
Summit Public Schools
Summit, New Jersey

Grade Level / Content Area: Mathematics
Length of Course: 1 Academic Year

Curriculum: AP Computer Science A
Updated: Spring 2019

Developed By
Brian Weinfeld

Course Description: ​AP Computer Science A is a full year course designed to
prepare students for the AP Computer Science A examination. Throughout the
course, students will review and extend previously learned programming skills as
well as learn new advanced concepts in order to prepare them for this exam. Students
will gain a variety of Java skills that serve not only to enhance their programming
ability but also to assist them in their conceptual understanding of programming as a
whole. Upon completion of this course students will be prepared to continue their
computer science studies in an advanced level class or college setting.

Anticipated Timetable for AP Computer Science

QUARTER 1

Unit 0 – Review of Object Oriented Programming Design

Unit 1 – Utilizing Primitive Data Types and Conditional Statements

Unit 2 – Review of Classes

Topic Time
Frame

Review of basic statements syntax including int, double, if and while 2
Review of basic class creation 1
Review of the difference between, compile-time, run-time and logic
errors

1

Review of terminology for key parts of a program (constructor,
variables, etc.)

1

Total 5

Topic Time
Frame

Review of int/double/boolean and lesson on memory allocation of
each type

1

Lesson on how int and double interact with each other. (casting) 1
Lesson on assignment operators and relational operators, increment
operators, etc.

1

Introduction to truth tables and compound Boolean statements 1
Quiz: Truth tables and basic math commands with int/double 1
Review of core control structures (while, if and for) and when to use
each.

1

Lesson on nested control statements 1
Project #1: Control Statement and Math Project 3

Total 10

Topic Time
Frame

Review of class creation and terminology (constructor, etc.) 2

Unit 3 – Class Hierarchy

QUARTER 2

Unit 4 – Review of Common Java Packages

Unit 5 – 1 and 2-dimensional Arrays

Lesson on constructors (“this” and defaults) 2
Lesson on method overloading 1
Lesson on “final” and utilizing “public” vs. “private”, “static” 2
Quiz: Class creation and definitions 1
Introduction to passing by reference vs. passing by value 1
Exploration of memory allocation and classes 1
Exploration of “null” keyword and passing “null” parameters 1
Project #2: Creating and Utilizing Class Project 3
Test #2 1

Total 15

Topic Time
Frame

Introduction to super and sub classes 1
Exploration of super/sub inheritance attributes 1
Introduction to abstract classes and interfaces 2
Lesson on comparable interface 1
Exploration of memory allocation in super and sub classes 1
Exploration of dynamic vs. static binding
Project #3: Creating and Utilizing Class Hierarchy 4
Test #3 1

Total 11

Topic Time
Frame

Review of how packages are imported and why this action is
required

1

Review of basic String commands and lessons on new commands
(toString, substring)

2

Review of Math commands 1
Lesson on Object class 2
Project #4: String/Math Project 3
Test Review 1
Test #1 1

Total 11

Topic Time
Frame

Review of 1 dimension arrays and introduction to 2-dimensional
arrays

1

Unit 6 – ArrayList Class

Unit 7 – Recursion

QUARTER 3

Unit 8 – Searching and Sorting

Lesson on declaring arrays, assigning values and possible errors
(array out of bounds)

1

Exploration of standard array algorithms 2
Project #5: Array Project 3
Test #2 1

Total 8

Topic Time
Frame

Lesson on the restrictions of basic arrays and an introduction to the
ArrayList Class and the Wrapper classes

1

Lesson on the necessity of Wrapper classes and basic creation and
utilization of the ArrayList class.

2

Quiz: ArrayList vs. array 1
Lesson on effectively using ArrayList class (swapping values,
combining arrays, etc.)

1

Lesson on using ArrayList with Objects 1
Project #6: ArrayList Object Project 3

Total 9

Topic Time
Frame

Introduction to recursion and its purpose 1
Lesson on creating a recursive program 1
Project #7: Recursion Project 3
Lesson on recursive techniques and common mistakes 2
Quiz: Recursion 1
Test Review 1
Test #7 1
Midterm Review 3
Midterm 1

Total 14

Topic Time
Frame

Lesson on linear vs. binary searches 1
Programming linear and binary searches 1
Lesson on the importance of sorting and a discussion on different
sorting techniques.

1

Lesson on the selection sort (first by hand and then programming) 1

Unit 9 – Magpie Lab

Unit 10 – pix Lab

Unit 11 – Elevens Lab

QUARTER 4

Unit 12 – AP Exam Review and Practice

Lesson on the insertion sort (first by hand and then programming) 1
Lesson on merge sort (first by hand and then programming) 1
Quiz: Performing different sorts and identifying best/worst case
scenarios.

1

Project #8: Selection/Insertion Sort Project 4
Total 11

Topic Time
Frame

Discussion on the new AP standards and introduction to the labs 1
Magpie Activity 1 (Introduction to chat bots) 2
Magpie Activity 2 (Modification of chat bot code) 2
Magpie Activity 3 (Custom chat bot responses) 2
Magpie Activity 4 (Utilizing Arraylists and chat bots) 2

Total 9

Topic Time
Frame

Introduction to pix lab 1
Pix lab Activity 1 (2-dimensional arrays and digital pictures) 2
Pix lab Activity 2 (modifying digital pictures) 3
Pix lab Activity 3 (creating/altering digital pictures) 3

Total 9

Topic Time
Frame

Introduction to GUI and Elevens Lab 1
Elevens Lab Activity 1 (creating elevens game) 2
Elevens Lab Activity 2 (integrating GUI environment) 3
Elevens Lab Activity 3 (extending game design) 3
Elevens Lab Activity 4 (developing game design) 3

Total 12

Topic Time
Frame

Discussion and outline of AP exam and expectations 1
Review of Quarter 1 and 2 1
Practice AP Questions on Quarter 1 and 2 Topics 1
Review of Quarter 3 and 4 1

Unit 0: Review of Object Oriented Programming Design

Practice AP Questions on Quarter 3 and 4 Topics 1
Lesson on expectations for free response section of AP exam 1
Practice of Free Response AP Questions 3
Review of Gridworld Code and Expectations 1
Practice of Multiple-Choice and Free Response Gridworld
Questions

3

PRACTICE AP EXAM 3
Review of difficult topics/student sticking points 3

Total 19

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will review the core features of OOP
● Students will review basic java programming techniques and terminology.

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● What is the proper syntax for

creating a class?
● What is the difference between

compile-time, run-time and logic
errors?

● What are the names of the different
parts of a java program (constructor,
method, object, data, etc.)?

Students will understand that…
● Classes and data types must be

custom designed for every unique
task.

● Java is a language that has its own
unique syntax.

● Code must be as simple, logical and
intuitive as possible.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (1 week):
● No assessment

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● Worksheets and mini-5 minute

assessments.

Technology Integration

● Computer/BlueJ program

Global Perspectives

Be able to create a class.
Name the key components of a Java
program.
Identify the common types of errors made.

Unit 1: Utilizing Primitive Data Types and Conditional
Statements

We will discuss the AP Computer Science A
examination and investigate its effect on
computer science instruction at the high
school level. We will briefly discuss the
evolution of computer science as it is taught
in high schools.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will review the core primitive data types – int, double and boolean.
● Students will know how different data types interact with each other
● Students will know what values different data types may hold
● Students will know how to write compound conditional statements and be

able to evaluate truth tables
● Students will review the core control structures (while, if and for).

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● What is the difference between / and

%?
● What are the core arithmetic

operators in Java?
● How do I write logic tables in order

to assist in writing code?

Students will understand that…
● All evaluations done by conditional

statements must be true or false
● Conditional statements will only

check as much information as
required.

● Data types may interact with each
other in certain circumstances,
however precautions must be made
to ensure that no data is lost.

Areas of Focus: Proficiencies

(Cumulative Progress Indicators)
Examples, Outcomes, Assessments

Students will: Instructional Focus (2 weeks):
● Hands-on programming time mixed

with instructional classes on new
Be familiar with the int, double and boolean
types. They will be aware that other types

exist, but we will not investigate them with
any significant depth.

topics or common
problems/mistakes

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will create a
program that allows the user to
create and keep track of their bank
accounts. Functions might include
creating and closing the account,
adding and taking out money,
compounding interest, etc.

● Written Test: Students will answer
AP style multiple-choice and free
response questions on primitive data
types and conditional statements.

Instructional Strategies:

● Individual work with help from peers
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Media Literacy Integration

Students will investigate the usage of truth
tables in Classes. We will investigate real
world possible uses for truth tables and write
them out by hand to examine different cases
where sensitive information is handled. For
example, we may examine when an ATM
machine determines that the person using
the current card is not the owner.

All the core arithmetic operators (+, -, *, /,
%)
The increment and decrement operators
(++, --)
The assignment operator and relational
operators (=, ==, !=, >, >=, <, <=)
Logical operations (&&, ||, !)

Control Structures (if, if/else, while, for)

The “final” keyword.

Unit 2: Review of Common Java Classes

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will review common java packages including java.lang.Object,
java.lang.Math, java.lang.String

● Students will review how to import java packages.
● Students will review proper notation and utilization of these packages’ most

common classes (Math, Random, PrintStream, String)
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How do I utilize java packages that

have already been constructed?
● What is the proper syntax for each

class?
● How does the String class function

and which aspects of it is part of the
core functionality of Java?

● How do I gain user input from the
console?

Students will understand that…
● Each class has its own unique uses

and syntax and that it is critical to
know the difference between
important classes.

● Classes should only be imported
when required for core use in a
program.

● Classes are externally written
components to Java that have such
widespread usefulness that they have
become fully integrated into the
language.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (3 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will create a class
that utilizes user input to develop
some core functionality. For
example, students may create a class
that allows the user to purchase
different items from a store.

● Written Test: Students will answer
AP style multiple-choice and free
response questions on common Java
classes.

Instructional Strategies:

● Individual work with help from peers
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Global Perspectives

We will examine the development of Java as
a programming language and discuss why
certain core functionalities of Java are used
through classes. This will require a discussion
and investigation of the advancement of
programming over time.

Know String concatenation utilizes toString
Be able to utilize all the escape sequences
inside print statements
Be able to utilize all the appropriate String
methods (substring, toString, etc.)
How to write code that will use user input in
their program as int, double and String.

Unit 3: Class Hierarchy

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will know how to implement super/sub classes
● Students will be able to utilize inheritance in programming and create

webbed class hierarchy
● Students will be able to utilize static and dynamic binding
● Students will know how to reference null parameters
● Students will be able to create abstract classes and interfaces along with

utilizing the comparable interface
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● When and why do we use super and

sub classes?
● How does the computer decide what

information to reference and where
to look for that information?

● How do abstract classes and
interfaces relate to super/sub classes?

Students will understand that…
● Super and sub classes must follow

the is-a relationship.
● That abstract classes and interfaces

have fundamental differences in
structure and design.

● Static and dynamic binding affects
how a program interprets code.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (2 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

● Class work in order to craft a
program as a group

● In-Class single day programming
assignments

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will create a
program that organizes different
types of athletes based on which
sport they play.

● Written Test: Students will answer
AP style multiple-choice and free
response questions on class creation
and utilization.

Instructional Strategies:

● Group work/individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Global Perspectives

We will examine how Java extends class
functionality to incorporate UML structures
and class hierarchy. An exploration of how
this enhances our programming capabilities
will occur.

 Know how to create super/sub classes from
scratch

Know how to utilize the comparable
interface

Know how to create interfaces/abstract
classes from scratch.

Test code utilize static and dynamic binding.

Unit 4: Review of Classes

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will know class terminology (constructor, instance variable, etc)
● Students will review how to create the basic components of a Class including

constructors, methods, functions, instance variables, “get” functions, static
and final information

● Students will learn advanced class techniques including – overloading
methods, “this” call and general collection classes.

● Students will examine common runtime errors associated with the topics
learned in previous 2 units (NullPointException,
ArrayIndexOutOfBoundException, etc).

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● Which features of Class design

inherently go together (constructors
Students will understand that…

● Classes must be designed around
related core functionality.

and this, “get” functions and instance
variables, etc.)?

● What is the proper time to use each
call?

● What types of coding mistakes
create run-time errors?

● Classes should be designed to
minimize or eliminate any possible
errors from those that use it.

● Class design is an art. There is no
single best way to implement any
given system.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (3 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

● Class work in order to craft a
program as a group

● In-Class single day programming
assignments

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will create a
program that draws different
polygons using multiple constructors.
They will then write code that finds
various information about the shapes
(their area, perimeters and so on).

● Written Test: Students will answer
AP style multiple-choice and free
response questions on class creation
and utilization.

Instructional Strategies:

● Group work/individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Global Perspectives

We will examine how Java as a language
changes over time through the utilization
and integration of previously designed
classes. In this regard Java is much like a

 Know how to utilize method overloading
Construct classes from scratch and use the
“this” statement to make multiple
constructors.
 What visibility means in programming (i.e.:
The appropriate usage of private and public)
What “static” means and how it is important
to programming.
Know how to use “final” by itself and along
with “public/private” and “static”

Know how to write their program to utilize a
previously written core Java class from the
early unit (Random, String).

Be able to name and identify the main
run-time errors that cause a Java program to
crash.

Unit 5: 1 and 2-dimensional arrays

spoken language – a living tapestry that
changes as new ideas are developed. Java is
not a language owned by any one group as
users all over the world develop its
functionality. We will examine the origins of
core Java classes to illustrate this point.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will review the core components of primitive type 1-dimensional
arrays.

● Students will know how to use 1-dimensional arrays made of Objects.
● Students will extend this knowledge to solving problems utilizing

2-dimensional arrays with both primitive data types and Objects.
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How do arrays hold information

differently than other data types?
● When should I utilize an array of

objects as opposed to an array of
data?

● How do 2-dimensional arrays
function differently than
1-dimensional arrays?

Students will understand that…
● Arrays are indexed from 0 to

length-1.
● Arrays of Objects create a chain of

stored information similar to a user
database and are more efficient than
utilizing multiple arrays.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (1 week):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will create a
program that stores a student’s
school attendance and uses this array
to create a class that can find various
information (how many absences,
how many tardies, what days of the
week the student is absent, possible
punishments, etc.)

● Written Test: Students will answer
AP style multiple-choice and free
response questions on arrays and
array implementation.

Instructional Strategies:

● Individual work with help from peers
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Media Literacy Integration

We will examine real-world situations where
Object arrays are required. Each group will
select a different utilization of Object arrays
and report to the class on what data is stored
inside the array. For example, students may
select and research doctor’s medical records
or their video game “gamer tags”.

Know how to create and use arrays with
primitive data types and Objects
Know when and why it is appropriate to use
Object arrays.
Know how to index and find information in
an array through traversing.
Know how to use core functions of an array
including addition and deletion.
Know the shortcomings of arrays.

Know how to create and/or utilize arrays
that have been initialized and that haven’t.

Unit 6: ArrayList Class

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will be able to appropriately utilize the List and ArrayList class
● Students will know how to utilize the Integer and Double “Wrapper” classes

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● Why do we need wrapper classes if

they appear to serve the same
functionality as the core primitive
data types?

● How is the ArrayList class more
efficient than the primitive array
class?

Students will understand that…
● The ArrayList Class was created to

provide additional functionality to
the array data type.

● The Wrapper class is required for use
of the ArrayList class.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (2 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

● Class work in order to craft a
program as a group

● In-Class single day programming
assignments

Sample Assessments:

● 5-minute written warm up quizzes
● Programming Project
● Project: Students will modify an old

project to integrate the ArrayList
class. For example, students can
modify their ATM program so that it
may utilize the more advanced
functionality provided by the class.

● Written Test: Students will answer
AP style multiple-choice and free
response questions on the ArrayList
class.

Instructional Strategies:

● Group work/individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Media Literacy Integration
We will examine the first build of Java.
Students will research what functionality was
included in the language from the very start
and what functionality was added over time
as programming became more advanced.
Each group will select an aspect of the
program from the initial build (i.e.: arrays)
and see how they have been modified over
time to provide enhanced functionality (i.e.:
the ArrayList class).

Know why the ArrayList class is required to
fix a problem with the primitive data type
array.
Know why we must use the Wrapper classes
to address a limitation of Java and why this
limitation was created in the first place.
Know the core methods in the Wrapper, List
and ArrayList classes

Unit 7: Recursion

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will know how to use recursion to solve a variety of problems.
● Students will examine common run-time and logic errors common in

recursion.

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How is recursion more efficient and

elegant in certain cases?
Students will understand that…

Unit 8: Searching and Sorting

● How can I rewrite old code to utilize
recursion?

● Recursion is a key skill used when
programming that allows for
enhanced functionality and elegance.

Areas of Focus: Proficiencies

(Cumulative Progress Indicators)
Examples, Outcomes, Assessments

Students will: Instructional Focus (3 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Project: Students will write several
small methods and that utilize
recursion. One method will require
students to write solutions to
summation problems.

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Know how to utilize recursion to solve
simple tasks and how to rewrite code to
integrate recursion.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will know how to write and utilize the bubble, selection and
insertion sorts.

● Students will be able to sort data by hand using any of the above sorts.
● Students will know the advantages and disadvantages of each type of sorting

method.
● Students will know how sequential and binary searches function. They will be

able to work these searches by hand and utilize them while programming.

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How do bubble, selection and

insertion sorts function?
● How do I decide which sort will be

the most efficient?
● How does sorting relate to arrays?
● Why is sorting an important concept

in computer science?
● How do each of the searches

function and which are most
efficient?

Students will understand that…
● Sorting data through predetermined

methods is a crucial programming
skill.

● Students should be comfortable
sorting data by hand, coding it and
looking at results used identifying
which sorting method.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (3 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

● Group work/class work in order to
craft a program as a group

● In-Class single day programming
assignments

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Written Test: Students will answer
AP style multiple-choice and free
response questions on sorting. They
will have to sort data by hand and
identify which sort was used given a
set of data.

Instructional Strategies:

● Group work/individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Global Perspectives

Know how each of the three sorts work and
how to sort lists by hand.
Know how to program these sorts.
Know how the different searches functions
as well as the advantages and disadvantages
of each one.

Unit 9: Magpie Lab

We will discuss and examine the importance
in sorting in computer programming. A
focus will be placed on real-world situations
where large amounts of data must be
organized and the importance of having
different methods to sort data. We will
conclude this section with students
attempting to solve the famous Google
sorting question and an examination of its
final solution.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will examine prewritten lab code and be able to interpret and add to
this code

● Students will develop techniques to improve chatbots.

Unit 10: pix Lab

● Students will enhance their ability to work with the String class.

Essential Questions
What provocative questions will foster inquiry,

understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How do you expand on code that has

been written by someone else?
● How do you adhere to standards to

ease programming?

Students will understand that…
● Labs require examination,

interpretation and expansion of core
ideas.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (2 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Utilize String methods.

Work with prewritten lab code.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

Unit 11: Elevens Lab

● Students will examine prewritten lab code and be able to interpret and add to
this code

● Students will enhance their work with 2D arrays.
● Students will be able to modify and edit digital images to create manipulated

photos and collages.
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How is a digital picture created?
● How do we access and modify

information in a 2D array and how is
this related the digital picture we
wish to manipulate?

● How do we standardize complex
operations?

Students will understand that…
● It is possible to work on, modify and

add to projects even if they are not
familiar with how parts of the
program function.

● How to utilize classes in a GUI.

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will: Instructional Focus (2 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Utilize 2D array methods.

Modify and edit digital pictures.

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will examine prewritten lab code and be able to interpret and add to
this code

● Students will integrate with a GUI to create their first Java game.
● Students will extend and develop their own games based on the provided

framework.
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● How is a Java package created?
● How is a GUI created?
● How do you modify a GUI?

Students will understand that…
● The core programming skills they

have developed are utilized as all
levels of programming.

● How to identify key pieces of code to
modify and replace.

Areas of Focus: Proficiencies

(Cumulative Progress Indicators)
Examples, Outcomes, Assessments

Students will: Instructional Focus (3 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Utilize Objects and ArrayLists in a GUI

Unit 12: AP Exam Review and Practice

Curricular Addendum

Standard
Big Ideas: ​Course Objectives / Content Statement(s)

● Students will be prepared to take the AP Computer Science Exam A
Essential Questions

What provocative questions will foster inquiry,
understanding, and transfer of learning?

Enduring Understandings
What will students understand about the big ideas?

● What is left for me to learn or review

to prepare for the exam?

Students will understand that…
●

Areas of Focus: Proficiencies
(Cumulative Progress Indicators)

Examples, Outcomes, Assessments

Students will:

Instructional Focus (~4 weeks):
● Hands-on programming time mixed

with instructional classes on new
topics or common
problems/mistakes

Sample Assessments:

● 5-minute quizzes to test concepts
previously learned in class.

● Written Test: Students will be given
an old, full AP exam for practice.

Instructional Strategies:

● Individual work
● In-class programming time with

assistance from teacher
● At home programming time

Technology Integration

● Computer/BlueJ program

Career-Ready Practices
CRP1​: Act as a responsible and contributing citizen
and employee.
CRP2​: Apply appropriate academic and technical
skills.

Interdisciplinary Connections
● Close Reading of works of art, music lyrics,

videos, and advertisements

CRP3​: Attend to personal health and financial
well-being.
CRP4​: Communicate clearly and effectively and
with reason.
CRP5​: Consider the environmental, social and
economic impacts of decisions.
CRP6​: Demonstrate creativity and innovation.
CRP7​: Employ valid and reliable research strategies.
CRP8​: Utilize critical thinking to make sense of
problems and persevere in solving them.
CRP9​: Model integrity, ethical leadership and
effective management.
CRP10​: Plan education and career paths aligned to
personal goals.
CRP11​:. Use technology to enhance productivity.
CRP12​: Work productively in teams while using
cultural global competence.

● Use ​Standards for Mathematical Practice​ and
Cross-Cutting Concepts​ in science to support
debate/inquiry across thinking processes

Technology Integration
Ongoing:

● Listen to books on CDs, Playaways, videos, or
podcasts if available.

● Use document camera or overhead projector
for shared reading of texts.

 ​Other:

● Use Microsoft Word, Inspiration, or SmartBoard
Notebook software to write the words from
their word sorts.

● Use available technology to create concept
maps of unit learning.

Instructional Strategies:
Supports for English Language Learners:

from ​https://wida.wisc.edu

Media Literacy Integration
● Use multiple forms of print media (including

books, illustrations/photographs/artwork,
video clips, commercials, podcasts,
audiobooks, Playaways, newspapers,
magazines) to practice reading and
comprehension skills.

Global Perspectives

● The Global Learning Resource Library

Differentiation Strategies:

Accommodations Interventions Modifications

Allow for verbal
responses

Multi-sensory
techniques

Modified tasks/
expectations

Repeat/confirm
directions

Increase task
structure (e.g.,
directions, checks for
understanding,
feedback)

Differentiated
materials

Permit response
provided via
computer or
electronic device

Increase opportunities
to engage in active
academic responding
(e.g., writing, reading
aloud, answering
questions in class)

Individualized
assessment tools
based on student
need

Audio Books Utilize prereading
strategies and
activities: previews,
anticipatory guides,
and semantic
mapping

Modified assessment
grading

https://www.google.com/search?q=standards+for+mathematical+practice&safe=active&source=lnms&tbm=isch&sa=X&ved=0ahUKEwioyYblvuLaAhXoSt8KHfjRDaAQ_AUICigB&biw=1440&bih=826#imgrc=cYtjLR-CYJNstM:
http://ngss.nsta.org/CrosscuttingConceptsFull.aspx
https://wida.wisc.edu/
http://globallearning.ascd.org/lp/editions/global-continuum/resources.html

