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Section 12.2
Transforming to Achieve Linearity

Learning Objectives

After this section, you should be able to...

v USE transformations involving powers and roots to achieve linearity
for a relationship between two variables

v MAKE predictions from a least-squares regression line involving
transformed data

v USE transformations involving logarithms to achieve linearity for a
relationship between two variables

v DETERMINE which of several transformations does a better job of
producing a linear relationship



Introduction

In Chapter 3, we learned how to analyze relationships between two
guantitative variables that showed a linear pattern. When two-variable
data show a curved relationship, we must develop new techniques for
finding an appropriate model. This section describes several simple
transformations of data that can straighten a nonlinear pattern.

Once the data have been transformed to achieve linearity, we can use
least-squares regression to generate a useful model for making
predictions. And if the conditions for regression inference are met, we can
estimate or test a claim about the slope of the population (true)
regression line using the transformed data.
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this section that understanding how simp
choose and use transformations to straighten nonlinear patterns.




Transforming with Powers and Roots

When you visit a pizza parlor, you order a pizza by its diameter—say, 10
inches, 12 inches, or 14 inches. But the amount you get to eat
depends on the area of the pizza. The area of a circle is 17 times the
square of its radius r. So the area of a round pizza with diameter x is

ﬂ(sz x| z,
area=7z—| =27 — |=—X
2 4 4

This is a power model of the form y = axP with a = /4 and p = 2.

Although a power model of the form y = ax?
describes the relationship between x and y
in this setting, there is a linear relationship
between xP and y.

If we transform the values of the

explanatory variable x by raising them to
the p power, and graph the points (x?, y),
the scatterplot should have a linear form.
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Example: Go Fish!

Imagine that you have been put in charge of organizing a fishing tournament in which prizes

will be given for the heaviest Atlantic Ocean rockfish caught. You know that many of the fish —_|1
caught during the tournament will be measured and released. You are also aware that using %
delicate scales to try to weigh a fish that is flopping around in a moving boat will probably not 2
yield very accurate results. It would be much easier to measure the length of the fish while on Q
the boat. What you need is a way to convert the length of the fish to its weight. 3
=
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Reference data on the length (in centimeters) and weight (in grams) for Atlantic Ocean rockfish of ®
several sizes is plotted. Note the clear curved shape. %
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Another way#o fransform the data to achieve linearity is
veight (liteetake the cube|root of the weight values and g'ra'ph the
odel of tbalferroot af \?\%l ht versus length. Note that the resulting
elatlonsbqatterplotalgjg as a linear form. *

Once we sfrajghten out the curved pattern in the original
riable hapattesplot, we fit a least- squares line to the transformed

data. This linearmodel can be used to predict values of

the response Varigble | | |
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Example: Go Fish!

Here is Minitab output from separate regression analyses of the two sets of transformed
Atlantic Ocean rockfish data.

Transformation 1: (length?, weight) Transformation 2: (length, ¥weight)
Predictor Coef SE Coef T P Predictor Coef SE Coef T P
Constant 4.066 6.902 0.59 0.563 Constant —0.02204 0.07762 -0.28 0.780
Length”3 0.0146774 0.0002404 61.07 0.000 Length 0.246616 0.002868 86.00 0.000
S = 18.8412 R-Sg = 99.5% R-Sqg(adj) = 99.5% S = 0.124161 R-Sg = 99.8% R-Sgladj) = 99.7%
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(b) Bivppihecdneabtastditbicn teatieR tray ¢o UogapEmiId K dicb eBefinbtéanticavicdras gokfisde.
that’s 36 centimeters long. Use the model from part (a) to predict the fish’s weight. Show
your work.

For tTARSIGEMMas N2 striaih B440666-00M44874(%6) g Ba.9 9ramams.
Predictions of fish weight using this model will be off by an average of about 19
grams. For transformation 2=8="90-12. that is, predictions of the cube root of fish

weighTa8mEPERABHAI 2R W@ﬂm@mw%
weight =8.856° = 694.6 grams
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Transforming with Powers and Roots

When experience or theory suggests that the relationship between two
variables is described by a power model of the form y = ax?, you now have
two strategies for transforming the data to achieve linearity.

1.Raise the values of the explanatory variable x to the p power and plot the
points (x",y).

2.Take the p' root of the values of the response variable y and plot the

points (X’W)-

What if you have no idea what power to choose? You could guess and test
until you find a transformation that works. Some technology comes with
built-in sliders that allow you to dynamically adjust the power and watch the
scatterplot change shape as you do.

data follow an unknown power model or any of several other common
mathematical models.
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Transforming with Logarithms

Not all curved relationships are described by power models. Some
relationships can be described by a logarithmic model of the form
y=a+ blog x.

Sometimes the relationship between y and x is based on repeated
multiplication by a constant factor. That is, each time x increases by 1 unit,
the value of y is multiplied by b. An exponential model of the form y = ab*
describes such multiplicative growth.

If an exponential model of the form y = ab* describes the relationship
between x and y, we can use logarithms to transform the data to produce
a linear relationship.

y = ab* W
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Transforming with Logarithms

We can rearrange the final equation as log y =log a + (log b)x. Notice
that log a and log b are constants because a and b are constants.

v So the equation gives a linear model relating the explanatory variable x
to the transformed variable log y.

Thus, if the relationship between two variables follows an exponential
model, and we plot the logarithm (base 10 or base e) of y against x, we
should observe a straight-line pattern in the transformed data.

If we fit a least-squares regression line to the transformed data, we can
find the predicted value of the logarithm of y for any value of the
explanatory variable x by substituting our x-value into the equation of the
line.

v To obtain the corresponding prediction for the response variable y, we
have to “undo” the logarithm transformation to return to the original units of
measurement. One way of doing this is to use the definition of a logarithm

as an exponent:
P log,a=x=b"=a
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Example: Moore’s Law and Computer Chips

Gordon Moore, one of the founders of Intel Corporation, predicted in 1965 that the number of

transistors on an integrated circuit chip would double every 18 months. This is Moore’s law, —_J
one way to measure the revolution in computing. Here are data on the dates and number of %
transistors for Intel microprocessors: 2
o
Processor Date Transistors §
e . 4004 1971 2,250 =1
Q
2000000000 + 8008 1972 2,500 =
L
° 8080 1974 5,000 >
E 15000000001 8086 1978 29,000 9
€ ‘ 286 1982 120,000 C<D
[ 386 1985 275,000 ®
500000000 ) 486 DX 1989 1,180,000 .
S
v Pentium 1993 3,100,000 D
04 s® @ = L o 5 . ® . Q)
v ' v " v Pentium Il 1997 7,500,000 =,
0 10 20 30 40 _ —t
Years since 1970 Pentium Il 1999 24,000,000 <
Pentium 4 2000 42,000,000
[tanium 2 2003 220,000,000
ltanium 2 w/9MB cache 2004 592,000,000
Dual-core Itanium 2 2006 1,700,000,000
Six-core Xeon 7400 2008  1,900,000,000

8-core Xeon Nehalem-EX 2010 2,300,000,000
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Example: Moore’s Law and Computer Chips

(a) A scatterplot of the natural logarithm (log base e or In) of the number of transistors on a
computer chip versus years since 1970 is shown. Based on this graph, explain why it would
be reasonable to use an exponential model to describe the relationship between number of
transistors and years since 1970.

ae®
.
-

0 10 20 30 40

Years since 1970

(b) Minitab output from a linear regression analysis on the transformed data is shown below.
Give the equation of the least-squares regression line. Be sure to define any variables you use.
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Predictor Coef SE Coef T p
Constant 7.0647 02672 26.44 0.000
Years since 1970 0.36583 0.01048 34.91 0.000
S = 0.544467 R-Sg = 98.9% R-Sg(adj) = 98.8%

— T :
In(transistors) = 7.0647 +0.36583(years since 1970)



Residual
n ¢ i

Example: Moore’s Law and Computer Chips

(c) Use your model from part (b) to predict the number of transistors on an Intel computer
chip in 2020. Show your work.

— T :
In(transistors) = 7.0647 + 0.36583(years since 1970)
= 7.0647 +0.36583(50) = 25.3562

log,a=x=Db"=a
: T
[A(transistors) = 25.3562 = log, (ransistors) = 25.362
ffansistors = e**® ~1.028- 10"

(d) A residual plot for the linear regression in part (b) is shown below. Discuss what this graph
tells you about the appropriateness of the model.
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The residual plot shows a distinct pattern, with the
residuals going from positive to negative to positive as
we move from left to right. But the residuals are small in
size relative to the transformed y-values. Also, the
scatterplot of the transformed data is much more linear
é - - - .| than the original scatterplot. We feel reasonably

~ Yearssince 1970 comfortable using this model to make predictions about

the number of transistors on a computer chip.



Power Models Again

When we apply the logarithm transformation to the response variable y in an
exponential model, we produce a linear relationship. To achieve linearity
from a power model, we apply the logarithm transformation to both
variables. Here are the details:

1.A power model has the form y = ax?, where a and p are constants.

2.Take the logarithm of both sides of this equation. Using properties of
logarithms,

log y = log(ax®) = log a + log(xP) = log a + p log x

The equation log y = log a + p log x shows that taking the logarithm of
both variables results in a linear relationship between log x and log y.

3. Look carefully: the power p in the power model becomes the slope of the
straight line that links log y to log x.

pattern. Then we can fit a least-squares regression line to the
transformed data and use the linear model to make predictions.
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Example: What’s a Planet, Anyway?

On July 31, 2005, a team of astronomers announced that they had discovered what appeared to
be a new planet in our solar system. Originally named UB313, the potential planet is bigger than
Pluto and has an average distance of about 9.5 billion miles from the sun. Could this new
astronomical body, now called Eris, be a new planet? At the time of the discovery, there were
nine known planets in our solar system. Here are data on the distance from the sun (in
astronomical units, AU) and period of revolution of those planets.
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Distance from sun Period of revolution
Planet (astronomical units) (Earth years)
Mercury 0.387 0.241 250 7
Venus 0.723 0.615 L 200
Earth 1.000 1.000 2 150 -
Mars 1.524 1.881 E, 100
Jupiter 5.203 11.862 50 —
Saturn 9.539 29.456 01 | | l |
Uranus 19.191 84.070 0 10 20 30 40
Neptune 30.061 164.810 Distance (AL)
Pluto 39.529 248.530

Describe the relationship between distance from the sun and period of revolution.

There appears to be a strong, positive, curved relationship between distance from the sun (AU)
and period of revolution (years).



Example: What’s a Planet, Anyway?

(a) Based on the scatterplots below, explain why a power model would provide a more __J
appropriate description of the relationship between period of revolution and distance from %
the sun than an exponential model. 0
o
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The scatterplot of In(period) versus distance is clearly curved, so an exponential model would not c3D
be appropriate. However, the graph of In(period) versus In(distance) has a strong linear pattern, Q
indicating that a power model would be more appropriate. é

(b) Minitab output from a linear regression analysis on the transformed data (In(distance),
In(period)) is shown below. Give the equation of the least-squares regression line. Be sure
to define any variables you use.

Predictor Coef SE Coef A8 =] //,/’”\\\\\
Constant 0.0002544 0.0001759 1.a5 0.191 | In( period) =0.0002544+1.49986 ( distance)

In(distance) 1.48986 0.00008 18598.27 0.000
S = 0.000393364 R-Sqg = 100.0% R-Sgladj) = 100.0%




Example: What’s a Planet, Anyway?

(c) Use your model from part (b) to predict the period of revolution for Eris, which is
9,500,000,000/93,000,000 = 102.15 AU from the sun. Show your work.

/_\ .
In( period) =0.0002544+1.49986 ( distance)

—0.0002544+1.49986 ( 10215 )
~6.939

6.939

pgri\odz " ~1032years

(d) A residual plot for the linear regression in part (b) is shown below. Do you expect your
prediction in part (c) to be too high, too low, or just right? Justify your answer.

0.00075

. Eris’s value for In(distance) is 6.939, which
would fall at the far right of the residual plot,
0.00025 d where all the residuals are positive.

0.00050

Residual
[ ]

0.00000

. Because residual = actual y - predicted y
I seems likely to be positive, we would expect
o our prediction to be too low.

—0.00025 - L]

—0.00050

In (distance)
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Section 12.2
Transforming to Achieve Linearity

In this section, we learned that...

v Nonlinear relationships between two quantitative variables can sometimes be
changed into linear relationships by transforming one or both of the variables.
Transformation is particularly effective when there is reason to think that the
data are governed by some nonlinear mathematical model.

v When theory or experience suggests that the relationship between two
variables follows a power model of the form y = ax®, there are two
transformations involving powers and roots that can linearize a curved pattern
In a scatterplot.

Option 1: Raise the values of the explanatory variable x to the power p, then
look at a graph of (x?, y).

Option 2: Take the p!" root of the values of the response variable y, then look at
a graph of (x, pt" root of y).



Section 12.2
Transforming to Achieve Linearity

v In a linear model of the form y = a + bx, the values of the response
variable are predicted to increase by a constant amount b for each
increase of 1 unit in the explanatory variable. For an exponential
model of the form y = ab*, the predicted values of the response variable
are multiplied by an additional factor of b for each increase of one unit
In the explanatory variable.

v A useful strategy for straightening a curved pattern in a scatterplot is to
take the logarithm of one or both variables. To achieve linearity when
the relationship between two variables follows an exponential model,
plot the logarithm (base 10 or base e) of y against x. When a power
model describes the relationship between two variables, a plot of log y
(In y) versus log x (In x) should be linear.

v Once we transform the data to achieve linearity, we can fit a least-
squares regression line to the transformed data and use this linear
model to make predictions.



