

AP® Computer Science A
2006 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and
teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement
Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied
in all of its programs, services, activities, and concerns.

© 2006 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP
Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation
Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the
Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and
National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners.
Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
2

COMPUTER SCIENCE A
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN Java.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported where

appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods

are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in classes

defined in that question. Writing significant amounts of code that can be replaced by a call to one of these
methods may not receive full credit.

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
3

 1. An appointment scheduling system is represented by the following three classes: TimeInterval,
Appointment, and DailySchedule. In this question, you will implement one method in the
Appointment class and two methods in the DailySchedule class.

 A TimeInterval object represents a period of time. The TimeInterval class provides a method to

determine if another time interval overlaps with the time interval represented by the current TimeInterval
object. An Appointment object contains a time interval for the appointment and a method that determines if
there is a time conflict between the current appointment and another appointment. The declarations of the
TimeInterval and Appointment classes are shown below.

public class TimeInterval
{
 // returns true if interval overlaps with this TimeInterval;
 // otherwise, returns false
 public boolean overlapsWith(TimeInterval interval)
 { /* implementation not shown */ }

 // There may be fields, constructors, and methods that are not shown.
}

public class Appointment
{
 // returns the time interval of this Appointment
 public TimeInterval getTime()
 { /* implementation not shown */ }

 // returns true if the time interval of this Appointment
 // overlaps with the time interval of other;
 // otherwise, returns false
 public boolean conflictsWith(Appointment other)
 { /* to be implemented in part (a) */ }

 // There may be fields, constructors, and methods that are not shown.
}

(a) Write the Appointment method conflictsWith. If the time interval of the current appointment
overlaps with the time interval of the appointment other, method conflictsWith should return
true, otherwise, it should return false.

 Complete method conflictsWith below.

 // returns true if the time interval of this Appointment
 // overlaps with the time interval of other;
 // otherwise, returns false
 public boolean conflictsWith(Appointment other)

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
4

(b) A DailySchedule object contains a list of nonoverlapping Appointment objects. The
DailySchedule class contains methods to clear all appointments that conflict with a given
appointment and to add an appointment to the schedule.

public class DailySchedule
{
 // contains Appointment objects, no two Appointments overlap
 private ArrayList apptList;

 public DailySchedule()
 { apptList = new ArrayList(); }

 // removes all appointments that overlap the given Appointment
 // postcondition: all appointments that have a time conflict with
 // appt have been removed from this DailySchedule
 public void clearConflicts(Appointment appt)
 { /* to be implemented in part (b) */ }

 // if emergency is true, clears any overlapping appointments and adds
 // appt to this DailySchedule; otherwise, if there are no conflicting
 // appointments, adds appt to this DailySchedule;
 // returns true if the appointment was added;
 // otherwise, returns false
 public boolean addAppt(Appointment appt, boolean emergency)
 { /* to be implemented in part (c) */ }

 // There may be fields, constructors, and methods that are not shown.
}

 Write the DailySchedule method clearConflicts. Method clearConflicts removes all

appointments that conflict with the given appointment.

 In writing method clearConflicts, you may assume that conflictsWith works as specified,
regardless of what you wrote in part (a).

 Complete method clearConflicts below.

 // removes all appointments that overlap the given Appointment
 // postcondition: all appointments that have a time conflict with
 // appt have been removed from this DailySchedule
 public void clearConflicts(Appointment appt)

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
5

(c) Write the DailySchedule method addAppt. The parameters to method addAppt are an
appointment and a boolean value that indicates whether the appointment to be added is an emergency. If
the appointment is an emergency, the schedule is cleared of all appointments that have a time conflict with
the given appointment and the appointment is added to the schedule. If the appointment is not an emergency,
the schedule is checked for any conflicting appointments. If there are no conflicting appointments, the given
appointment is added to the schedule. Method addAppt returns true if the appointment was added to
the schedule; otherwise, it returns false.

 In writing method addAppt, you may assume that conflictsWith and clearConflicts work
as specified, regardless of what you wrote in parts (a) and (b).

 Complete method addAppt below.

 // if emergency is true, clears any overlapping appointments and adds
 // appt to this DailySchedule; otherwise, if there are no conflicting
 // appointments, adds appt to this DailySchedule;
 // returns true if the appointment was added;
 // otherwise, returns false
 public boolean addAppt(Appointment appt, boolean emergency)

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
6

 2. A set of classes is used to represent various items that are available for purchase. Items are either taxable or
nontaxable. The purchase price of a taxable item is computed from its list price and its tax rate. The purchase
price of a nontaxable item is simply its list price. Part of the class hierarchy is shown in the diagram below.

 The definitions of the Item interface and the TaxableItem class are shown below.

public interface Item
{
 double purchasePrice();
}

public abstract class TaxableItem implements Item
{
 private double taxRate;

 public abstract double getListPrice();

 public TaxableItem(double rate)
 { taxRate = rate; }

 // returns the price of the item including the tax
 public double purchasePrice()
 { /* to be implemented in part (a) */ }

}

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
7

(a) Write the TaxableItem method purchasePrice. The purchase price of a TaxableItem is its
list price plus the tax on the item. The tax is computed by multiplying the list price by the tax rate. For
example, if the tax rate is 0.10 (representing 10%), the purchase price of an item with a list price of $6.50
would be $7.15.

 Complete method purchasePrice below.

 // returns the price of the item including the tax
 public double purchasePrice()

(b) Create the Vehicle class, which extends the TaxableItem class. A vehicle has two parts to its list
price: a dealer cost and dealer markup. The list price of a vehicle is the sum of the dealer cost and the dealer
markup.

 For example, if a vehicle has a dealer cost of $20,000.00, a dealer markup of $2,500.00, and a tax rate of
0.10, then the list price of the vehicle would be $22,500.00 and the purchase price (including tax) would be
$24,750.00. If the dealer markup were changed to $1,000.00, then the list price of the vehicle would be
$21,000.00 and the purchase price would be $23,100.00.

 Your class should have a constructor that takes dealer cost, the dealer markup, and the tax rate as
parameters. Provide any private instance variables needed and implement all necessary methods. Also
provide a public method changeMarkup, which changes the dealer markup to the value of its parameter.

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
8

 3. Consider the following incomplete class that stores information about a customer, which includes a name
and unique ID (a positive integer). To facilitate sorting, customers are ordered alphabetically by name. If
two or more customers have the same name, they are further ordered by ID number. A particular customer is
"greater than" another customer if that particular customer appears later in the ordering than the other customer.

public class Customer
{
 // constructs a Customer with given name and ID number
 public Customer(String name, int idNum)
 { /* implementation not shown */ }

 // returns the customer's name
 public String getName()
 { /* implementation not shown */ }

 // returns the customer's id
 public int getID()
 { /* implementation not shown */ }

 // returns 0 when this customer is equal to other;
 // a positive integer when this customer is greater than other;
 // a negative integer when this customer is less than other
 public int compareCustomer(Customer other)
 { /* to be implemented in part (a) */ }

 // There may be fields, constructors, and methods that are not shown.
}

(a) Write the Customer method compareCustomer, which compares this customer to a given

customer, other. Customers are ordered alphabetically by name, using the compareTo method of the
String class. If the names of the two customers are the same, then the customers are ordered by ID
number. Method compareCustomer should return a positive integer if this customer is greater than
other, a negative integer if this customer is less than other, and 0 if they are the same.

 For example, suppose we have the following Customer objects.

 Customer c1 = new Customer("Smith", 1001);
 Customer c2 = new Customer("Anderson", 1002);
 Customer c3 = new Customer("Smith", 1003);

 The following table shows the result of several calls to compareCustomer.

Method Call Result

c1.compareCustomer(c1) 0

c1.compareCustomer(c2) a positive integer

c1.compareCustomer(c3) a negative integer

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
9

 Complete method compareCustomer below.

// returns 0 when this customer is equal to other;
// a positive integer when this customer is greater than other;
// a negative integer when this customer is less than other
public int compareCustomer(Customer other)

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
10

(b) A company maintains customer lists where each list is a sorted array of customers stored in ascending order
by customer. A customer may appear in more than one list, but will not appear more than once in the same
list.

 Write method prefixMerge, which takes three array parameters. The first two arrays, list1 and
list2, represent existing customer lists. It is possible that some customers are in both arrays. The third
array, result, has been instantiated to a length that is no longer than either of the other two arrays and
initially contains null values. Method prefixMerge uses an algorithm similar to the merge step of a
Mergesort to fill the array result. Customers are copied into result from the beginning of list1
and list2, merging them in ascending order until all positions of result have been filled. Customers
who appear in both list1 and list2 will appear at most once in result.

 For example, assume that three arrays have been initialized as shown below.

list1 Arthur Burton Burton Franz Horton Jones Miller Nguyen

 4920 3911 4944 1692 9221 5554 9360 4339

 [0] [1] [2] [3] [4] [5] [6] [7]

list2 Aaron Baker Burton Dillard Jones Miller Noble

 1729 2921 3911 6552 5554 9360 3335

 [0] [1] [2] [3] [4] [5] [6]

result null null null null null null

 [0] [1] [2] [3] [4] [5]

 In this example, the array result must contain the following values after the call

prefixMerge(list1, list2, result).

result Aaron Arthur Baker Burton Burton Dillard

 1729 4920 2921 3911 4944 6552

 [0] [1] [2] [3] [4] [5]

 In writing prefixMerge, you may assume that compareCustomer works as specified, regardless

of what you wrote in part (a). Solutions that create any additional data structures holding multiple objects
(e.g., arrays, ArrayLists, etc.) will not receive full credit.

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
11

 Complete method prefixMerge below.

// fills result with customers merged from the
// beginning of list1 and list2;
// result contains no duplicates and is sorted in
// ascending order by customer
// precondition: result.length > 0;
// list1.length >= result.length;
// list1 contains no duplicates;
// list2.length >= result.length;
// list2 contains no duplicates;
// list1 and list2 are sorted in
// ascending order by customer
// postcondition: list1, list2 are not modified
public static void prefixMerge(Customer[] list1,
 Customer[] list2,
 Customer[] result)

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
12

 4. This question involves reasoning about the code from the Marine Biology Simulation case study. A copy of the
code is provided as part of this exam.

 Consider using the BoundedEnv class from the Marine Biology Simulation case study to model a game

board. In this implementation of the Environment interface, each location has at most four neighbors.
Those neighbors are determined by the Environment method neighborsOf.

 DropGame is a two-player game that is played on a rectangular board. The players — designated as BLACK

and WHITE — alternate, taking turns dropping a colored piece in a column. A dropped piece will fall down the
chosen column until it comes to rest in the empty location with the largest row index. If the location for the
newly dropped piece has three neighbors that match its color, the player that dropped this piece wins the game.

 The diagram below shows a sample game board on which several moves have been made.

 North

 0 1 2 3 4 5

 0

West 1 East

 2

 3

 South

 The following chart shows where a piece dropped in each column would land on this board.

Column Location for Piece Dropped in the Column
0 No piece can be placed, since the column is full
1 (0, 1)
2 (2, 2)
3 (0, 3)
4 (3, 4)
5 (1, 5)

 Note that a WHITE piece dropped in column 2 would land in the shaded cell at location (2, 2) and result in a win

for WHITE because the three neighboring locations — (2, 1), (3, 2), and (2, 3) — contain WHITE pieces. This
move is the only available winning move on the above game board. Note that a BLACK piece dropped in
column 1 would land in location (0, 1) and not result in a win because the neighboring location (0, 2) does not
contain a BLACK piece.

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
13

 The Piece class implements the Locatable interface and is defined as follows.

public class Piece implements Locatable
{
 // returns location of this Piece
 public Location location()
 { /* implementation not shown */ }

 // returns color of this Piece
 public Color color()
 { /* implementation not shown */ }

 // There may be fields, constructors, and methods that are not shown.
}

 An incomplete definition of the DropGame class is shown below. The class contains a private instance

variable theEnv to refer to the Environment that represents the game board. Players will add Piece
objects to this environment as they take turns. You will implement two methods for the DropGame class.

public class DropGame
{
 private Environment theEnv; // contains Piece objects

 // returns null if no empty locations in column;
 // otherwise, returns the empty location with the
 // largest row index within the specified column;
 // precondition: 0 <= column < theEnv.numCols()
 public Location dropLocationForColumn(int column)
 { /* to be implemented in part (a) */ }

 // returns true if dropping a piece of the given color into the
 // specified column matches color with three neighbors;
 // otherwise, returns false
 // precondition: 0 <= column < theEnv.numCols()
 public boolean dropMatchesNeighbors(int column, Color pieceColor)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2006 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

14

(a) Write the DropGame method dropLocationForColumn, which returns the resulting Location
for a piece dropped into the specified column. If there are no empty locations in the column, the method
should return null. Otherwise, of the empty locations in the column, the location with the largest row
index should be returned.

 In writing dropLocationForColumn, you may use any methods defined in the DropGame class or
accessible methods of the case study classes.

 Complete method dropLocationForColumn below.

 // returns null if no empty locations in column;
 // otherwise, returns the empty location with the
 // largest row index within the specified column;
 // precondition: 0 <= column < theEnv.numCols()
 public Location dropLocationForColumn(int column)

(b) Write the DropGame method dropMatchesNeighbors, which returns true if dropping a piece

of a given color into a specific column will match the color of three of its neighbors. The location to be
checked for matches with its neighbors is the location identified by method dropLocationForColumn.
If there are no empty locations in the column, dropMatchesNeighbors returns false.

 In writing dropMatchesNeighbors, you may assume that dropLocationForColumn works as
specified regardless of what you wrote in part (a).

 Complete method dropMatchesNeighbors below.

 // returns true if dropping a piece of the given color into the
 // specified column matches color with three neighbors;
 // otherwise, returns false
 // precondition: 0 <= column < theEnv.numCols()
 public boolean dropMatchesNeighbors(int column, Color pieceColor)

END OF EXAM

