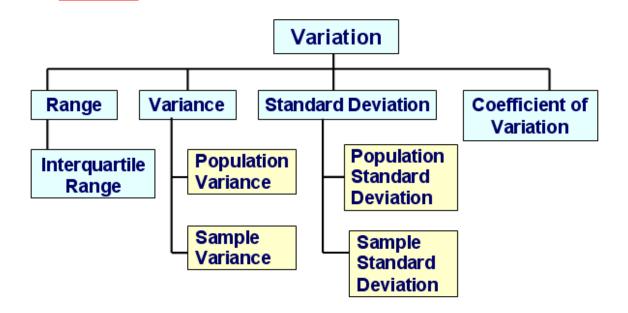
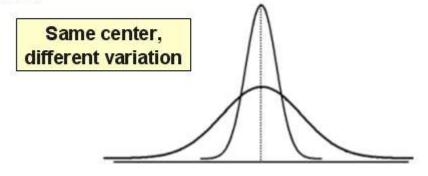


4.2 Notes

# **Measures of Variation**

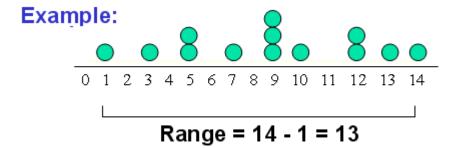


Measures of variation give information on the **spread** or **variability** of the data values.



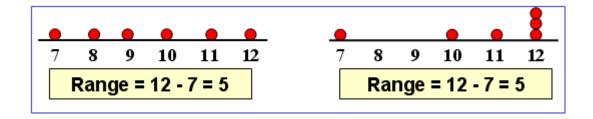
# • The Range

Range = (highest value) - (lowest value)



<u>Comment</u>: The range is the simplest measure of variation. In certain limited situation it can be very useful. It has obvious disadvantages:

1. It ignores the way in which data are distributed



2. Sensitive to outliers:

### • The Variance

#### IMPORTANT TO USE CORRECT VARIABLE NOTATIONS

- \*\*\* small n=sample size while
- \*\*\* capital N=population size

Population variance:

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N} = \frac{(X_{1} - \mu)^{2} + (X_{2} - \mu)^{2} + \dots + (X_{N} - \mu)^{2}}{N}$$

Sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{(X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} + \dots + (X_{n} - \overline{X})^{2}}{n-1}$$

which is also called a point estimation of population variance.

#### Comments:

- 1.  $\sigma^2$  is the average squared distance of observations to the population mean.
- 2. The unit of  $\sigma^2$  is the square of the unit of the variable.

### • The Standard Deviation

Population standard deviation:  $\sigma = \sqrt{\sigma^2}$ , that is,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} = \sqrt{\frac{(X_1 - \mu)^2 + (X_2 - \mu)^2 + \dots + (X_N - \mu)^2}{N}}$$

Sample standard deviation:  $s = \sqrt{s^2}$  or

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = \sqrt{\frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \dots + (X_n - \overline{X})^2}{n-1}}$$

which is called a point estimation of population standard deviation.

## **Comments**

- 1.  $\sigma$  and  $\sigma^2$  are always positive.
- 2. The units of  $\sigma$  are the units of the variable.

An alternative formula for computing s or  $s^2$ :

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

**Remark**: There are several different forms of formulas can be used to calculate the standard deviation of a given data set (sample or population). The tabular computation is recommended when doing manual computation:

An Illustrative Example: suppose we have a data set  $A = \{1,4,7\}$ 

| X            | $X-\overline{X}$                     | $(X-\overline{X})^2$ | FILL IN TABLE |
|--------------|--------------------------------------|----------------------|---------------|
| 1            | -3                                   | 9                    |               |
| 4            | 0                                    | 0                    |               |
| 7            | 3                                    | 9                    |               |
| Total:12     | 0                                    | 18                   |               |
| $\vdash$     | What is the smean and sastandard dev |                      |               |
| $\downarrow$ |                                      |                      |               |
| Statistics   | 11/29                                |                      | C. Peng       |

MAT 120D Intro. Statistics

11/29

C. Peng

Based on the above table, we can see that the mean is 12/3=4, the standard deviation is  $\sqrt{18/(3-1)}=3$ .

Another more general example: Fill in the table to calculate the sample standard deviation.

Use 41.5 as the sample mean (xbar).

| x     | <b>Deviation:</b> $x - x$ | oar Squares: $(x^{-xbar})^2$ |
|-------|---------------------------|------------------------------|
| 41    | 41 - 41.5 = -0.5          | $(-0.5)^2 = 0.25$            |
| 38    | i = -3.5                  | $^{2} = 12.25$               |
| 39    | =-2.5                     | $^{2} = 6.25$                |
| 45    | = 3.5                     | = 12.25                      |
| 47    | = 5.5                     | = 30.25                      |
| 41    | =-0.5                     | $^{2} = 0.25$                |
| 44    | = 2.5                     | = 6.25                       |
| 41    | =-0.5                     | $^{2} = 0.25$                |
| 37    | =-4.5                     | $^{2} = 20.25$               |
| 42    | = 0.5                     | = 0.25                       |
| Total | $\Sigma$ = 0              | $\Sigma$ = 88.5              |

$$s^{2} = \frac{\Sigma(x - \overline{x})^{2}}{n - 1} = \frac{88.5}{10 - 1} \approx 9.8$$

$$s = \sqrt{s^2} = \sqrt{\frac{88.5}{9}} \approx 3.1$$

Examples of datasets that have the same means with different variations

