

* Section 5.1 Randomness, Probability, and Simulation

Learning Objectives

After this section, you should be able to...

- ✓ DESCRIBE the idea of probability
- DESCRIBE myths about randomness
- DESIGN and PERFORM simulations

Example: Golden Ticket Parking Lottery											
	Wha	d the exan It is the pr Inners fro	robabi	ility	that a fai		would res	sult in two)		
	Students			Labels			Reading across row 139 in Table D, look at pairs of digits until you				
	AP \$	AP Statistics Class Other			-28		see two different labels from 01- 95. Record whether or not both winners are members of the AP				
	Othe				-95						
	Skip numbers from 96-00					Statistics Class.					
55	58	89 94	04 7	70	70 84	10 98 43	56 35	69 34	48 39	45 17	
Х	X	X X	🖌 🚺	Х	X X	✔ Sk X	X X	X X	X X	X 🗸	
Ν	lo	No	No		No	No	No	No	No	No	
19	12	97 51 32	58 1	13	04 84	51 44	72 32	18 19	40 00 36	00 24 28	
1	✓	Sk X X	X •	/	✓ X	X X	X X	1 I	X Sk X	Sk∣✔∣✔	
Y	es	No	No		No	No	No	Yes	No	Yes	
		n 18 repet mes, so th					winners ca 16.67%.	ame from	the AP Sta	atistics	

Section 5.1 Randomness, Probability, and Simulation

Summary

In this section, we learned that...

- A chance process has outcomes that we cannot predict but have a regular distribution in many distributions.
- The law of large numbers says the proportion of times that a particular outcome occurs in many repetitions will approach a single number.
- The long-term relative frequency of a chance outcome is its probability between 0 (never occurs) and 1 (always occurs).
- Short-run regularity and the law of averages are myths of probability.
- A simulation is an imitation of chance behavior.

<section-header><page-header><text><text><text><text><section-header><text>

 Example: Distance Learning Distance-learning courses are rapidly gaining popularity among college students. Randomly select an undergraduate student who is taking distance-learning courses for credit and record the student's age. Here is the probability model: 								
Age group (yr):	18 to 23	24 to 29	30 to 39	40 or over	Probability Rules			
Probability:	0.57	0.17	0.14	0.12				
 (a) Show that this is a legitimate probability model. Each probability is between 0 and 1 and 0.57 + 0.17 + 0.14 + 0.12 = 1 (b) Find the probability that the chosen student is not in the traditional college age group (18 to 23 years). P(not 18 to 23 years) = 1 - P(18 to 23 years) = 1 - 0.57 = 0.43 								

Section 5.2 Probability Rules

Summary

In this section, we learned that...

- V Events A and B are mutually exclusive (disjoint) if they have no outcomes in common. If A and B are disjoint, P(A or B) = P(A) + P(B).
- A two-way table or a Venn diagram can be used to display the sample space for a chance process.
- ✓ The intersection (A ∩ B) of events A and B consists of outcomes in both A and B.
- ✓ The **union** (*A* ∪ *B*) of events *A* and *B* consists of all outcomes in event *A*, event *B*, or both.
- ✓ The general addition rule can be used to find P(A or B):

P(A or B) = P(A) + P(B) - P(A and B)

Consider <i>E</i> : the g	The two-way table on page rade comes from an EPS cour rade is lower than a B.	e 314.		e events		Conditional Probability and Independence	
		G	arade L		nal		
S	chool	Α	в	Below B	Total	Pro	
Li	beral Arts	2,142	1,890	2,268	6300	ba	
Er	ngineering and Physical Sciences	368	432	800	1600	bili	
He	ealth and Human Services	882	630	588	2100	ţ	
	Total	3392	2952	3656	10000	bug	
Find <i>P</i> (<i>L</i>)) P(L) = <mark>3656</mark> / 10000 =	= 0.365	6	J	/	Indepe	
Find <i>P</i> (<i>E</i>	' L)					enc	
Find <i>P</i> (<i>L</i>	$P(E \mid L) = 800 / 3656 = 0.2188$ Find $P(L \mid E)$ $P(L \mid E) = 800 / 1600 = 0.5000$						

Section 5.3 Conditional Probability and Independence

Summary

In this section, we learned that...

- ✓ If one event has happened, the chance that another event will happen is a conditional probability. P(B|A) represents the probability that event B occurs given that event A has occurred.
- Events A and B are independent if the chance that event B occurs is not affected by whether event A occurs. If two events are mutually exclusive (disjoint), they cannot be independent.
- When chance behavior involves a sequence of outcomes, a tree diagram can be used to describe the sample space.
- ✓ The **general multiplication rule** states that the probability of events *A* and *B* occurring together is $P(A \cap B)=P(A) \cdot P(B|A)$
- ✓ In the special case of *independent* events, $P(A \cap B) = P(A) \cdot P(B)$
- ✓ The conditional probability formula states $P(B|A) = P(A \cap B) / P(A)$