+

Section 7.4 Transforming Random Variables

(DAY 1)

Learning Objectives

After this section, you should be able to...

- DESCRIBE the effect of performing a linear transformation on a random variable (DAY 1)
- COMBINE random variables and CALCULATE the resulting mean and standard deviation (DAY 1)
- CALCULATE and INTERPRET probabilities involving combinations and Normal random variables (DAY 2)
- √ HW: 7-4 Homework Handout -- #'s 24-42

Linear Transformations

- In previous Section, we learned that the mean and standard deviation give us important information about a random variable.
- In this section, we'll learn how the mean and standard deviation are affected by transformations on random variables.

ACTIVITY: The Wolf STAT Company:

SUMMARY OF ACTIVITY FINDINGS

- 1. Adding (or subtracting) a constant, a, to each observation:
 - Adds a to measures of center and location.
 - · Does not change the shape or measures of spread.

2. Multiplying (or dividing) each observation by a constant, b:

- Multiplies (divides) measures of center and location by b.
- Multiplies (divides) measures of spread by |b|.
- · Does not change the shape of the distribution.

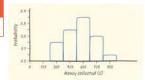
Transforming Random Variable

Linear Transformations – Add/Subtract Constants

Consider Pete's Jeep Tours again. We defined *C* as the amount of money Pete collects on a randomly selected day.

Collected c _i	300	450	600	750	900
Probability <i>p_i</i>	0.15	0.25	0.35	0.20	0.05

The mean of *C* is \$562.50 and the standard deviation is \$163.50.

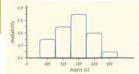


Transforming Random Variables

It costs Pete \$100 per trip to buy permits, gas, and a ferry pass. The random variable V describes the profit Pete makes on a randomly selected day.

Profit v _i	200	350	500	650	800
Probability p _i	0.15	0.25	0.35	0.20	0.05

The mean of V is \$462.50 and the standard deviation is \$163.50.



Compare the shape, center, and spread of the two probability distributions.

Linear Transformations - Add/Subtract Constants

How does adding or subtracting a constant affect a random variable?

Effect on a Random Variable of Adding (or Subtracting) a Constant

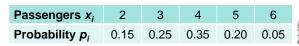
Adding the same number "a" (which could be negative) to each value of a random variable:

- "a" is added to measures of center and location (mean, median, quartiles, percentiles).
- Does NOT change measures of spread (range, IQR, standard deviation).
- Does not change the shape of the distribution.

Transforming Random Variables

Linear Transformations – Multiply/Divide Constants

Pete's Jeep Tours offers a popular half-day trip in a tourist area. There must be at least 2 passengers for the trip to run, and the vehicle will hold up to 6 passengers. **Define X as the number of passengers on a randomly selected day**.

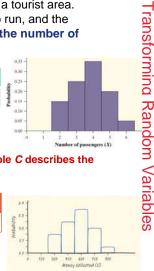


The mean of X is 3.75 and the standard deviation is 1.090.

Pete charges \$150 per passenger. The random variable C describes the amount Pete collects on a randomly selected day.

Collected c _i	300	450	600	750	900
Probability p _i	0.15	0.25	0.35	0.20	0.05

The mean of C is \$562.50 and the standard deviation is \$163.50.



Compare the shape, center, and spread of the two probability distributions.

Linear Transformations – Multiply/Divide Constants

How does multiplying or dividing by a constant affect a random variable?

Effect on a Random Variable of Multiplying (Dividing) by a Constant

Multiplying (or dividing) each value of a random variable by a number *b*:

- Multiplies (divides) measures of center and location (mean, median, quartiles, percentiles) by b.
- Multiplies (divides) measures of spread (range, IQR, standard deviation) by |b|.
- · Does not change the shape of the distribution.

Note: Multiplying a random variable by a constant b multiplies the variance by b^2 .

Transforming Random Variables

Linear Transformations - CONCLUSION

Whether we are dealing with data or random variables, the effects of a linear transformation are the same.

Effect on a Linear Transformation on the Mean and Standard Deviation

If Y = a + bX is a linear transformation of the random variable X, then

- The probability distribution of *Y* has the same shape as the probability distribution of *X*.
- $\mu_Y = a + b\mu_X$.
- $\sigma_Y = |b| \sigma_X$ (since *b* could be a negative number).

Section 7.4 Combining Random Variables

(DAY 2)

Learning Objectives

After this section, you should be able to...

- CALCULATE and INTERPRET probabilities involving combinations and Normal random variables (DAY 2)
- √ HW: 7-4 Homework Handout -- #'s 49-63

Combining Random Variables

So far, we have looked at settings that involve a single random variable. Many interesting statistics problems require us to examine two or more random variables.

Let's investigate the result of adding and subtracting random variables:

Let X= the number of passengers on a randomly selected trip with Pete's Jeep Tours.

Let Y = the number of passengers on a randomly selected trip with Erin's Adventures.

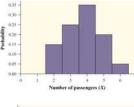
Define T = X + Y. What are the mean and variance of T?

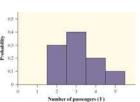
Passengers x_i 2 3 4 5 6 **Probability** p_i 0.15 0.25 0.35 0.20 0.05

Mean $\mu_X = 3.75$ Standard Deviation $\sigma_X = 1.090$

Passengers y _i	2	3	4	5
Probability p _i	0.3	0.4	0.2	0.1

Mean $\mu_Y = 3.10$ Standard Deviation $\sigma_Y = 0.943$





Combining Random Variables – The Expected Value

How many total passengers can Pete and Erin expect on a randomly selected day?

- Since Pete expects $\mu_{\rm Y}$ = 3.75 and Erin expects $\mu_{\rm Y}$ = 3.10,
- They will average a total of 3.75 + 3.10 = 6.85 passengers per trip.
- We can generalize this result as follows:

Mean of the Sum of Random Variables

For any two random variables X and Y, if T = X + Y, then the expected value of T is

$$E(T) = \mu_T = \mu_X + \mu_Y$$

In general, the mean of the sum of several random variables is the sum of their means.

Combining Random Variables

Combining Random Variables – Measure of Variability

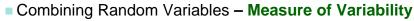
How much variability is there in the total number of passengers who go on Pete's and Erin's tours on a randomly selected day?

- 1. To determine this, we need to find the probability distribution of T.
- 2. The only way to determine the probability for any value of T is <u>if X and Y</u> are INDEPENDENT random variables.

Definition:

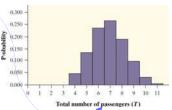
If knowing whether any event involving *X* alone has occurred tells us nothing about the occurrence of any event involving *Y* alone, and vice versa, then *X* and *Y* are **independent random variables.**

- <u>Probability models often assume independence when</u> the random variables describe outcomes that appear unrelated to each other.
- You should always ask whether the assumption of independence seems reasonable.
- •In our investigation, it is <u>reasonable to assume X and Y are independent</u> since the siblings operate their tours in different parts of the country.



Let T = X + Y. Consider all possible combinations of the values of X x_i p_i y_i p_i $t_i = x_i + y_i$ p_i 0.300

~1	Pi	. 21	PI	4-41.11	PI
2	0.15	2	0.3	+4+	(0.15)(0.3) = 0.045
2	0.15	3	0.4	5	(0.15)(0.4) = 0.060
2	0.15	4	0.2	6	(0.15)(0.2) = 0.030
2	0.15	5	0.1	7	(0.15)(0.1) = 0.015
3	0.25	2	0.3	5	(0.25)(0.3) = 0.075
3	0.25	3	0.4	6	(0.25)(0.4) = 0.100
3	0.25	4	0.2	7	(0.25)(0.2) = 0.050
3	0.25	5	0.1	8	(0.25)(0.1) = 0.025
4	0.35	2	0.3	6	(0.35)(0.3) = 0.105
4	0.35	3	0.4	7	(0.35)(0.4) = 0.140
4	0.35	4	0.2	8	(0.35)(0.2) = 0.070
4	0.35	5	0.1	9	(0.35)(0.1) = 0.035
5	0.20	2	0.3	7	(0.20)(0.3) = 0.060
5	0.20	3	0.4	8	(0.20)(0.4) = 0.080
5	0.20	4	0.2	9	(0.20)(0.2) = 0.040
5	0.20	5	0.1	10	(0.20)(0.1) = 0.020
6	0.05	2	0.3	8	(0.05)(0.3) = 0.015
6	0.05	3	0.4	9	(0.05)(0.4) = 0.020
6	0.05	4	0.2	10	(0.05)(0.2) = 0.010
6	0.05	5	0.1	11	(0.05)(0.1) = 0.005



Recall: $\mu_T = \mu_X + \mu_Y = 6.85$

$$\sigma_T^2 = \sum (t_i - \mu_T)^2 p_i$$
= $(4 - 6.85)^2 (0.045) + \dots + (11 - 6.85)^2 (0.005) = 2.0775$

Note: $\sigma_X^2 = 1.1875 \text{ and } \sigma_Y^2 = 0.89$

What do you notice about the variance of *T*?

As the preceding example illustrates, when we add two independent random variables, their variances add. Standard deviations do not add.

Variance of the Sum of Random Variables

For any two *independent* random variables X and Y, if T = X + Y, then the variance of T is

$$\sigma_T^2 = \sigma_X^2 + \sigma_Y^2$$

In general, the variance of the sum of several independent random variables is the sum of their variances.

Remember that you can add variances only if the two random variables are $\overset{\bigcirc}{\omega}$ independent,

and that you can NEVER add standard deviations!

Note: the more random variables you add, means more variability!!!!!!!!!

Combining Random Variables – General Rules

The same rules apply when we subtract <u>Independent</u>

Random Variables:

Mean of the Difference of Random Variables

For any two random variables X and Y, if D = X - Y, then the expected value of D is

$$E(D) = \mu_D = \mu_X - \mu_Y$$

In general, the mean of the difference of several random variables is the difference of their means. *The order of subtraction is important!*

Variance of the Difference of Random Variables

For any two *independent* random variables X and Y, if D = X - Y, then the variance of D is

$$\sigma_D^2 = \sigma_X^2 + \sigma_Y^2$$

In general, the variance of the difference of two independent random variables is the sum of their variances.

Combining Random Variab

Combining Random Variables

Combining Normal Random Variables

If a random variable is Normally distributed, we can use its mean and standard deviation to compute probabilities.

⇒ An important fact about Normal random variables is that... any sum or difference of independent Normal random variables is also Normally distributed.

Example

Mr. Starnes likes between 8.5 and 9 grams of sugar in his hot tea. Suppose the amount of sugar in a randomly selected packet follows a Normal distribution with mean 2.17 g and standard deviation 0.08 g. If Mr. Starnes selects 4 packets at random, what is the probability his tea will taste right?

Let X = the amount of sugar in a randomly selected packet. Then, $T = X_1 + X_2 + X_3 + X_4$. We want to find $P(8.5 \le T \le 9)$.

$$\mu_T = \mu_{X1} + \mu_{X2} + \mu_{X3} + \mu_{X4} = 2.17 + 2.17 + 2.17 + 2.17 = 8.68$$

$$\sigma_T^2 = \sigma_{X_1}^2 + \sigma_{X_2}^2 + \sigma_{X_3}^2 + \sigma_{X_4}^2 = (0.08)^2 + (0.08)^2 + (0.08)^2 + (0.08)^2 = 0.0256$$

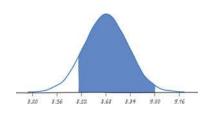
$$\sigma_T = \sqrt{0.0256} = 0.16$$

Combining Normal Random Variables

Example (continued)

X = the amount of sugar in a randomly selected packet. μ_T = 8.68 T = X_1 + X_2 + X_3 + X_4 . σ_T = $\sqrt{0.0256}$ = 0.16

We want to find $P(8.5 \le T \le 9)$



Method 1: Calculate Z-Scores
$$8.5 - 8.68 = -1.13$$
 and $z = \frac{9 - 8.68}{0.16} = 2.00$

 $P(-1.13 \le Z \le 2.00) = 0.9772 - 0.1292 = 0.8480$

Method 2: State N(8.68,.16). Then use normalcdf(8.5, 9, 8.68, .16) = 0.8469

There is about an 85% chance Mr. Starnes's tea will taste right.

Combining Random Variables - TRY THESE

Random variables. Given independent random variables with means and standard deviations as shown, find the mean and standard deviation of:

- a) 2Y + 20
- b) 3X
- c) 0.25X + Y
- d) X 5Y
- e) $X_1 + X_2 + X_3$

	Mean	SD
X	80	12
Y	12	3

Kittens. In a litter of seven kittens, three are female. You pick two kittens at random.

- a) Create a probability model for the number of male kittens you get.
- b) What's the expected number of males?
- c) What's the standard deviation?

	RANSON VARIABLE EXAMPLE X and Y are Independent Lx = 80 Ly = 12
	L = 2(12) + 20 $L = 44L = 2(12) + 20$ $L = 44L = 2(12) + 20$ $L = 44L = 2(12) + 20$ $L = 44L = 44$
(3)	3x: $E(3x) = 3 \cdot h_x = 3 \cdot 80$ $[A = 540]$ $SD(3x) = 3 \cdot \epsilon_x = 3 \cdot 12$ $[\epsilon = 36]$
@	$\begin{array}{ll} 25x + 7: & & \\ E(.25x + 7) = .25(80 + 12 = 10 = 32) \\ SD(.25x + 7) = \sqrt{(25)^2 C_x^2 + G_y^2} \\ & = \sqrt{.0425(144) + 9} = 148 G = 4.2424 \end{array}$
0	$X - 57 = E(x - 57) = \frac{u_x - 5 u_y = 80^{-5}(1z) = [u = 20]}{50(x - 57)} = \int (6x)^2 + (-5)^2 (6y)^2 = \int 12^2 + 25(9) = \int 369$
<u>@</u>	$\begin{cases} X_1 + X_2 + X_3 : & G = 19,209 \\ E(x_1 + x_2 + x_3) = 80 + 80 + 80 & A = 240 \\ SD(x_1 + x_2 + x_3) = \sqrt{12^2 + 12^2 + 12^2} = \sqrt{432} \end{cases}$

(Chia				+
<u> </u>	KITTENS EXAMPLE	7	(3 Femile; 1	+ male) - INDEPENDENT
@	X = Rendomly	Select a m	rde Kitten	
141	Number of miles	0	1	Z
101	P(numbers + miles)	(3/7)(2/6) = 6/42	1-,1429-,2857:	(4/7)(3/7) = 12/42
District 1		7 .1429	-5714	-2857
, , ,		probability femile only	A	probability mile only
(b)	E(#meles) = 0(,1420	+ (4152714) +	2 (.2857)	1,14 males
0	$G_{X}^{2} = (6-1.14)^{2}(.1424)$	+(1-1.14)2(,5714)	+ (2-1.14)	12(,2857)
	62 x = ,408 216	6 ~ .64 mil	0	

Transforming and Combining Random Variables

Summary

In this section, we learned that...

- Adding a constant a (which could be negative) to a random variable increases (or decreases) the mean of the random variable by a but does not affect its standard deviation or the shape of its probability distribution.
- ✓ Multiplying a random variable by a constant b (which could be negative) multiplies the mean of the random variable by b and the standard deviation by |b| but does not change the shape of its probability distribution.
- ✓ A **linear transformation** of a random variable involves adding a constant a, multiplying by a constant b, or both. If we write the linear transformation of X in the form Y = a + bX, the following about are true about Y:
 - ✓ **Shape:** same as the probability distribution of *X*.
 - ✓ Center: $\mu_Y = a + b\mu_X$
 - ✓ Spread: $\sigma_Y = |b|\sigma_X$

+

Transforming and Combining Random Variables

Summary

In this section, we learned that...

✓ If X and Y are any two random variables,

$$\mu_{X\pm Y} = \mu_X \pm \mu_Y$$

✓ If X and Y are independent random variables

$$\sigma_{X\pm Y}^2 = \sigma_X^2 + \sigma_Y^2$$

The sum or difference of independent Normal random variables follows a Normal distribution.