
AP Chemistry Summer Assignment

Name:

Distillation

What **physical property** would allow you to separate a mixture containing water, isopropyl alcohol, and salt using the above distillation apparatus?

What would be left over in the distilling flask?

(a) A line of the mixture to be separate is placed at one end of a sheet of porous paper.

(b) The paper acts as a wick to draw up the liquid.(c) The component with the strongest attraction for the liquid travels farther than those that cling to the paper.

Density

mass			
Density = volume	mass units: grams	volume units: mL or cm ³	$(1 \text{ mL} = 1 \text{ cm}^3)$

1. A chemist, trying to identify the main component of a compact disc cleaning fluid, finds that 25.00 cm³ of the substance has a mass of 19.625 g at 20°C. The following are the names and densities of the compounds that might be the main component.

Compound	Density $\left(\frac{g}{cm^3}\right)$ at 20°C
Chloroform	1.492
Diethyl ether	0.714
Ethanol	0.789
Isopropyl alcohol	0.785
Toluene	0.867

Which of these compounds is the most likely to be the main component of the compact disc cleaner?

2. A student has a cube of aluminum that measures 4 cm wide on each side. What is the volume of this cube? (Volume = length x width x height)

When the student massed the cube on a scale they found that the cube of aluminum had a mass of 165 g. What is the density of this aluminum cube?

The accepted value for the density of aluminum is 2.70 g/cm³. Calculate the percent error for your calculated density.

When you calculate results that are aiming for known values, the percent error formula is useful tool for determining the precision of your calculations. The formula is given by:

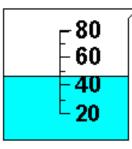
Percent Error = <u>|Experimental Value – Theoretical Value|</u> x 100% Theoretical Value

The experimental value is your calculated value, and the theoretical value is the known value. A percentage very close to zero means you are very close to your targeted value, which is good. It is always necessary to understand the cause of the error, such as whether it is due to the imprecision of your equipment, your own estimations, or a mistake in your experiment.

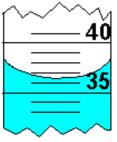
Percent error for Al _____%

Significant Figures

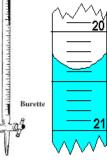
There are two kinds of numbers in the world:


- exact:
 - Examples: There are exactly 12 eggs in a dozen.

Most people have exactly 10 fingers and 10 toes.


- inexact numbers:
 - Example: Any measurement.

If I quickly measure the width of a piece of notebook paper, I might get 220 mm (2 significant figures). If I am more precise, I might get 216 mm (3 significant figures). An even more precise measurement would be 215.6 mm (4 significant figures).


Significant figures are critical when reporting scientific data because they give the reader an idea of how well you could actually measure/report your data. In any measurement, the number of significant figures is critical. The number of significant figures is the number of digits believed to be correct by the person doing the measuring and always includes *one estimated digit*.

Beaker The first digit is definitely a 4 because the liquid line is between 40 and 50. The second digit is an **estimate**... 46? 47? 48? This measurement has <u>2</u> significant figures.

Graduated cylinder Graduated cylinder has more gradations (lines) so we can get more significant figures. Now we know it is 36 and we can estimate the last digit 36.4? 36.5? 36.6? This measurement has <u>3</u> significant figures.

Buret

Buret has even more gradations so it will give you the most accurate measurement. We know 20.3 and can estimate the last digit. 20.37? 20.38? 20.39? This measurement has <u>4</u> sig figs.

Rules for Significant Figures (sig figs)

A. Determining the Number of Significant Figures

- 1. All non zero numbers are *significant* (meaning they count as sig figs).
- 2. Zeros located between non-zero digits are *significant* (they count).
- 3. Zeros to left of the first nonzero digit are *insignificant* (they **don't** count); they are only placeholders!
- 4. Trailing zeros (zeros at the end) are *significant* only if the number contains a decimal point. If the number does not contain a decimal point, trailing zeros are *insignificant* (they **don't** count).

Reminders about Rounding:

If the first digit to be dropped is **greater than or equal to 5**, increase the last reported digit by one (round up). If the first digit to be dropped is **less than 5**, keep the remaining digits the same.

Round to 3 significant figures:	32107 m =	2.4572 m =
	923.26 m =	123456 m =

B. Rules for Addition/Subtraction Calculations

Round your calculated sum/difference to the same number of decimal places as that of the least precise measurement (the value with the fewest of decimal places, also called the <u>limiting term</u>).

C. Rules for Multiplication/Division Calculations

The calculated product/quotient should have the same number of significant figures as the measurement with the lowest number of significant figures (limiting term).

Reporting Measurements Correctly: Assignment

- volume:
 20
 volume:

 10
 20
 volume:

 5
 # of sig figs
 10

 4
 4
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 <td
- 1. Report the volume shown using the correct significant figures and units.

2. Mary runs a 10 km race in 1.322 hours. She hires a coach and trains for a month. She then runs the same 10 km in 1.204 hours. Assume that her times were reported correctly, using the same timer. Did the new coach help? Did her time improve significantly?

What if her new time had been 1.319 hours?

3. A group of chemistry students was given the following procedure, and asked to record their measurements in a data table. Some of the students took pictures of their measurements just in case...

Procedure

- 1. You have about 2 grams of aluminum foil. Record the exact mass in your data table, and place the foil in a 100 mL beaker.
- Add about 20 mL of 2 M CuCl₂ to the beaker. Record the exact volume in your data table.

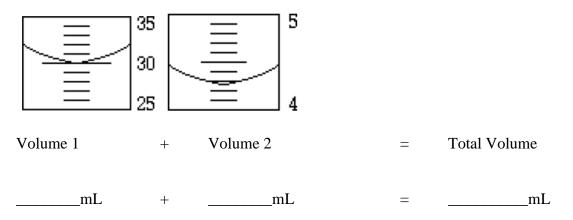
Measuring the mass of the aluminum foil:

Measuring the volume of the CuCl₂ solution.

The students' data table is shown below. Identify their mistakes, and write the correct measurements in the table to the right.

Data		mistake(s)	Corrected Data Table		
Mass of Aluminum	2.1		Mass of Aluminum		
Volume of CuCl ₂	20 mL		Volume of CuCl ₂		

Identifying and Using Significant Figures: Assignment


Report the number of significant figures for each of the following measurements

1.) 54 g	4.) 4.00 g	7.) 0.041 g	
2.) 45678 g	5.) 400 g	8.) 0.00010 g	
3.) 4.03 g	6.) 400. g	9.) 190909090 g	

<u>Underline</u> the measurement in each of the expressions that is the <u>limiting term</u>. Calculate the indicated sum or difference, and round to the correct decimal point. Write the answer with the correct units and number of significant figures, then indicate the number of significant figures you reported.

10.)	55.43 g + 44.333 g + 5.31 g + 9.2 g	=	# of sig figs
11.)	3.461728 mL + 14.91 mL + 0.980001 mL + 5.2631 mL	=	# of sig figs
12.)	23.1 cm + 4.77 cm + 125.39 cm + 3.581 cm	=	# of sig figs
13.)	22.101 kg - 0.9307 kg	=	# of sig figs

14.) Record the volume in each of the graduated cylinders pictured below. Determine the volume of the solution that would result from adding the two volumes together. Use the correct units and significant figures to report your answer.

<u>Underline</u> the measurement in each of the expressions that is the <u>limiting term</u>. Calculate the indicated product or quotient, and round to the correct number of significant figures.

14.) 343.4 g ÷ 34.337 mL	=	# of sig figs
15.) $1.3 \text{ cm} \times 5.724 \text{ cm}$	=	# of sig figs
16.) 6305 mL \div 0.010 mL	=	# of sig figs
17.) 12.5 m × 75 m	=	# of sig figs
17.) 12.5 m × 75 m	=	# of sig figs

Nomenclature

Rules for Naming Covalent Compound (nonmetal + nonmetal)	ds		for Naming Ionic Compounds +nonmetal)
 A. Use pre-fixes to identify the nutry of element B. If the 1st element has only 1 at USE <u>MONO</u>! 		B.	Balance Charges (charges should net zero) Cation is always written first (in name and in formula) Change the ending of the anion to –ide (unless polyatomic ion, then named as given)
Name these binary compounds of two	nonmetals.		
IF ₇	XeF ₂		SF ₆
N ₂ O ₅	N ₂ O ₄		PCl ₃
Name these binary compounds with a	fixed charge metal.		
AlCl ₃	BaI ₂		Na ₂ S
MgO	SrBr ₂		Al ₂ O ₃
Name these binary compounds of catio	ons with variable charge (use roma	an numerals).
CuCl ₂	SnO		Cu ₂ S
Fe ₂ O ₃	PbCl ₄		CoP
Name these compounds with polyaton	nic ions.		
Fe(NO ₃) ₃	Ca(ClO ₃) ₂		NH4NO2
NaOH	KNO ₂		Cu ₂ Cr ₂ O ₇
Cu ₂ SO ₄	NaHCO ₃		NH4CH3COO

Naming Acids

If the formula has hydrogen written first, then this usually indicates that the hydrogen is an H^+ cation and that the compound is an acid.

Rules for Naming an Acid

A. When the name of the anion ends in -ide (nonmetal off of the periodic table), the acid name begins with the prefix *hydro*-, the stem of the anion has the suffix -ic and it is followed by the word *acid*.

-ide becomes hydroic Acid	······
Example: Cl ⁻ is the Chloride ion so I	HCl = hydrochloric acid
HCl	H_2S
HI	HF

B. When the anion name ends in *-ite* (common polyatomic ion ending), the acid name is the stem of the anion with the suffix *-ous*, followed by the word acid.

-ite becomes _____ous Acid Example: ClO_2^- is the Chlorite ion so $HClO_2$. = Chlorous acid.

C. When the anion name ends in -ate (common polyatomic ion ending), the acid name is the stem of the anion with the suffix -ic, followed by the word acid.

-ate becomes _____ic Acid

Example: ClO_3^- is the Chlorate ion so $HClO_3 = Chloric acid.$

**I like to remember these rules as "I <u>ate</u> something and it was <u>icky</u>" and "R<u>ite ous</u>" (*yea... its spelled wrong...*) HNO₃, which contains the polyatomic ion nitr<u>ate</u>, is called nitr<u>ic</u> acid.

HNO₂, which contains the polyatomic ion nitrite, is called nitrous acid.

Name the following acids using the correct naming rule.

HClO ₄	H ₂ SO ₄
H ₃ PO ₄	HNO ₂
H ₂ C ₂ O ₄	H ₂ CO ₃
HBr	H ₂ CrO ₄
HC ₂ H ₃ O ₂	HC1

Write the chemical formulas. For ionic compounds and acids make sure the formulas are charge balanced!

tin(IV) phosphide	sulfuric acid	dichromic acid
copper(II) cyanide	sulfurous acid	zinc fluoride
magnesium hydroxide	hydrosulfuric acid	gallium arsenide
sodium peroxide	phosphorous pentabromide	copper(I) oxide
dihydrogen monoxide	potassium nitride	sodium nitrate
cobalt(II) chromate	chromium(III) carbonate	nitrogen trihydride

Composition

Complete the following problems showing all work.

1. A 0.941 gram piece of magnesium metal is heated and reacts with oxygen. The resulting magnesium oxide weighed 1.560 grams. Determine the percent composition of each element in the compound.

2. Determine the empirical formula given the following data for each compound:

- a. Fe = 63.53%, S = 36.47%
- b. Fe = 46.55%, S = 53.45%
- 3. A compound contains 21.6% sodium, 33.0% chlorine, 45.1% oxygen. Determine the empirical formula of the compound.

Solubility Rules

Review solubility rules and identify each of the following compounds as soluble or insoluble in water.

Na ₂ CO ₃	 AgI	 Li ₂ O	
CoCO ₃	 Ni(NO ₃) ₂	 $Mn(C_2H_3O_2)_2$	
$Pb(NO_3)_2$	 KI	 Cr(OH) ₃	
K_2S	 FeS	 AgClO ₃	
BaSO ₄	 PbCl ₂	 $Sn(SO_3)_4$	
$(NH_4)_2S$	 CuSO ₄	 FeF ₂	

Write out the balanced chemical equation for each of the following double replacement reactions. Predict whether each of these double replacement reactions will give a precipitate or not based on the solubility of the products. If yes, identify the precipitate.

silver nitrate and potassium chloride

magnesium nitrate and sodium carbonate

strontium bromide and potassium sulfate

cobalt (III) bromide and potassium sulfide

ammonium hydroxide and copper (II) acetate

lithium chlorate and chromium (III) fluoride

Balancing Equations

Balance the following equations with the lowest whole number coefficients.

S8 +	$\0 O_2 \rightarrow$	SO ₃	
$\{10}H_{16}$ +	$_$ Cl ₂ \rightarrow	C +	HCl
Fe +	$\0 O_2 \longrightarrow$	Fe ₂ O ₃	
C_7H_6O_2 +	$\0 O_2 \longrightarrow$	CO ₂ +	H_2O
	$\KClO_3 \rightarrow$	KCl +	O2
	$\H_3AsO_4 \rightarrow$	As ₂ O ₅ +	H_2O
V_2O_5 +	$_$ HCl \rightarrow	VOCl ₃ +	H ₂ O
Hg(OH) ₂ +	$\H_3PO_4 \rightarrow$	Hg_3(PO_4)_2 +	H_2O

Stoichiometry and Limiting Reagents

- 1. Given the equation below, what mass of water would be needed to react with 10.0g of sodium oxide? $Na_2O + H_2O \rightarrow 2NaOH$
- 2. $2NaClO_3 \rightarrow 2NaCl + 3O_2$

What mass of sodium chloride is formed along with 45.0g of oxygen gas?

3. $4NH_3 + 5O_2 \rightarrow 4NO + 6 H_2O$

What mass of water will be produced when 100.0g of ammonia is reacted with excess oxygen?

- 4. If the reaction in #3 is done with 25.0g of each reactant, which would be the limiting reagent?
- 5. $Na_2S + 2AgNO_3 \rightarrow Ag_2S + 2NaNO_3$
 - a. If the above reaction is carried out with 50.0g of sodium sulfide and 35.0g of silver nitrate, which is the limiting reagent?
 - b. What mass of the excess reactant remains?
 - c. What mass of silver sulfide would precipitate?
- 6. $6NaOH + 2Al \rightarrow 2Na_3AlO_3 + 3H_2$

What volume of hydrogen gas (measured at STP) would result from reacting 75.0g of sodium hydroxide with 50.0g of aluminum?