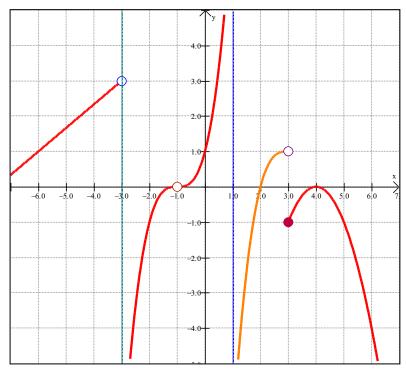
AP CALCULUS BC Summer Assignment

This packet is a review of some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion as to whether you should use a calculator or not. The assignment is due the first Friday that we meet in September.

For #1-4 below, find the limits, if they exist. (1 point each)


1)
$$\lim_{x \to 4} \frac{2x^3 - 7x^2 - 4x}{x - 4}$$
 2) $\lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x}$ 3) $\lim_{x \to 1} \frac{x^2 - 2x - 5}{x + 1}$

2)
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x}$$

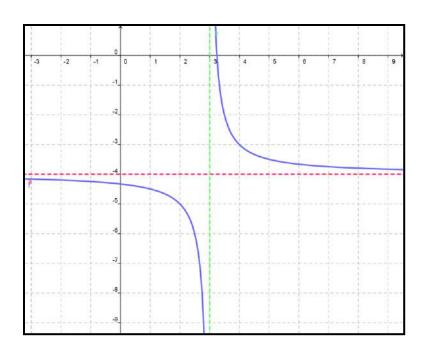
3)
$$\lim_{x \to 1} \frac{x^2 - 2x - 5}{x + 1}$$

4)
$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2}$$

For #5-10, determine if the following limits exist, based on the graph below of p(x). If the limits exist, state their value. Note that x = -3 and x = 1 are vertical asymptotes.

$$\lim_{x \to 1^{-}} p(x)$$

6)
$$\lim_{x \to -3^{-}} p(x)$$


$$\lim_{x \to 2} p(x)$$

8)
$$\lim_{x \to 3^{-}} p(x)$$

$$9) \qquad \lim_{x \to 3^+} p(x)$$

$$10) \qquad \lim_{x \to -1} p(x)$$

Use the graph of f(x), shown below, to answer #11-13.

- 11) For what value of *a* is $\lim_{x\to a} f(x)$ nonexistent?
- $\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$
- $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

For #14-20, find the derivative.

$$14) \qquad y = \ln(1 + e^x)$$

$$15) y = \csc(1 + \sqrt{x})$$

16)
$$y = (\tan^2 x)(3\pi x - e^{2x})$$

17)
$$y = \sqrt[7]{x^3 - 4x^2}$$

18)
$$f(x) = (x+1)e^{3x}$$

$$19) \qquad f(x) = \frac{e^{\frac{x}{2}}}{\sqrt{x}}$$

20) If
$$xy^2 - y^3 = x^2 - 5$$
, then $\frac{dy}{dx} =$

Use the table below for #21-22.

х	f(x)	g(x)	f'(x)	g('x)
1	4	2	5	1/2
3	7	-4	$\frac{3}{2}$	-1

21) The value of
$$\frac{d}{dx}(f \cdot g)$$
 at $x = 3$ is

The value of
$$\frac{d}{dx}(f \cdot g)$$
 at $x = 3$ is

22) The value of $\frac{d}{dx}\left(\frac{f}{g}\right)$ at $x = 1$

In #23-24, use the table below to find the value of the first derivative of the given functions for the given value of x.

х	f(x)	g(x)	f'(x)	g('x)	
1	3	2	0	3/4	
2	7	-4	$\frac{1}{3}$	-1	

23)
$$[f(x)]^2$$
 at $x = 2$ is

24)
$$f(g(x))$$
 at $x = 1$ is

For #25-26, find all critical values, intervals of increasing and decreasing, any local extrema, points of inflection, and all intervals where the graph is concave up and concave down.

25)
$$y = 3x^2 + 2x - 1$$

26)
$$f(x) = 5x^3 - 15x + 7$$

Evaluate the following.

$$27) \qquad \int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

$$28) \qquad \int_{-\pi/6}^{\pi/6} \sec^2 x dx$$

$$29) \qquad \frac{d}{dx} \int_{1}^{x} \sqrt[4]{t} \ dt$$

$$30) \qquad \frac{d}{dx} \int_{\sin(4x)}^{0} e^{t} dt$$

$$31) \qquad \int \frac{x^3}{\sqrt{1+x^4}} \, dx$$

- 32) What is the average value of $y = x^3 \sqrt{2 + x^4}$ on the interval [0, 2]?
- 33) The table below provides data points for the continuous function y = h(x).

х	0	2	4	6	8	10
h(x)	9	25	30	16	25	32

Use a right Riemann sum with 5 subdivisions to approximate the area under the curve of y = h(x) on the interval [0, 10].

- Let R be the region in the first quadrant under the graph of $y = \frac{1}{\sqrt{x}}$ for $4 \le x \le 9$.
 - (a) Find the area of R.
 - (b) If the line x = k divides the region R into two regions of equal area, what is the value of k?
 - (c) Find the volume of the solid generated by revolving R about the *x*-axis.