AP Calculus Exam Prep Assignment #6 KEY

- 1) f(x) is continuous on [a,b]. If this interval is partitioned into n equal subintervals of length Δx , and if x_k is a number in the k^{th} subinterval, then $\lim_{n\to\infty}\sum_{k=1}^n f(x_k)\Delta x =$
 - C) $\int_a^b f(x) dx$
- 2) If F'(x) = G'(x) for all x, then:

A)
$$\int_a^b F'(x)dx = \int_a^b G'(x)dx$$

- 3) If f(x) is continuous on [a,b] then there exists at least one number c where a < c < b such that $\int_a^b f(x) dx = \int_a^b f(x) dx$
 - C) f(c)(b-a) The Mean Value Theorem is used here.
- 4) If f(x) is continuous on [a,b] and k is a constant, then $\int_a^b kf(x)dx =$

D)
$$k \int_{a}^{b} f(x) dx$$

$$5) \frac{d}{dt} \int_0^t \sqrt{x^3 + 1} \, dx =$$

A)
$$\sqrt{t^3 + 1}$$

6) If
$$F(x) = \int_{1}^{2x} \frac{1}{1-t^3} dt$$
, then $F'(x) =$

E)
$$\frac{2}{1-8x^3}$$