Many interesting statistics problems require us to examine two or 
more random variables.

Let’s investigate the result of adding and subtracting random variables. 
Let X = the number of passengers on a randomly selected trip with 
Pete’s Jeep Tours.  Y = the number of passengers on a randomly 
selected trip with Erin’s Adventures.  Define T = X + Y.  What are the 
mean and variance of T?
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Passengers xi 2 3 4 5 6

Probability pi 0.15 0.25 0.35 0.20 0.05

Passengers yi 2 3 4 5

Probability pi 0.3 0.4 0.2 0.1

Mean µX = 3.75  Standard Deviation σX = 1.090

Mean µY = 3.10  Standard Deviation σY = 0.943
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+Combining Random Variables

How many total passengers can Pete and Erin expect on a 
randomly selected day? 

Since Pete expects µX = 3.75 and Erin expects µY = 3.10 , they 
will average a total of 3.75 + 3.10 = 6.85 passengers per trip. 
We can generalize this result as follows:
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For any two random variables X and Y, if T = X + Y, then the 
expected value of T is

E(T) = µT = µX + µY

In general, the mean of the sum of several random variables is the 
sum of their means.

Mean of the Sum of Random Variables

How much variability is there in the total number of passengers who 
go on Pete’s and Erin’s tours on a randomly selected day?  To 
determine this, we need to find the probability distribution of T.

+Combining Random Variables

The only way to determine the probability for any value of T is if X and Y 
are independent random variables.
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Definition:

If knowing whether any event involving X alone has occurred tells us 
nothing about the occurrence of any event involving Y alone, and vice 
versa, then X and Y are independent random variables.

Probability models often assume independence when the random variables 
describe outcomes that appear unrelated to each other. 

You should always ask whether the assumption of independence seems 
reasonable. 

In our investigation, it is reasonable to assume X and Y are independent 
since the siblings operate their tours in different parts of the country.
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+Combining Random Variables

Let T = X + Y. Consider all possible combinations of the values of X and Y.

Recall: µT = µX + µY = 6.85

T
2  (ti T )2 pi

= (4 – 6.85)2(0.045) + … +
(11 – 6.85)2(0.005) = 2.0775

Note: X
2 1.1875 and Y

2  0.89

What do you notice about the 
variance of T?

+Combining Random Variables

As the preceding example illustrates, when we add two 
independent random variables, their variances add. Standard 
deviations do not add. 
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Variance of the Sum of Random Variables

Remember that you can add variances only if the two random variables are 
independent, and that you can NEVER add standard deviations!

For any two independent random variables X and Y, if T = X + Y, then the 
variance of T is

In general, the variance of the sum of several independent random variables 
is the sum of their variances.

T
2 X

2 Y
2
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+Combining Random Variables

We can perform a similar investigation to determine what happens 
when we define a random variable as the difference of two random 
variables.  In summary, we find the following:

T
ransform

ing and C
om

bining R
andom

 V
ariables

Variance of the Difference of Random Variables

For any two independent random variables X and Y, if D = X - Y, then the 
variance of D is

In general, the variance of the difference of two independent random 
variables is the sum of their variances.

D
2 X

2 Y
2

For any two random variables X and Y, if D = X - Y, then the expected value 
of D is

E(D) = µD = µX - µY

In general, the mean of the difference of several random variables is the 
difference of their means. The order of subtraction is important!

Mean of the Difference of Random Variables

+Combining Normal Random Variables

So far, we have concentrated on finding rules for means and variances of random variables. If a random 
variable is Normally distributed, we can use its mean and standard deviation to compute probabilities.

An important fact about Normal random variables is that any sum or difference of independent Normal 
random variables is also Normally distributed.
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Mr. Starnes likes between 8.5 and 9 grams of sugar in his hot tea. Suppose
the amount of sugar in a randomly selected packet follows a Normal distribution with mean 2.17 g and 
standard deviation 0.08 g.  If Mr. Starnes selects 4 packets at random, what is the probability his tea will 
taste right?

Let X = the amount of sugar in a randomly selected packet.
Then, T = X1 + X2 + X3 + X4.  We want to find P(8.5 ≤ T ≤ 9).

µT = µX1 + µX2 + µX3 + µX4 = 2.17 + 2.17 + 2.17 +2.17 = 8.68 

T
2 X1

2 X 2

2 X 3

2 X 4

2  (0.08)2  (0.08)2  (0.08)2  (0.08)2  0.0256

T  0.0256  0.16

P(-1.13 ≤ Z ≤ 2.00) = 0.9772 – 0.1292 = 0.8480
There is about an 85% chance Mr. Starnes’s 

tea will taste right.

z 
8.58.68

0.16
 1.13      and      z 

98.68

0.16
2.00

Example
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+ Section 6.2
Transforming and Combining Random Variables

In this section, we learned that…

 Adding a constant a (which could be negative) to a random variable 
increases (or decreases) the mean of the random variable by a but does not 
affect its standard deviation or the shape of its probability distribution.

 Multiplying a random variable by a constant b (which could be negative) 
multiplies  the mean of the random variable by b and the standard deviation 
by |b| but does not change the shape of its probability distribution.

 A linear transformation of a random variable involves adding a constant a, 
multiplying by a constant b, or both.  If we write the linear transformation of X
in the form Y = a + bX, the following about are true about Y:

 Shape: same as the probability distribution of X.

 Center: µY = a + bµX

 Spread: σY = |b|σX

Summary

+ Section 6.2
Transforming and Combining Random Variables

In this section, we learned that…

 If X and Y are any two random variables,

 If X and Y are independent random variables

 The sum or difference of independent Normal random variables follows a 
Normal distribution.

Summary

X Y
2 X

2 Y
2

X Y  X  Y



11/20/2013

15

+ Section 6.3
Binomial and Geometric Random Variables

After this section, you should be able to…

 DETERMINE whether the conditions for a binomial setting are met

 COMPUTE and INTERPRET probabilities involving binomial random 
variables

 CALCULATE the mean and standard deviation of a binomial random 
variable and INTERPRET these values in context

 CALCULATE probabilities involving geometric random variables

Learning Objectives
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Binomial Settings

When the same chance process is repeated several times, we are often interested 
in whether a particular outcome does or doesn’t happen on each repetition. In 
some cases, the number of repeated trials is fixed in advance and we are 
interested in the number of times a particular event (called a “success”) occurs.  If 
the trials in these cases are independent and each success has an equal chance 
of occurring, we have a binomial setting.

Definition:
A binomial setting arises when we perform several independent trials of the 
same chance process and record the number of times that a particular 
outcome occurs. The four conditions for a binomial setting are

• Binary? The possible outcomes of each trial can be classified as 
“success” or “failure.”

• Independent? Trials must be independent; that is, knowing the result 
of one trial must not have any effect on the result of any other trial.

• Number? The number of trials n of the chance process must be fixed 
in advance.

• Success? On each trial, the probability p of success must be the 
same.

B

I

N

S
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Binomial Random Variable

Consider tossing a coin n times. Each toss gives either heads or tails. 
Knowing the outcome of one toss does not change the probability of 
an outcome on any other toss.  If we define heads as a success, then 
p is the probability of a head and is 0.5 on any toss.

The number of heads in n tosses is a binomial random variable X. 
The probability distribution of X is called a binomial distribution.

Definition:

The count X of successes in a binomial setting is a binomial random 
variable. The probability distribution of X is a binomial distribution with 
parameters n and p, where n is the number of trials of the chance process 
and p is the probability of a success on any one trial. The possible values of 
X are the whole numbers from 0 to n.

Note: When checking the Binomial condition, be sure to check the 
BINS and make sure you’re being asked to count the number of 
successes in a certain number of trials!
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Binomial Probabilities

In a binomial setting, we can define a random variable (say, X) as the 
number of successes in n independent trials. We are interested in 
finding the probability distribution of X.

Each child of a particular pair of parents has probability 0.25 of 
having type O blood. Genetics says that children receive genes from 
each of their parents independently. If these parents have 5 children, 
the count X of children with type O blood is a binomial random 
variable with n = 5 trials and probability p = 0.25 of a success on 
each trial. In this setting, a child with type O blood is a “success” (S) 
and a child with another blood type is a “failure” (F). 
What’s P(X = 2)?

P(SSFFF) = (0.25)(0.25)(0.75)(0.75)(0.75) = (0.25)2(0.75)3 = 0.02637 

However, there are a number of different arrangements in which 2 out of 
the 5 children have type O blood:

SFSFF SFFSF SFFFS FSSFF

FSFSF FSFFS FFSSF FFSFS FFFSS

SSFFF

Verify that in each arrangement, P(X = 2) = (0.25)2(0.75)3 = 0.02637

Therefore, P(X = 2) = 10(0.25)2(0.75)3 = 0.2637 

Example
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+Binomial Coefficient

Note, in the previous example, any one arrangement of 2 S’s and 3 F’s 
had the same probability.  This is true because no matter what 
arrangement, we’d multiply together 0.25 twice and 0.75 three times.

We can generalize this for any setting in which we are interested in k
successes in n trials.  That is,
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P(X  k)  P(exactly k successes in n trials)

= number of arrangements  pk (1 p)nk

Definition:

The number of ways of arranging k successes among n observations is 
given by the binomial coefficient

for k = 0, 1, 2, …, n where

n! = n(n – 1)(n – 2)•…•(3)(2)(1)
and 0! = 1.

n

k










n!

k!(n  k)!

+Binomial Probability

The binomial coefficient counts the number of different ways in 
which k successes can be arranged among n trials.  The 
binomial probability P(X = k) is this count multiplied by the 
probability of any one specific arrangement of the k successes.
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If X has the binomial distribution with n trials and probability p of success on 
each trial, the possible values of X are 0, 1, 2, …, n. If k is any one of 
these values, 

Binomial Probability

P(X  k) 
n

k








pk (1 p)nk

Probability of 
n-k failures

Number of 
arrangements 
of k successes

Probability of k
successes
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+Example: Inheriting Blood Type

Each child of a particular pair of parents has probability 0.25 of having blood 
type O. Suppose the parents have 5 children

(a) Find the probability that exactly 3 of the children have type O blood.

P(X  3) 
5

3








(0.25)3(0.75)2 10(0.25)3(0.75)2  0.08789

(b) Should the parents be surprised if more than 3 of their children have 
type O blood?

Let X = the number of children with type O blood. We know X has a binomial 
distribution with n = 5 and p = 0.25.

P(X  3)  P(X  4)  P(X  5)


5

4








(0.25)4 (0.75)1 

5

5








(0.25)5(0.75)0

 5(0.25)4 (0.75)1 1(0.25)5(0.75)0

 0.01465 0.00098  0.01563

To answer this, we need to find P(X > 3).

Since there is only a 
1.5% chance that more 
than 3 children out of 5 
would have Type O 
blood, the parents 
should be surprised!

+Mean and Standard Deviation of a Binomial 
Distribution

We describe the probability distribution of a binomial random variable just like 
any other distribution – by looking at the shape, center, and spread. Consider 
the probability distribution of X = number of children with type O blood in a 
family with 5 children.
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Shape: The probability distribution of X is skewed to 
the right. It is more likely to have 0, 1, or 2 children 
with type O blood than a larger value.

Center: The median number of children with type O 
blood is 1.  Based on our formula for the mean:

X  xi pi  (0)(0.2373)1(0.39551) ... (5)(0.00098)
1.25

Spread: The variance of X is X
2  (xi X )2 pi  (01.25)2(0.2373) (11.25)2(0.3955)  ...

(51.25)2(0.00098)  0.9375

The standard deviation  of X is X  0.9375 0.968

xi 0 1 2 3 4 5

pi 0.2373 0.3955 0.2637 0.0879 0.0147 0.00098
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+Mean and Standard Deviation of a Binomial 
Distribution

Notice, the mean µX = 1.25 can be found another way. Since each 
child has a 0.25 chance of inheriting type O blood, we’d expect 
one-fourth of the 5 children to have this blood type.  That is, µX

= 5(0.25) = 1.25. This method can be used to find the mean of 
any binomial random variable with parameters n and p.
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If a count X has the binomial distribution with number of trials n and 
probability of success p, the mean and standard deviation of X are

Mean and Standard Deviation of a Binomial Random Variable

X  np

X  np(1 p)

Note: These formulas work ONLY for binomial distributions.  
They can’t be used for other distributions!

+Example: Bottled Water versus Tap Water

Mr. Bullard’s 21 AP Statistics students did the Activity on page 340. If we assume the 
students in his class cannot tell tap water from bottled water, then each has a 1/3 
chance of correctly identifying the different type of water by guessing.  Let X = the 
number of students who correctly identify the cup containing the different type of water.

Find the mean and standard deviation of X.

Since X is a binomial random variable with parameters n = 21 and p = 1/3, we can 
use the formulas for the mean and standard deviation of a binomial random 
variable.

X  np

 21(1/3)  7

 X  np(1 p)

 21(1/3)(2 /3)  2.16

We’d expect about one-third of his 
21 students, about 7, to guess 
correctly.

If the activity were repeated many 
times with groups of 21 students 
who were just guessing, the 
number of correct identifications 
would differ from 7 by an average of 
2.16.
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+

In practice, the binomial distribution gives a good approximation as long as we don’t 
sample more than 10% of the population.

Binomial Distributions in Statistical Sampling

The binomial distributions are important in statistics when we want to 
make inferences about the proportion p of successes in a population.

Suppose 10% of CDs have defective copy-protection schemes that can harm 
computers. A music distributor inspects an SRS of 10 CDs from a shipment of 
10,000.  Let X = number of defective CDs.  What is P(X = 0)? Note, this is not 
quite a binomial setting.  Why?
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The actual probability is P(no defectives) 
9000

10000


8999

9999


8998

9998
 ...

8991

9991
0.3485

P(X  0) 
10

0









(0.10)0(0.90)10  0.3487Using the binomial distribution,

When taking an SRS of size n from a population of size N, we can use a 
binomial distribution to model the count of successes in the sample as 
long as

n 
1

10
N

Sampling Without Replacement Condition

+Normal Approximation for Binomial Distributions

As n gets larger, something interesting happens to the shape of a 
binomial distribution.  The figures below show histograms of 
binomial distributions for different values of n and p. What do 
you notice as n gets larger?
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Suppose that X has the binomial distribution with n trials and success 
probability p. When n is large, the distribution of X is approximately 
Normal with mean and standard deviation

As a rule of thumb, we will use the Normal approximation when n is so 
large that np ≥ 10 and n(1 – p) ≥ 10.  That is, the expected number of 
successes and failures are both at least 10.

Normal Approximation for Binomial Distributions

X  np X  np(1 p)
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+Example: Attitudes Toward Shopping

Sample surveys show that fewer people enjoy shopping than in the past. A survey asked a nationwide 
random sample of 2500 adults if they agreed or disagreed that “I like buying new clothes, but 
shopping is often frustrating and time-consuming.” Suppose that exactly 60% of all adult US 
residents would say “Agree” if asked the same question. Let X = the number in the sample who 
agree. Estimate the probability that 1520 or more of the sample agree.

1) Verify that X is approximately a binomial random variable.

  np  2500(0.60) 1500

  np(1 p)  2500(0.60)(0.40)  24.49
z 

15201500

24.49
 0.82

2) Check the conditions for using a Normal approximation.

B: Success = agree, Failure = don’t agree
I: Because the population of U.S. adults is greater than 25,000, it is reasonable to assume the 
sampling without replacement condition is met.
N: n = 2500 trials of the chance process
S: The probability of selecting an adult who agrees is p = 0.60

Since np = 2500(0.60) = 1500 and n(1 – p) = 2500(0.40) = 1000 are both at least 10, we may use 
the Normal approximation.

3) Calculate P(X ≥ 1520) using a Normal approximation.

P(X 1520)  P(Z  0.82) 1 0.7939  0.2061
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Geometric Settings

In a binomial setting, the number of trials n is fixed and the binomial random variable 
X counts the number of successes. In other situations, the goal is to repeat a 
chance behavior until a success occurs.  These situations are called geometric 
settings.

Definition:
A geometric setting arises when we perform independent trials of the same 
chance process and record the number of trials until a particular outcome 
occurs. The four conditions for a geometric setting are

• Binary? The possible outcomes of each trial can be classified as 
“success” or “failure.”

• Independent? Trials must be independent; that is, knowing the result 
of one trial must not have any effect on the result of any other trial.

• Trials? The goal is to count the number of trials until the first success 
occurs.

• Success? On each trial, the probability p of success must be the 
same.

B

I

T

S
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Geometric Random Variable

In a geometric setting, if we define the random variable Y to be the 
number of trials needed to get the first success, then Y is called a 
geometric random variable. The probability distribution of Y is 
called a geometric distribution.

Definition:

The number of trials Y that it takes to get a success in a geometric setting is 
a geometric random variable. The probability distribution of Y is a 
geometric distribution with parameter p, the probability of a success on 
any trial. The possible values of Y are 1, 2, 3, ….

Note: Like binomial random variables, it is important to be able to 
distinguish situations in which the geometric distribution does and 
doesn’t apply!

+Example: The Birthday Game

Read the activity on page 398.  The random variable of interest in this game is Y = the 
number of guesses it takes to correctly identify the birth day of one of your teacher’s 
friends.  What is the probability the first student guesses correctly?  The second? Third? 
What is the probability the kth student guesses corrrectly?

Verify that Y is a geometric random variable.

P(Y 1) 1/7

B: Success = correct guess, Failure = incorrect guess
I: The result of one student’s guess has no effect on the result of any other guess.
T: We’re counting the number of guesses up to and including the first correct guess.
S: On each trial, the probability of a correct guess is 1/7.

Calculate P(Y = 1), P(Y = 2), P(Y = 3), and P(Y = k) 

P(Y  2)  (6 /7)(1/7)  0.1224
P(Y  3)  (6 /7)(6 /7)(1/7)  0.1050
Notice the pattern?

If Y has the geometric distribution with probability p of 
success on each trial, the possible values of Y are 
1, 2, 3, … . If k is any one of these values,

P(Y  k)  (1 p)k1 p

Geometric Probability
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+Mean of a Geometric Distribution

The table below shows part of the probability distribution of Y. We can’t show the 
entire distribution because the number of trials it takes to get the first success 
could be an incredibly large number.
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Shape: The heavily right-skewed shape is 
characteristic of any geometric distribution. That’s 
because the most likely value is 1.

Center: The mean of Y is µY = 7. We’d expect it to 
take 7 guesses to get our first success.

Spread: The standard deviation of Y is σY = 6.48. If the class played the Birth Day 
game many times, the number of homework problems the students receive would differ 
from 7 by an average of 6.48.

yi 1 2 3 4 5 6 …

pi 0.143 0.122 0.105 0.090 0.077 0.066

If Y is a geometric random variable with probability p of success on 
each trial, then its mean (expected value) is E(Y) = µY = 1/p.

Mean (Expected Value) of Geometric Random Variable

+
Section 6.3
Binomial and Geometric Random Variables

In this section, we learned that…

 A binomial setting consists of n independent trials of the same chance 
process, each resulting in a success or a failure, with probability of success 
p on each trial. The count X of successes is a binomial random variable. 
Its probability distribution is a binomial distribution.

 The binomial coefficient counts the number of ways k successes can be 
arranged among n trials.

 If X has the binomial distribution with parameters n and p, the possible 
values of X are the whole numbers 0, 1, 2, . . . , n. The binomial probability 
of observing k successes in n trials is

Summary

P(X  k) 
n

k








pk (1 p)nk
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+
Section 6.3
Binomial and Geometric Random Variables

In this section, we learned that…

 The mean and standard deviation of a binomial random variable X are 

 The Normal approximation to the binomial distribution says that if X is a 
count having the binomial distribution with parameters n and p, then when n 
is large, X is approximately Normally distributed. We will use this 
approximation when np ≥ 10 and n(1 - p) ≥ 10.

Summary

X  np

X  np(1 p)

+
Section 6.3
Binomial and Geometric Random Variables

In this section, we learned that…

 A geometric setting consists of repeated trials of the same chance process 
in which each trial results in a success or a failure; trials are independent; 
each trial has the same probability p of success; and the goal is to count the 
number of trials until the first success occurs. If Y = the number of trials 
required to obtain the first success, then Y is a geometric random variable. 
Its probability distribution is called a geometric distribution.

 If Y has the geometric distribution with probability of success p, the possible 
values of Y are the positive integers 1, 2, 3, . . . . The geometric probability 
that Y takes any value is

 The mean (expected value) of a geometric random variable Y is 1/p.

Summary

P(Y  k)  (1 p)k1 p


