AP Chemistry Summer Assignment

Hello and welcome to AP Chemistry.

The following assignment will be a helpful review for a few topics learned in chem 1.

You Must learn the common polyatomic ions and solubility rules provided on the next page.

The attached assignment covers chapter 1, 2 and part of chapter 3.

On my school website look in the folder labelled <u>Summer Review Material Webpage</u>. It contains screencasts that will help with the summer assignment. Other helpful sites;

- http://www.mychemistrytutor.com
- http://www.chemmybear.com/groves/apchem.html
- http://www.bozemanscience.com/ap-chemistry/

When you return in September there will be an exam on: Mole Conversion (excluding gas volume)

Polyatomic ions

Solubility Rules

Naming Chemical Formulas

Email me if any questions arise.

Dr. C

Selected Polyatomic Ions

Octected Polyatoffile lotts					
Formula	Name		Formula	Name	
H ₃ O+	hydronium		CrO ₄ ² -	chromate.	
Hg ₂ ²⁺	mercury(I)	1	Cr ₂ O ₇ 2-	dichromate	
NH ₄ +	ammonium]	MnO ₄ -	permanganate	
$C_{2}H_{3}O_{2}^{-}$ CH ₃ COO~	acetate	7	NO ₂ -	nitrite	
		┨.	NO ₃ -	nitrate	
CN-	cyanide	_	O2 ² -	peroxide	
CO ₃ 2-	carbonate		OH-	hydroxide	
HCO3-	hydrogen carbonate		PO ₄ 3-	phosphate	
C2O42-	oxalate	$\ $	SCN-	thiocyanate	
ClO-	hypochlorite	11	SO ₃ 2-	sulfite	
CIO ₂ -	chlorite		SO ₄ 2-	sulfate	
ClO ₃ -	chlorate	$\ \ $	HSO ₄ -	hydrogen sulfate	
ClO ₄ -	perchlorate		S2O32-	thiosulfate	

Solubility Rules

The following are always soluble with anything

Group I metals
Armmonium NH₄*
Nitrate NO₃*
Acetate C₂H₃O₂*
Hydrogen carbonate HCO₃*
Chlorate ClO₃*

Partial solubility- the following are soluble with everything except

Halides (CIT, Br., IT)

Ag*, Pb2*, Hg22*

Sulfates (SO₄2-) - Hungry seniors always bake peanut butter cakes

Hg₂²⁺ Sr²⁺ Ag⁺

Pb²⁺

n_2+

The folloling are solube with Group I metals, NH, and...

 $\begin{array}{ccc} \mbox{Hydroxides (OH') - Seniors bake cakes} \\ \mbox{Sr}^{2^{\bullet}} & \mbox{Ba}^{2^{\bullet}} & \mbox{Ca}^{2^{\bullet}} \end{array}$

Chromate(CrO₄^{2*}) - Make cakes Mg^{2*} Ca^{2*}

Mole Conversions

1 Mole = Formula Mass (g) = 6.02 x 10²³ molecules, atoms, particles = 22.4 L of gas @ STP (AKA Molar Mass)

Please Define the Following (primarily chapter 1)
Pure substance
Element
Compound
Law of Constant Composition
Law of Definite Proportions
Physical Property
Chemical Property
Physical Change
Chemical Change`

- Use factor labeling method to convert the following: 1.
 - a. 50.0mL = ____ liters.

? L = 50.0 mt x $\frac{1 L}{1000 \text{ mt}}$ = 0.0500 L (to 3 significant figures)

- b. 650 in = ____ meters
- c. 4 years= _____ seconds.
- d. 200 liters = ____ ml
- 2. Classify each of the following as units of mass, volume, length, density, energy, or pressure.
 - a.Kg
- b. Liter
- c, m³
- d. mm
- e, kg/m³

- f. Joule g. atm h. cal
- i.Torr
- J. g/ml
- 3. Most laboratory experiments are performed at room temperature at 25°C. Express this temperature in:
 - a. °F
 - b. K
- 4. How many significant figures are in each of the following?

 - a. 1.9200 mm b. 0.0301001 kJ
- c. 6.022 x10²³ atoms

- d. 460.000 L e. 0.000036 cm³ f. 10000

- g. 1001 h. 0.001345
- i. i.0.0101
- J. 3.02×10^4 k. 3.21×10^{-2}

5.	Write the number 1200 three ways: to 2, 3, and 4 significant figures				
6.	Record the following in correct scientific notation: a. 4,050,000,000 cal 4.05 x 10 ⁹ cal				
	b. 0.000123 mol				
	c. 0.00345 Å				
	d. 700,000,000 atoms				
7.	Calculate the following to the correct number of significant figures.				
	a. 1.270 g / 5.296 cm ³				
	b. 12.235 g / 1.010 L				
	c. 12 g + 0.38 g				
	d. 170g + 2.785 g				
	e. 2.1 x 3.2102				
	f. 200.1 x 120				
	g. 17.6 + 2.838 + 2.3 + 200.				
8.	A cylinder rod formed from silicon is 46.0 cm long and has a mass of 3.00 kg. The density of silicon is 2.33 g/cm 3 . What is the diameter of the cylinder? (the volume of cylinder is given by V= \prod r 2 h, where r is the radius and h is the length)				
ġ.	Give the chemical symbo ls for the following elements: a. Carbon b. sulfur c. Titanium d. Nitrogen e. Helium				
	f, Krypton g. Fluorine h. Scandium I. Arsenic J. Potassium				
	k. Sodium I. chloride m. Iron n. Zinc				

	0 ³ cm ³ . When filled with gas, the mass of the container + gas alone is 836.2 g. To the correct number of significant s? D=m/v
11 Classify each of the following as to p	ure substances or mixtures. If an item is a mixture, specify if
it is heterogeneous or homogeneous	;.
(a) concrete	(e) air
(b) seawater	(f) tomato juice
(c) magnesium	(g) iodine crystals
(d) gasoline	(h) a nickel
12. How would you separate a mixture of size?	of granulated sugar and beach sand of comparable grain
size?	a physical process or a chemical process.
size? 13. Label each of the following as either	a physical process or a chemical process.
size? 13. Label each of the following as either a. Corrosion of aluminum meta	a physical process or a chemical process. I. f. Milk turning sour.
size? 13. Label each of the following as either a. Corrosion of aluminum meta b. Melting of ice.	a physical process or a chemical process. ol. f. Milk turning sour. g. Burning of paper.

14.	4. A solid white substance A is heated strongly in the absence of air. It decomposes to form a new white solid substance B and a gas C. The gas has exactly the same properties as the product obtained when carbon is burned with excess oxygen. What can you say about whether solids A and B and the gas C are elements or compounds?					
15.	5. In the process of attempting to characterize a substance, a chemist makes the following observation: The substance is a silvery white, lustrous metal. It burns in air, producing an intense white light. It reacts with chlorine to give a brittle white solid. The substance can be pounded into thin sheets or down into wires. It is a good conductor of electricity. Which of these characteristics are physical and which are chemical properties?					
16.	Why do we call Ba(NO ₃) ₂ bari	um nitrate, but we ca	l Fe(NO ₃) ₂ iron(II) nitrate?			
17.	Write the formula of the follo a. Calcium sulfate.	• •	oogle → "formula writing") aate ` c. Lithium Nitrite			
	d. potassium perchlorate.	e. Barium Oxide	f. Zinc sulfide.			
	g. Sodium Perbromate	I. Calcium lodide	J. Aluminum Carbonate			
18. a.to	· -	actor-labeling method) (google →"pressure conversions "))		
b.	kilopascals					
c.	mm of Hg					

Define the following (primarily Chap 2)
Dalton
Thomson
Millikan
Becquerel
Curie
Chadwick
Atomic number
Atomic mass
Average atomic (isotopic) mass
Mass spectrometer
Structural formula

(Using the factor labeling method)
What is the difference between? a. Chlorine and Chloride
b. Sodium atom and Sodium ion

How many grams of methane (CH_4) are present in 5.6 moles of methane gas? (Use the factor labeling method)

19.	19. Nitrogen (atomic mass=14.00674) has two isotopes, N-14 and N-15, with atomic masses of 14.00031 amu and 15.001 amu, respectively. What is the percent abundance of N-15? (google→ "atomic mass isotope abundance")						
	(google - atomic mass isotope abundance)						
20.	Write the number of proton	s and electron Protons	ns? Neutrons	Electrons	1		
		Protons	Meditions	Elections			
	a P ₄ molecule						
	b. a PCl ₅ molecule						
	c. a P ³ * Ion			<u> </u>			
	d. P ⁵⁺ ion			-			
	a. P 10n			<u> </u>			
21.	Mercury has an atomic mass a, Mass of 3.0 x 10 ¹⁰ atom		nu. Calculate the	:			
	b. Number of atoms in o	ne nanogram	n of Mercury				
22.	Calculate the molar masses (a.Ammonia (NH ₃)	g/mol) of					
	b. Baking soda (NaHCO ₃)						
	c. Osmium Metal (Os)						

	diatomic molecule, molecular compour	nd, ionic compound, atomic
	f CO _n	k. O ₂
-		I. I ₂
-		m.CO
	_	n. K₂CO₃
e. KF	j. MgO	
If 154 g of gold are av	ailable, how many grams of platinum a	
		53.73% Fe and 46.27% of S ?
		itrogen (N₂).
Atoms?		
	element. a. F₂ b. Cl₂ c. C d. NaCl e. KF 24. White gold is an alloy If 154 g of gold are av gold to form this alloy 25. What is the empirical (Google → "empirical f	 a. F₂ b. Cl₂ c. C d. NaCl e. KF j. MgO 24. White gold is an alloy that typically contains 45.0% by mass gold to form this alloy? 25. What is the empirical formula of a compound that contains 5. (Google → "empirical formula percent") 26. Determine the number of molecules present in 4.56 mol

27.	A hydrated compound has an analysis of 18.29% Ca, 32.37% Cl, and 49.34% water. What is its formula? (Google *> "percent empirical formula")
	Tormular (Google > percent empirical formula)
28.	Name the 4 types of general inorganic reactions with example of each?
29.0	Define Acid, base and salt? Give two examples of each.
Acid-	
riola	
Base	-
Salt-	
55.1	

30. The hormone, thyroxine is secreted by the thyroid gland, and has the formula: $C_{15}H_{17}NO_4I_4$. How many milligrams of lodine can be extracted from 15.0 Grams of thyroxine? (hintmass% I)
31. Determine the formula weight (aka molar mass) for the following: a. N_2O_5
b. CuSO ₄ c. Ca(HCO ₃) ₂
d. CaSO ₄ •2H ₂ O
32. Determine the empirical formula of the compounds with the following compositions by mass:
a. 10.4 % C, 27.8% S, 61.7 % Cl
b. 21.7 % C, 9.6 % O, and 68.7 % F

,

33. Common Polyatomic Ions (Please provide in the following)

<u>Name</u>	Formula with charge	Name	Formula with charge
a) Acetate		b) Ammonium	
c) Carbonate		d) Chlorate	
e) Chlorite		f) Chromate	
g) Cyanide		h) Dichromate	
i) Dihydrogen Phosphate		j) Dihydrogen	Phosphate
k) Hydrogen Carbonate		l) Hydrogen Su	lfate
m) Hydrogen Sulfite		n) Hypochlorit	e
o) Hydroxide		p) Nitrate	
q) Nitrite		r) Oxalate	
s) Perchlorate		t) Permangana	te
u) Perioxide		v) Phosphate	
w) Sulfate		x) Sulfite	
y) Thiosulfate			

34	Common Acids	<u>Formula</u>	Common Acids	<u>Formula</u>
	Hydrochloric Acid		Phosphoric acid	
	Perchloric acid		Periodic Acid	
	Carbonic acid		Sulfurous Acid	
	Nitrous acid		Sulfuric Acid	
	Nitric Acid		Hypochlorous Acid	
	Chlorous Acid		Chloric Acid	

_33, lo	n Name	Symbol with charge				
a)	Sodium					
b)	Potassium					
c)	Cesium					
d)	Beryllium					
e)	Calcium					
f)	Strontium					
g)	Barium					
h)	Gallium					
i)	Aluminum					
j)	Nitrogen					
k)	Arsenic					
I)	Bismuth					
	Oxygen					
•	Fluorine					
	Chlorine					
•	Bromine					
q)	Iodine					
36. Ion	Common ions of tran	nsition elements Ion				
a) Chro	mium(III)					
b) Man	b) Manganese(II)					
c) Iron(c) Iron(II)					
d) Iron(d) Iron(III)					
e) Coba	e) Cobalt(II)					
f) Nicke	f) Nickel(II)					
g) Copp	g) Copper(II)					
h) Zinc	h) Zinc					
i) Silver	i) Silver					
j) Cadm	j) Cadmium					
k) Merc	k) Mercury(II)					

37	One way to rem	ove Nitrogen Oxid	le (NO) from	smokestack	emissions is to	react it with	ammonia:
J / .	concernation to remi	ore increased and	ic fire) iicili	JIII DIKE JEGOK	C((())))(())		O, minimar

 $4 \text{ NH}_3 \text{ (g)} + 6 \text{ NO (g)} \longrightarrow 5 \text{ N}_2 \text{ (g)} + 6 \text{ H}_2 \text{O (I)}$

- a. 12.3 mol of NO reacts with _____ mol of ammonia
- b. 5.87 mol NO yields _____ mol nitrogen.
- 38. Name the following covalent compounds:
 - a. CO₂

f. SF₆

b. P₄S₁₀

g. CH₄

c. NI₃

h. C₂H₆

d. PCl₅

 $i.\ C_3H_8$

- e. CCl₄
- 39. Define Oxidation number.

Find the Oxidation number of

a.Carbon in CO₂

c.Phosphorus in PO₄3.

b.Sulfur in H₂SO₄

d.Manganese in MnO₄²

40	What mass of con	ner is required to	replace silver from	4.00g of silver n	itrate dissolved in water?
40.	AAIIat IIIaaa oi cob	DEL 13 LEGULIEU IV	ichiace suver mour	4.00g of sliver if	ILLIAGE GISSOLVER IN MACCIA

(Google→"stoichiometry ")
___Cu(s) + ___AgNO₃ → ___Cu(NO₃)₂ + ___Ag

- 41. Write the chemical formulas for the following compounds:
 - a. Calcium Carbonate
 - b. Ammonium Phosphate
 - c. Sodium Chloride
 - d. Sodium Oxide
 - e. Calcium Sulfate
 - f. Sodium Nitrite

- g. Magnesium Acetate
- h. Potassium cyanide
- i. Zinc(II) Nitrate
- j. Iron(III) Phosphate
- k. Nickel (II) Fluoride

- b. Law of multiple proportion
- 42. Strontium consists of four isotopes with masses and their percent abundance of 83.9134 amu (0.5%), 85.9094 amu (9.9%), 86.9089 amu (7.0 %), and 87.9056 amu (82.6 %). Calculate the atomic mass of Sr ? (Google → "atomic mass calculation")