Existence Theorems

Name:

AP Calculus

The function f is continuous for $-2 \le x \le 1$ and differentiable for -2 < x < 1. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?

- (A) There exists c, where -2 < c < 1, such that f(c) = 0.
- (B) There exists c, where -2 < c < 1, such that f'(c) = 0.
- (C) There exists c, where -2 < c < 1, such that f(c) = 3.
- (D) There exists c, where -2 < c < 1, such that f'(c) = 3.
- (E) There exists c, where $-2 \le c \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.

Try this fun problen

AP Calculus

Name:

No calculator is allowed for these problems.

t (minutes)	0	1	2	3	4	5	6
C(t) (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

- 3. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, $0 \le t \le 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table above.
 - (a) Use the data in the table to approximate C'(3.5). Show the computations that lead to your answer, and indicate units of measure.
 - (b) Is there a time t, $2 \le t \le 4$, at which C'(t) = 2? Justify your answer.