

One-Sample *t* Interval for a Population Mean (known σ)

Example: Video Screen Tension A manufacturer of high-resolution video terminals must control the tension on the mesh of fine wires that lies behind the surface of the viewing screen. Too much tension will tear the mesh, and too little will allow wrinkles. The tension is measured by an electrical device with output readings in millivolts (mV). Some variation is inherent in the production process.

Here are the tension readings from a random sample of 20 screens from a single day's production:

269.5	297.0	269.6	283.3	304.8	280.4	233.5	257.4	317.5	327.4
264.7	307.7	310.0	343.3	328.1	342.6	338.8	340.1	374.6	336.1

What do you need to do?

- 1. Create a list with the data
- 2. Graph it
- 3. Check conditions
- 4. Find the mean and standard deviation
- 5. Find the confidence interval
- 6. Make your conclusion in the context of the question asked

