KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Science Department

AP PHYSICS B CURRICULUM

September 2007

Written by: Ann Gagliardi, Science Supervisor and Patricia Thoma, AP Physics Teacher

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
10 days	 I. NEWTONIAN MECHANICS (35% = 50 days) A. Kinematics (including vectors, vector algebra, components of vectors, coordinate systems, displacement, velocity, and acceleration) Motion in one dimension 	Textbook: College Physics by Serway, Faughn, et al. 7 th Edition, Thomson Brooks/Cole, Belmont, CA, 2006 Textbook, pg 23-46 Problem set	Lab: 1-Dimensional Freefall: developing a set of equations to predict position, velocity and acceleration of a free falling object; learn to derive information of slope and area under a graph; learn to apply error analysis	Lab report, demonstrate graphing data on excel, generate motion diagrams; homework problem sets; quiz and test
	2. Motion in two dimensions including projectile motion	Textbook: pg 53-71 Problem set	Lab: 2-dimensional Freefall: demonstrate displacement, velocity and acceleration are vector quantities; predict the range and height of a projectile at arbitrary angle: determine angle that projectile reaches maximum range.	Lab report; homework problem sets; quiz, test on relative motion, projectile motion

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
10 days	I. NEWTONIAN MECHANICS (continued) B. Newton's laws of motion 1. Static equilibrium (first law) 2. Dynamics of a single particle (second	Textbook: pg 81-84 Problem set	Lab: Forces in Equilibrium: demonstrate force is a vector quantity, show opposite forces are equal when system is in equilibrium Lab: Newton's Second Law: demonstrate when an unbalanced force is	Lab report; homework problem sets; quiz, test
	3. Systems of two or more bodies (third law)	Textbook: pg 84-90 Problem set Textbook: pg 90-100 Problem set	applied to a mass the acceleration is directly proportional to and in the same direction as the force Elevator: explore the effect of acceleration on the apparent weight of an object. Lab: Friction Force; determine coefficient of	Lab report; homework problem sets; quiz, test Video presentation and analysis
			static friction and what factors affect friction between surfaces	

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
7 days	I. NEWTONIAN MECHANICS (continued) C. Work, energy, power 1. Work and work-energy theorem 2. Forces and potential energy 3. Conservation of energy 4. Power	Textbook: pg 118-126 Problem set Textbook: pg 125-139 Problem set Textbook: pg 140-141 Problem set Textbook: pg 142-148 Problem set	Lab: Work and Gravitational Energy; measure work done by falling mass; understand gravitational potential energy and ability to do work due to height of object.	Lab Report; Homework; quiz, test
7 days	D. Systems of particles, linear momentum1. Impulse and momentum2. Conservation of linear momentum, collisions	Textbook: pg 160-166 Problem set Textbook: pg 166-176 Problem set	Lab: Conservation of Momentum: show that momentum is conserved in closed system; compare elastic and inelastic collisions.	Lab Report: homework, quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
<i>c</i> 1	I. NEWTONIAN MECHANICS (continued)			
6 days	E. Circular motion and rotation	Toythook Do 190 206	Lab: Rotational	I ah mananti ha mayyanla
	1. Uniform circular motion	Textbook Pg 189-206 Problem set	Motion; show equations for rotational motion are same form	Lab report; homework, quiz, test
	2. Torque and rotational statics	Textbook Pg 226-236 Problem set	as linear motion. Lab: Centripetal	
			Acceleration: determine relationship between centripetal force acting on object and mass, velocity and radius.	Lab report; homework, quiz, test
			Lab: Torque and Equilibrium: show torque is calculated by product of perpendicular distance from applied force and magnitude of force; demonstrate at equilibrium opposite torques and opposite forces are equal.	Lab report; homework, quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
10 days	I. NEWTONIAN MECHANICS (continued) F. Oscillations and gravitation			
	 Simple harmonic motion (dynamics and energy relationships) Mass on a spring 	Textbook Pg 425-432 Problem set Textbook Pg 432-438 Problem set	Lab: Hooke's Law and Energy Conservation: show amount spring stretches is proportional to magnitude of applied force; demonstrate energy conserved by transforming	Lab report; homework, quiz, test
	3. Pendulum and other oscillations4. Newton's law of gravity	Textbook Pg 438-441 Problem set Textbook Pg 206-214 Problem set	Lab: SHM: Pendulum Lab; compare properties of single and double pendulums; calculate value for g, the acceleration due to gravity	Homework, quiz Lab report; homework, quiz, test
	5. Orbits of planets and satellites	Textbook Pg 214-217 Problem set		

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
	II. FLUID MECHANICS AND THERMAL PHYSICS (15% = 21 days)			
7.1	A. Fluid Mechanics			
7 days	1. Hydrostatic pressure	Textbook Pg 266-282 Problem set	Lab: Hydrostatic Pressure: measure how pressure varies with depth.	Lab report; homework, quiz, test
	2. Buoyancy	Textbook Pg 282-288 Problem set	Lab: Bouyancy: demonstrate forces acting upon an immersed object.	Homework quiz
	3. Fluid flow continuity	Textbook Pg 288-291 Problem set		
	4. Bernoulli's equation	Textbook Pg 291-297 Problem set	Lab: Bernoulli Lab : observe and document behavior of materials that undergo a change in fluid velocity nearby.	Lab report homework, quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
7 days	II. FLUID MECHANICS AND THERMAL PHYSICS (continued) B. Temperature and heat 1. Mechanical equivalent of heat	Textbook Pg 352-353 Problem set	Lab: Mechanical Equivalent of Heat: Determine relationship between heat units and mechanical energy units.	Lab report, homework, quiz, test
	2. Heat transfer and thermal expansion	Textbook Pg 321-332 Textbook Pg 365-374 Problem set		
	C. Kinetic theory and thermodynamics			
7 days	1. Ideal gases			
	A. Kinetic model	Textbook Pg 339-343 Problem set	Lab: Kinetic Model: demonstrate compressing gas effect on volume.	Lab report, homework, quiz, test
	B. Ideal gas law	Textbook Pg 334-339 Problem set	Virtual lab: Ideal Gas Law.	

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
	C. Kinetic theory and thermodynamics (continued)			
	2. Laws of thermodynamics			
	A. First law (including processes on pV diagrams)	Textbook Pg 386-399 Problem set		Homework, quiz, test
	B. Second law (including heat engines)	Textbook Pg 399-413 Problem set		

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
7 days	III. ELECTRICITY AND MAGNETISM (25% = 36 days) A. Electrostatics 1. Charge and Coulomb's law 2. Electric field and electric potential (including point charges)	Textbook Pg 497-504 Problem set Textbook Pg 505-514 Problem set	Lab: Electrostatics: explain interaction of charged and uncharged particles; find how intensity depends on distance between charged objects	Lab report, homework, quiz, test homework, quiz, test
7 days	 B. Conductors, capacitors, dielectrics 1. Electrostatics with conductors 2. Capacitors A. Capacitance B. Parallel plate 	Textbook Pg 531-544 Problem set Textbook Pg 545-547 Problem set		Draw pV diagrams, homework quiz Draw pV diagrams, homework quiz

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
		I	I	
	III. ELECTRICITY AND MAGNETISM (continued)			
	C. Electric circuits			
7 days	1. Current, resistance, power	Textbook Pg 568-582 Problem set	Lab: DC Circuits: apply electric laws to simple circuits.	Lab report, homework, quiz, test
	2. Steady-state direct current circuits with batteries and resistors only	Textbook Pg 592-604 Textbook Pg 604-610		1,
	3. Capacitors in circuits	Problem set		homework, quiz, test
		Textbook Pg 624-631 Problem set		
8 days	D. Magnetic Fields		Lab: Magnetic	
	1. Forces on moving charges in magnetic fields	Textbook Pg 631-634 Problem set	Deflection: observe magnetic field generated by moving	Lab report, homework, quiz, test
	2. Forces on current-carrying wires in magnetic fields	Textbook Pg 640-643 Problem set	charge. Lab: Magnetic	
	3. Fields of long current-carrying wires	Textbook Pg 660-673 Problem set	Inductance: design a solenoid and demonstrate inductance	Lab report, homework, quiz, test
			demonstrate inductance	<i>quii</i> , tost

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
	III. ELECTRICITY AND MAGNETISM (continued)			
	E. Electromagnetism			
7 days	Electromagnetic induction (including Faraday's law and Lenz's law)	Textbook Pg 441-450 Problem set		Homework, quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
	IV. WAVES AND OPTICS (15% = 21 days)			
	A. Wave motion (including sound)			
7 days	1. Traveling waves		Lab: Measuring	
	2. Wave propagation	Textbook Pg 726-736	Speed of Sound	Lab report, homework, quiz, test
	3. Standing waves	Problem set		homework, quiz,
	4. Superposition	Textbook Pg 736-738 Problem set	Lab: Standing Waves: predict behavior of standing wave	Lab report, homework, quiz, test
	B. Physical optics			
7 days	1. Interference and diffraction			
	2. Dispersion of light and the	Textbook Pg 739-745 Problem set	Lab: Thin Film Interference: Demonstrate wave nature of light	Lab report, homework, quiz, test
	electromagnetic spectrum	Textbook Pg 754-765 Problem set	Lab: Prisms: demonstrating electromagnetic	Lab report, homework, quiz, test
		Textbook Pg 765-779 Problem set	spectrum	homework, quiz

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
7 days	IV. WAVES AND OPTICS (continued) C. Geometric optics 1. Reflection and refraction 2. Mirrors 3. Lenses	Textbook Pg 874-886 Problem set Textbook Pg 874-886 Problem set Textbook Pg 887-889 Problem set	Virtual lab: Lens Lab Or Webquest: Vision. Lab: Lenses: show how lens forms image and explain mathematics of lenses.	Lab report, homework, quiz, test Lab report, homework, quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
7 days	V. ATOMIC AND NUCLEAR PHYSICS (10% = 14 days) A. Atomic physics and quantum effects 1. Photons, the photoelectric effect, Compton scattering, x-rays 2. Atomic energy levels 3. Wave-particle duality	Textbook Pg. 955-958 Problem set	Website: The Particle Adventure Fundamentals, the Standard Model Virtual Lab: Applet: Bohr atom	Lab report, homework, quiz, test Homework quiz Lab report, homework, quiz, test
9 days	B. Nuclear physics1. Nuclear reactions (including conservation of mass number and charge)2. Mass-energy equivalence	Textbook Pg. 860-862	Virtual Lab: Dual Nature of Light Lab: Half-life Lab: Background radiation and radioactive decay;	Lab report, homework, quiz, test Lab report, homework, quiz, test Quiz, test

Timeline	Content Area	Materials/Resources	Labs/Technology	Assessment/Evaluation
	REVIEW FOR AP PHYSICS EXAM			
22 days				
2 1	REVIEW OF AP PHYSICS OPEN-			
3 days	ENDED QUESTIONS FROM EXAM FOLLOWING EXAM			
	TOLLOWING EARIN			
	REVIEW FOR FINAL EXAM			
3 days				
	FINAL EXAM			
2 days				
	(Class meets five days/week			
	for 80 minute blocks)			
	,	1		