AP Statistics Summer Assignment 2019

Welcome to AP Statistics future statisticians! The purpose of this assignment is to make you comfortable exploring data analysis.

The summer assignment is composed of three parts.

1. Reading and Vocabulary: You will use a free online Statistical tutoring site that will give you information on variables and data displays. While reviewing the information on the site you will be completing a vocabulary list (see page 2 and 3). Follow the steps below:

- Go to www.stattrek.com
- Click on "AP Statistics" then "AP Tutorial"
- On the left side of the screen is a list of general topics. Under each general topic are a list of subtopics. You will read the following subtopics to complete the vocabulary list.

General Topic: Ex	ploring Data
Subtopics:	Variables
	Population vs Sample
	Central Tendency
	Variability
	Position
General Topic: Char	ts and Graphs
Subtopics:	Charts and Graphs
	Patterns in data
	Dotplots
	Histograms
	Stemplots
	Boxplots
	Scatterplots
	Comparing data sets

- 2. Practice Problems: After reading all the material above you should be able to complete the questions in the remaining pages of this packet. You should do so in the spaces provided.
- 3. A graphing calculator is a required tool for this class. The TI-84+ (preferred), or TI-83+ is recommended. As you complete the Practice Problems refer to the TI Guidebook to become familiar with the list and statistical functions. For an online calculator go to http://www.alcula.com/calculators/statistics/. Other tutorials are available on youtube.

Upon your return to school in September, you are expected to turn in this packet completed. You are expected to complete each part of the problems and to construct all data displays neatly. This assignment will be graded for correctness. If you have any questions, please feel free to e-mail me at ddorval@nrpsk12.org

Have a great summer!!

Part 1: Vocabulary List

Please read the definitions of each of the following terms from the information on the textbook or the stattrek website. We will review these as we learn them and use them often enough that you will understand them.

1. Categorical Variables	
2. Quantitative Variables	
3. Discrete Variables	
4. Continuous	
5. Univariate Data	
6. Bivariate Data	
7. Population 8. Sample	
9. Median 10. Mean	
11. Outlier	
12. Parameter	
13. Statistics	
14. Range	
15. Standard Score (z-score)	
16. Center	
17.Spread	
18. Variance	
19. Standard Deviation	
20.Symmetry	
21. Unimodal	22. Bimodal
23.Skewness	
24.Uniform 25.Gaps	26.Outliers

28. Bar Chart
29. Histogram
30.Difference between bar chart and histogram
31.Stemplots
32. Boxplots
33.Quartiles
34.Range
35.Interquartile Range
36. Four Ways to Describe Data Sets
37. Types of Graphs that can used for comparing data

27.Dot plots

Part 2: Learn About R using Datacamp

R is a free but very powerful programming language used in statistical analysis. Its flexibility and ease of use make it accessible to beginning learners but also very powerful in its ability to develop and implement new procedures.

I will use R frequently throughout the year to demonstrate statistical properties; you will use R throughout the year on projects.

R and R Studio are available free and may be downloaded from the sites below. These downloads are not necessary for the summer assignment; all work will be completed using DataCamp. R programs may be used on either interface; choosing 1 over the other is personal preference. I learned on R so I typically use that; R Studio looks more like the DataCamp activities (it also has some additional features that we won't be using).

Download R (optional)

Download R Studio (optional)

Please complete the following beginning after August 1st

- I will enter emails you provide to form a class AP Statistics 2019-2020, after that you should get an email.
- Go to <u>Datacamp.com</u> and create an account using your school email.
- Go to the "Courses" tab along the top and find "Introduction to R"
- Under "Introduction to R" complete the following chapters:
 - Intro to Basics
 - Vectors
 - Matrices
 - Factors
 - Data Frames**
- Go to the "Courses" tab along the top and find "Data Visualization in R"
- Under "Data Visualization in R" complete the following chapters:
 - A Quick Introduction to Base R Graphics
 - Different Plot Types**
 - Adding Details to Plots**

^{**}These chapters are only available through the group.

Part 3: Practice Problems

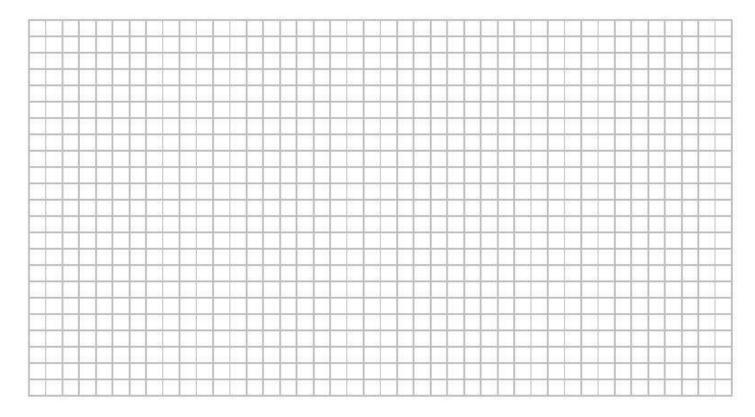
CATEGORICAL OR QUANTITATIVE

Determine if the variables listed below are quantitative or categorical.

- 1. Time it takes to get to school
- 2. Number of people under 18 living in a household
- 3. Hair color
- 4. Temperature of a cup of coffee
- 5. Teacher salaries
- 6. Gender
- 7. Smoking
- 8. Height
- 9. Amount of oil spilled
- 10. Age of Oscar winners
- 11. Type of Depression medication
- 12. Jellybean flavors
- 13. Country of origin
- 14. Type of meat
- 15. Number of shoes owned

STATISTIC -WHAT IS THAT?

A statistic is a number calculated from data. Quantitative data has many different statistics that can be calculated. Determine the given statistics from the data below on the number of homeruns Mark McGuire hit in each season from 1986 - 2001.

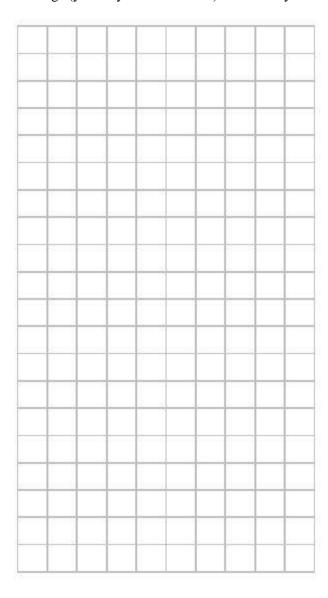

3	49	32	33	39	22	42	9	9
39	52	58	34	24	70	65	32	29

Mean	
Minimum	
1 st Quartile	
Median	
3 rd Quartile	
Maximum	
Range	
IQR	

ACCIDENTAL DEATHS

In 1997 there were 92,353 deaths from accidents in the United States. Among these were 42,340 deaths from motor vehicle accidents, 11,858 from falls, 10,163 from poisoning, 4051 from drowning, and 3601 from fires. The rest were listed as "other" causes.

- a. Find the percent of accidental deaths from each of these causes, rounded to the nearest percent.
- b. What percent of accidental deaths were from "other" causes?
- c. NEATLY create a well-labeled and titled bar graph of the distribution of causes of accidental deaths. Be sure to include an "other causes" bar.


d. A pie chart is another graphical display used to show all the categories in a categorical variable relative to each other. Neatly create a pie chart for the accidental death percentages by hand. Try to replicate your pie chart using software or an internet source to make one and attach it.

IT'S A TWISTA

The data below gives the number of hurricanes that happened each year from 1944 through 2000 as reported by Science magazine.

3	2	1	4	3	7	2	3	3	2	5	2	2	4	2	2	6	0	2	5	1	3	1	0
3	2	1	0	1	2	3	2	1	2	2	2	3	1	1	1	3	0	1	3	2	1	2	1
1	0	5	6	1	3	5	3																

a. Make a dotplot to display these data. Make sure you include appropriate labels, title, and scale. The graph paper should help ensure you space your markings (you may use x's or dots) consistently.

SHOPPING SPREE!

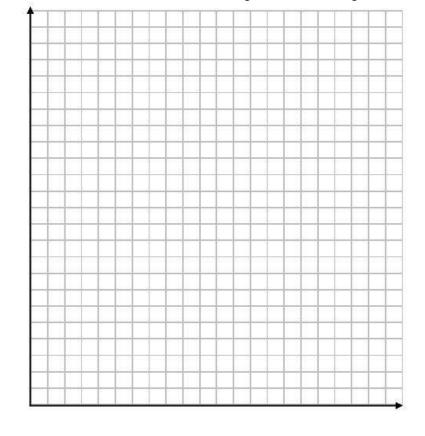
A marketing consultant observed 50 consecutive shoppers at a supermarket. One variable of interest was how much each shopper spent in the store. Here are the data (round to the nearest dollar), arranged in increasing order:

3	9	9	11	13	14	15	16	17	17
18	18	19	20	20	20	21	22	23	24
25	25	26	26	28	28	28	28	32	35
36	39	39	41	43	44	45	45	47	49
50	53	55	59	61	70	83	86	86	93

a. Make a stemplot using tens of dollars as the stem and dollars as the leaves. Make sure you include appropriate labels, title and key.

WHERE DO OLDER FOLKS LIVE?

This table gives the percentage of residents aged 65 or older in each of the 50 states.


State	Percent	State	Percent	State	Percent
Alabama	13.1	Louisiana	11.5	Ohio	13.4
Alaska	5.5	Maine	14.1	Oklahoma	13.4
Arizona	13.2	Maryland	11.5	Oregon	13.2
Arkansas	14.3	Massachusetts	14.0	Pennsylvania	15.9
California	11.1	Michigan	12.5	Rhode Island	15.6
Colorado	10.1	Minnesota	12.3	South Carolina	12.2
Connecticut	14.3	Mississippi	12.2	South Dakota	14.3
Delaware	13.0	Missouri	13.7	Tennessee	12.5
Florida	18.3	Montana	13.3	Texas	10.1
Georgia	9.9	Nebraska	13.8	Utah	8.8
Hawaii	13.3	Nevada	11.5	Vermont	12.3
Idaho	11.3	New Hampshire	12.0	Virginia	11.3
Illinois	12.4	New Jersey	13.6	Washington	11.5
Indiana	12.5	New Mexico	11.4	West Virginia	15.2
Iowa	15.1	New York	13.3	Wisconsin	13.2
Kansas	13.5	North Carolina	12.5	Wyoming	11.5
Kentucky	12.5	North Dakota	14.4		

Histograms are a way to display groups of quantitative data into bins (the bars). These bins have the same width and scale and are touching because the number line is continuous. To make a histogram you must first decide on an appropriate bin width and count how many observations are in each bin. The bins for percentage of residents aged 65 or older have been started below for you.

a. Finish the chart of Bin widths and then create a histogram using those bins on the grid below. Make sure you include appropriate labels, title and scale. Create the same histogram in both using software and using your

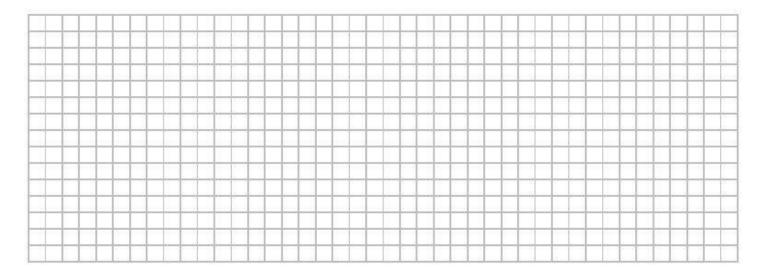
calculator)

Bin Widths	Frequency
4 to < 6	1
6 to < 8	
8 to < 10	
	G.

SSHA SCORES

Here are the scores on the Survey of Study Habits and Attitudes (SSHA) for 18 first-year college women:

154	109	137	115	152	140	154	178	101	103	126	126	137	165	165
129	200	148												


and for 20 first-year college men:

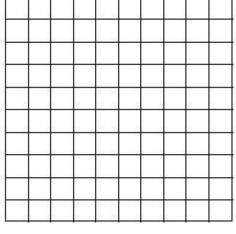
108	140	114	91	180	115	126	92	169	146	109	132	75	88	113
151	70	115	187	104										

a. Put the data values in order for each gender. Compute numeral summaries for each gender.

Women	Men					
Mean	Mean					
Minimum	Minimum					
Q1	Q1					
Median	Median					
Q3	Q3					
Maximum	Maximum					
Range	Range					
IQR	IQR					

b. Using the minimum, Q1, Median, Q3, and Maximum from each gender, make parallel boxplots to compare the distributions. Create the same graph using your calculator and computer software.

To answer the following refer to the readings on www.stattrek.com "Survey Sampling Methods". The 7 types of sampling designs are: A. voluntary response B. convenience C. simple random D. stratified E. cluster F. multistage G. systematic 1. The Maryland division of Weight Watchers is doing research to determine how many people on the Weight Watchers diet cheat at least once a week. They decide that anonymous surveys will give them an accurate representation but do not have time to get responses from ALL the Maryland Weight Watchers people. Read the scenarios below and determine which of the 7 sampling methods best describes it. I. Randomly select 10 members from each of the WW centers in the Maryland division. II. Use an alphabetical listing of all Maryland division members. Randomly choose a starting person on the list. Then select every 20th person thereafter. III. Randomly select 2 or 3 branches of the Maryland division and survey every member of that center. __ IV. Send out the survey to every member of the Maryland division. Place drop boxes in each WW center. Anyone who returns a survey will be in the sample. V. The Maryland regional office is in Baltimore so they survey members at the WW center in Baltimore. VI. From a numbered list of all Maryland division members use a computer to randomly select 100 numbers and survey all members with those corresponding numbers. 2. What is the population of interest in the WW situation? Here is a formula often used in statistics. $z = \frac{x - \overline{x}}{s}$ 1. If z = 2.5, x = 102 and $\bar{x} = 100$, what is s? Show your work. 2. If z = -3.35, $\bar{x} = 60$, and s = 4, what is x? Show your work.


12

It is expected that you have a thorough understanding of linear functions and scatterplots.

- 1. The USDA reported that in 1990 each person in the United States consumed an average of 133 pounds of natural sweeteners. They also claim this amount has decreased by about 0.6 pounds each year.
 - a. If 1990 could be considered "year 0", which of the above numbers represents the slope and which represents the y-intercept?
 - b. What is the equation of the line of best fit using the slope and y-intercept above?
 - c. Predict the average consumption of sweeteners per person for the year 2005.
- 2. The following equation can be used to predict the average height of boys anywhere between birth and 15 years old: $\hat{y}=2.79x+25.64$, where x is the age (in years) and \hat{y} is the predicted height (in inches).
 - a. What does the slope represent in this problem? Interpret it in the context of this problem/situation.
 - b. What does the y-intercept represent in this problem? Interpret it in context.
- 3. Hilary wonders if people of similar heights tend to date each other. She measures herself, her dormitory roommate, and the women in the adjoining rooms; then she measures the next man each woman dates. Here are the data (heights in inches):

Women:	66	64	66	65	70	65
Men:	72	68	70	68	74	69

- A. Construct a scatterplot of the data. Create the same scatterplot on both computer software and your calculator.
- B. Describe the association between the heights of the women and the men they date.

than in 1. A sp There	ntuitive" pecial lo are 100 s; each j	, there are ttery is to seniors, 1	be held to so be juniors, a	sites available elect the stud and 200 soph	e online that pro ent who will liv omores who app	e probability. If you find vide basic probability expla e in the only deluxe room in lied. Each senior's name is e, 1 time. What is the prob	nations. n a dormitory.
A. 1	/8	B. 2/9	C. 2/7	D. 3/8	E. 1/2		
2. Whi	ch of th	e followir	ng has a prol	bability close	st to 0.5?		
	A. The	e sun will	rise tomorro	ow.			
		ill rain to					
					s when you leav		
			_		f 6 four times in	a row. ithin the next five minutes.	
	L. TIK	ne will be	a plane cra	sii soine wher	on the world w	timi the next live innutes.	
		int: What			s when you toss		nd on the second toss the coin
4. If a	coin is t	ossed twi	ce what is th	ne probability	that it will land	either heads both times or	tails both times?
	A. 1/8						
	B. 1/6 C. 1/4						
	D. 1/2						
	E. 1						
5. Calo			0 1		•	from least to greatest.	
	II. A	random	digit from	1 to 9 (incl	usive) is chose	n, with all digits being ed	qually likely. The probability
	tha	t when it'	s squared th	e answer wil	l contain the dig	it 1	
	III. Th	e probabi	lity that a le	tter chosen fi	om the alphabe	will be a vowel.	
	IV. A	random	number be	tween 1 and	1 20 (inclusive)	is chosen. The probability	ity that its square root will
	ne	ot be an in	nteger				
ODDE	· ·						