AP Calculus Summer Packer Key

- 1 a) Remember, the negative in the front and the negative in the exponent have nothing to do w/each other. Answer: $\frac{-1}{3^x}$
 - b) Answer: $-5\sqrt{\frac{4}{9}} = -5\left(\frac{2}{3}\right)$ or -10/3.
 - c) Answer: $\frac{-8}{(x-2)^3}$
 - d) The 16, x^2 , and the y are all bases to the exponent. When you take a power to another power, multiply the exponents. Answer: $8x^{3/2}y^{3/4}$. Also, $16^{3/4} = \left(\sqrt[4]{16}\right)^3 = 2^3 = 8$
- 2. a) You can only take the log of a positive number, not zero. Remember, in correct domain notation, brackets indicate inclusion. Answer: $(6, \infty)$
 - b) Look at the denominator, factor it. (x-6)(x+3), Answer: $(-\infty,-3)\cup(-3,6)\cup(6,\infty)$
 - c) You can take 2 to any power, once again, the denominator can't be zero. Answer: $(-\infty,0)\cup(0,\infty)$
 - d) Here's one where you have to look at both. The numerator can't be negative, the denominator can't be zero. The top's domain is 4.5 or greater and the denominator can't be -4.5. Answer: $[4.5,\infty)$
 - e) You must factor first, then make a sign chart. (x-7)(x+2). When x is smaller than -2, $x^2-5x-14$ is positive. When x is in between -2 and 7, $x^2-5x-14$ is negative. When x is larger than 7, $x^2-5x-14$ is positive. Answer: $(-\infty,-2] \cup [7,\infty)$
 - f) The numerator of a fraction can be anything, so look to the denominator. The denominator can not be zero. Answer, from $[0,2\pi)$: $\left[0,\frac{\pi}{2}\right] \cup \left(\frac{\pi}{2},\frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2},2\pi\right)$
- 3. a) Answer: $x^5 + 11x^3 80x = x(x^4 + 11x^2 80) = x(x^2 + 16)(x^2 5)$
 - b) Look at this problem as two terms, factor out what is common from each term. $(x-3)^2(2x+1)^2$ is common in both terms. If you take those out, you are left with (2x+1)+(x-3) which equals 3x-2. Answer: $(x-3)^2(2x+1)^2(3x-2)$
 - c) Answer: $2x^2 20xy + 50y^2 = 2(x^2 10xy + 25y^2) = 2(x 5y)(x 5y) = 2(x 5y)^2$

- 4. a) Factor, solutions are 4 and -4, make a sign chart. +(-4) (4) + Also check to see if the inequality sign has a bar under it to determine if you use [] or (). Answer: $(-\infty, -4) \cup (4, \infty)$
 - b) Same procedure as 4a. Answer: $(-\infty, -8) \cup (2, \infty)$
 - c) Subtract the 10 first. Then it is like 4a and 4b. This one is inclusive. Answer: [-2,5]
 - d) Same as 4c. Answer: $\left[-3, \frac{1}{2}\right]$
- 5. a) Down 4
 - b) Right 4
 - c) First reflect it in the x-axis (upside down), then left 2 (Remember, always stretch/reflect first)
 - d) First vertically stretch by 5, then move up 3
 - e) Horizontally shrink by 2
 - e) All parts of the graph that are below the *x*-axis need to be reflect up. No part of the graph should be below the *x*-axis.
- 6. a) x(7x-3) = 0, Answer: $x = \frac{3}{7}$ and x = 0
 - b) Distribute AND subtract the 2, you must always have a 0 on one side of the equals sign. $4x^2 8x 5x^2 + 5x 2 = -x^2 3x 2 = x^2 + 3x + 2 = (x+1)(x+2) = 0$, Answer: x = -1 and x = -2
 - c) You must use the Quadratic Formula. Answer: x = -0.763 and x = -5.236
 - d) This one doesn't factor and gives nonreal solutions. Answer: No solution
 - e) $2x^2 x^2 + x + 6 12 = x^2 + x 6 = (x+3)(x-2) = 0$, Answer: x = -3 and x = 2
 - f) Since fractions are involved, try to get common denominators, then use proportional rules.

$$\frac{x^2}{x} + \frac{1}{x} = \frac{13}{6}, \quad \frac{x^2 + 1}{x} = \frac{13}{6}, \quad 6x^2 + 6 = 13x, \quad 6x^2 - 13x + 6 = 0, \quad (3x - 2)(2x - 3) = 0$$
Answer: $x = \frac{2}{3}$ and $x = \frac{3}{2}$

- g) $(x^2-8)(x^2-1)=0$, Answer: $x=\pm\sqrt{8}$ and ± 1
- h) $(x^{1/2}-9)(x^{1/2}-1)=0$, Answer: x=81 and x=1

i)
$$\frac{1-x}{x^2} = 6$$
, $1-x = 6x^2$, $6x^2 + x - 1 = 0$, $(3x-1)(2x+1) = 0$, Answer: $x = \frac{1}{3}$ and $x = -\frac{1}{2}$

- 7. a) Vertical asymptotes are found at values that make ONLY the denominator zero. If a value of x makes both the denominator and numerator zero, there is a hole. Horizontal asymptotes are also known as end behavior. Answer: VA: x = 3, HA: y = 1
 - b) For the horizontal asymptote, since the bigger exponent is in the denominator, the function will always approach zero. Answer: VA: x = 1 and x = -1, HA: y = 0
 - c) Answer: VA: none, HA: y = 0
 - d) Factor before deciding either. $y = \frac{(x-3)(x+3)}{x(x-3)(x+6)} = \frac{(x+3)}{x(x+6)}$, at x = 3, there is a hole. Answer: VA: x = 0 and x = -6, HA: y = 0
 - e) Since the largest exponent is in the numerator and denominator, the horizontal asymptote can be found by looking at the leading terms, $\frac{2x^3}{x^3} = 2$. Answer: VA: x = 1, HA: y = 2

8. a) Since there is an 'x' in every term, you can cross one x off. Answer: $\frac{x^2 - 4x + 1}{6 + x^4}$

b)
$$\frac{x - \frac{1}{x}}{x + \frac{1}{x}} = \frac{\frac{x^2 - 1}{x}}{\frac{x^2 + 1}{x}} = \frac{x^2 - 1}{x} \cdot \frac{x}{x^2 + 1}$$
, Answer: $\frac{x^2 - 1}{x^2 + 1}$ (You can not simplify any further)

c)
$$\frac{\frac{x^2 - y^2}{xy}}{\frac{x+y}{y}} = \frac{x^2 - y^2}{xy} \cdot \frac{y}{x+y} = \frac{(x+y)(x-y)y}{xy(x+y)}, \text{ Answer: } \frac{x-y}{x} \text{ or } 1 - \frac{y}{x}$$

d) Answer:
$$x^2 - 1 + x^{-1}$$
 or $x^2 - 1 + \frac{1}{x}$

e) You can't do anything to this one. Answer:
$$\frac{3x}{2x^3-4x+10}$$

9. a)
$$g(2)=3$$
, $f(3)=9$, Answer: 9

b)
$$f(2) = 4$$
, $g(4) = 7$, Answer: 7

c)
$$h(-1) = 0.5$$
, $f(0.5) = 0.25$, Answer: 0.25

d)
$$h(0.5) = \sqrt{2}$$
, $f(\sqrt{2}) = 2$, $g(2) = 3$, Answer: 3

10. a) Common denominators and proportion/ratio rules. $\frac{2}{3} - \frac{5}{6} = \frac{1}{x}$, $\frac{4}{6} - \frac{5}{6} = \frac{1}{x}$, $-\frac{1}{6} = \frac{1}{x}$, -x = 6Answer: x = -6

b)
$$x + \frac{6}{x} = 5$$
, $\frac{x^2}{x} + \frac{6}{x} = 5$, $\frac{x^2 + 6}{x} = 5$, $x^2 + 6 = 5x$, $x^2 - 5x + 6 = 0$, $(x - 3)(x - 2) = 0$
Answer: $x = 2$ and $x = 3$

c) With this, multiply all terms by 6, that would get rid of the fractions. $\begin{pmatrix} x+1 & x-1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} x-1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

$$6\left(\frac{x+1}{3} - \frac{x-1}{2} = 1\right), \quad 2(x+1) - 3(x-1) = 6, \quad 2x+2-3x+3-6 = 0, \quad -x-1 = 0, \text{ Answer:}$$

$$x = -1$$

d) This should be the easiest of the group, cross-multiply and solve. 5x-25=3x+3, 2x=28 Answer: x=14

11. a) KNOW HOW TO FACTOR. $\cos^2 x - \cos x = 0$, $\cos x (\cos x - 1) = 0$, Answer: $x = \frac{\pi}{2}, \frac{3\pi}{2}, 0$

b) Give exact answers when possible.
$$\cos x = -\frac{\sqrt{3}}{2}$$
, Answer: $x = \frac{5\pi}{6}$ and $\frac{7\pi}{6}$

c) Don't forget the plus/minus sign.
$$\sin x = \pm \frac{1}{2}$$
, Answer: $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$

d) Always have a quadratic trinomial set equal to zero before you try to factor. $2\sin^2 x + \sin x - 1 = 0$, $(2\sin x - 1)(\sin x + 1) = 0$, $\sin x = \frac{1}{2}$ and $\sin x = -1$, Answer: $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$

e)
$$\sin x (2\cos x + 1) = 0$$
, Answer: $x = 0, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}$

- f) Factor first (difference of 2 squares), $(\sin x \cos x)(\sin x + \cos x) = 0$. If we set each factor equal to zero, it's hard to solve when there are two trig. functions involved. But, if you use a little common sense, and your unit circle, it's not that hard. $\sin x = \cos x$ and $\sin x = -\cos x$. There are 4 places where sine and cosine are equal or opposites. Answer: $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- 12. Function notation, this information is the same as (2, -5) and (-3, 1). Answer: $y = -\frac{6}{5}x \frac{13}{5}$, or if you want to get rid of all fractions, and write it in standard form, 6x + 5y = 13
- 13. <u>Point-slope needs to be used as much as possible</u>. It is the easiest form b/c the only math involved is finding slope. Many people make mistakes when finding 'b', that doesn't happen in this form.

 Answer: $y-1=-\frac{1}{2}(x-5)$

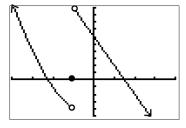
14. Use the slope formula, Answer:
$$\frac{x(1)-x(4)}{1-4} = \frac{7-2}{1-4} = \frac{5}{-3}$$

15. Rate of change means "slope". Answer: B, C, A

16. Switch all x's and y's, then solve for y.
$$x = \frac{y}{y+3}$$
, $xy + 3x = y$, $xy - y = -3x$, $y(x-1) = -3x$
Answer: $y = g^{-1}(x) = \frac{-3x}{x-1}$

17. Two ways to do this, use your calculator or use algebra (substitution). Since y is solved for, substitute x - 1 into the other equation for y. $(x-1)^2 = 2x + 6$, $x^2 - 2x + 1 = 2x + 6$, $x^2 - 4x - 5 = 0$, remember, always get zero on one side before factoring. (x-5)(x+1) = 0, x = 5 and x = -1, Answer: (5, 4) and (-1, -2)

18. KNOW YOUR UNIT CIRCLE

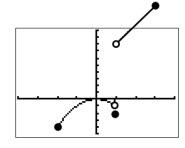

Answers: a)
$$-\frac{1}{2}$$
 b) $\frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$ c) $-\frac{1}{2}$ d) -2 e) Undefined

b)
$$\frac{2}{\sqrt{3}}$$
 or $\frac{2\sqrt{3}}{3}$

c)
$$-\frac{1}{2}$$

f) 1

19. Piecewise functions are not as confusing as they look. They are just pieces of functions put together over a given domain, to make one function. Remember, all functions must pass the vertical line test, so keep that in mind. When x is less than -1, use the parabola $x^2 - 5$, when x = -1, put a point at 0, when x is greater than -1, use the line 6 - 4x. Also notice the open and closed circles. Answer:



- 20. You can plug numbers in, or look at the graph. Answer: Left $f(x) \to -\infty$, Right $f(x) \to 0$
- 21. a) Parabola opening upward with vertex (3, 2), Answer: Domain $(-\infty, \infty)$, Range $[2, \infty)$
 - b) Shape of a V, with vertex (4, -3), Answer: Domain $(-\infty, \infty)$, Range $[-3, \infty)$
 - c) You can take the cube root of any number, Answer: Domain = Range = $(-\infty, \infty)$
 - d) The 5 is the amplitude, Answer: Domain $(-\infty, \infty)$, Range [-5, 5]
 - e) A positive base can be taken to any power, but will never yield a negative answer. Answer: Domain $(-\infty, \infty)$, Range $(0, \infty)$
- Circumference: $6\pi \approx 18.849$ 22. Area: $9\pi \approx 28.274$ (always round or truncate (cut off) to 3 decimal places)
- 23. Average of the bases times height, must solve for height first. $h = \sqrt{6^2 3^2} = \sqrt{27}$, Answer: $\frac{12+15}{2}\sqrt{27} = 70.148 \text{ cm}^2$
- 24. Use law of cosines to find the missing side, then use law of sines to find the missing angles. $c^2 = 9^2 + 12^2 - 2(9)(12)\cos 30^\circ = 6.159$, make sure to store this answer for later use. $\frac{6.159}{\sin 30} = \frac{9}{\sin a} = \frac{12}{\sin b}$, Answer: Missing side is 6.159, missing angles are 46.936 and 103.064
- 25. Subtract the two volumes, volume of a cylinder is $\pi r^2 h$, Answer: 933.053 ft³
- 26. Answer: $\frac{\ln(x+3)}{\ln 5}$

- 27. The missing side is 240-x, find the area of the rectangle. A = x(240-x) = 550, this problem has 2 solutions. Answer: x = 30.845 ft or x = 89.155 ft
- 28. Answer: a) 16 elk
- b) 159779 years
- c) 1216 elk
- 29. If you can't factor or see identities, change everything into sine and cosine. $\frac{1}{\sin x} \frac{\sin x}{\cos x} \sin x \cos x$

Answer:
$$\frac{1}{\sin x} - \sin^2 x$$
 or $\csc x - \sin^2 x$ or $\frac{1 - \sin^3 x}{\sin x}$

30. Answer:

- 31. Put one side into y_1 , and other into y_2 , find the point(s) where they intersect. Answer: x = -0.391
- 32. Solve for y and look at their slopes, if they are different, they must intersect. Answer: Yes
- 33. For those that didn't take accelerated precalc, don't panic. We will spend the first month talking about limits (lim). All that is asking if for the behavior or y-value near the given x-value. So, if you see $\lim_{x \to \infty} f(x)$ it is asking for the y-value just to the right of 4.

Answers

- a) 0
- b) -2
- c) 2 and -2
- d) 2
- e) 0
- f) DNE

- 34. a) 30000
- b) 11.605 years
- 35. a) $3\ln(x^2-1)-9\ln x$ b) $\ln 3+2\ln e = \ln 3+2$
- 36. $\ln\left(\frac{x-2}{x+2}\right)$
- b) $\ln\left(\frac{x^3y^2}{z^4}\right)$
- 37. a) 1
- b) Can not do
- c) 0
- d) 3