Chapter 8: Estimating with Confidence

Key Vocabulary:

- point estimator
- point estimate
- confidence interval
- margin of error
- interval
- confidence level
- random
- normal

- independent
- four step process
- level C confidence interval
- degrees of freedom
- standard error
- one -sample z interval
- t distribution
- t-procedures

- one-sample t interval
- robust

8.1 Confidence Intervals: The Basics (pp.615-643)

4. **Example** "The Mystery Mean" we will do as an activity next class.

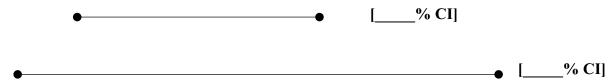
1. A *point estimator* is a statistic that...

2.	The value of the point estimator statistic	is called a	and it is our
	"best guess" at the value of the		
3.	Example "From Batteries to Smoking"	Answer parts "a" and "b.'	,
	a) Point Estimator is	(notation is) for the population mean (µ)
	• The Point Estimate is		
	b) Point Estimator is proportion (p).	(notation is) for the population
	• The Point Estimate is		

5.	Summarize	the fac	ts about	sampling	distributions	learned i	in chapter '	7:

		sampling distributions for means	samp	ling distributions <u>for proportions</u>
		• Shape	• S	hape
		• Center		enter
		• Spread	• S	pread
6.	"T	he Big Idea is that the		of \bar{x} tells us how close to
		the (x) is like	ly to b	e.
	•	Or, said a different way "How close is like		
		().		
7.		Confidence Interval for a parameter has 2 parts		
		\bar{x} and \hat{p} are examples of the	·	
	b)	Define margin of error:		
	c)	The <u>confidence level C</u> is a The <u>confidence level C</u> is a	at is. i	in C% of all possible the
	-)	method would yield an		
				P · P · · · · · ·
0	XX 71		C 1	
8.		hat is the difference in interpretation between <u>Co</u>		
	a)	Interpret a Confidence Level (CL): "To say that	ı we a	re 93% confident is shorthand for
	h)	Explain how to interpret a <i>Confidence Interval</i>	(CI)	
	U)	Explain now to interpret a <u>conjuncted interval</u>	<u>C1)</u> .	
	c)	The <i>confidence level(CL)</i> does NOT tell us the	chanc	e that a particular confidence interval
		captures the population parameter because the		is not a probability.
		What does CL tell us? And explain "plausible		
				-

9. Sketch and label a 95% confidence interval for the standard normal curve N(0,1). Label the mean, ±3 standard deviations, shade the 95% confidence area, and confidence interval.


	The Practice of Statistics	(4th Edition)) - Starnes,	Yates, I	Moore
--	----------------------------	---------------	--------------	----------	-------

•	In a sampling distribu	tion of	\overline{x} , why is t	the interval	of numbers	between	$\overline{x} \pm 2s$	called a	95%
	confidence interval?	HINT:	Think Emp	oirical Rule	<u>.</u>				

10. General form to calculate a confidence interval is on the **Green Sheet:**

statistic
$$\pm$$
 (critical value) • (standard deviation of the statistic) statistic \pm

- a) From this formula, what is the "margin of error?"
- b) What does the "critical value" depend on?
- c) What does the "standard deviation" depend on?
- 11. What happens when the **sample size (n)** increases?
- 12. When the **confidence level** increases, what happens to the **confidence interval**?

13. Explain the two conditions when the margin of error gets smaller.

arameters p or
nce intervals?