AP Calculus BC Summer Work

All work is done <u>NEATLY</u> on a separate paper. You must show all work. <u>DO NOT</u> try and save paper by cramming your solutions on top of each other.

Limits and Their Properties (A calculator may not be used)

- $\sqrt{1}$. Evaluate the limit, if it exist: $\lim_{x\to 2} \frac{x^2+x-6}{2-x}$.
- -2. Evaluate the limit, if it exist: $\lim_{x\to 9} \frac{\sqrt{x-5}-2}{x-9}$.
- 3. Evaluate the limit, if it exist: $\lim_{x\to 2} \frac{\frac{1}{x-2}}{x-2}$.
- 4. Evaluate the limit, if it exist: $\lim_{x\to 1} \frac{\tan^{-1}x}{\sin^{-2}x+1}$.
- 5. Given the function $f(x) = \begin{cases} \sin 2x, & x \le \pi \\ 2x + k, & x > \pi \end{cases}$ what value of k will make this piecewise function continuous?
- 6. Evaluate the limit, if it exist: $\lim_{x\to 0} x \left(e^x + \frac{1}{x}\right)$.
 - 7. Identify the vertical asymptotes for $f(x) = \frac{x^2 + 3x 4}{x^2 + x 2}$.
- 8. How many vertical asymptotes exist for the function $f(x) = \frac{1}{2sin^2x sinx 1}$ in the open interval $0 < x < \pi$?
- 9. Evaluate the limit, if it exist: $\lim_{x\to\infty} \frac{stnx}{e^x+cosx}$
- 10. For what value of k is the function $f(x) = \begin{cases} \frac{2x^2 + 5x 3}{x^2 9}, & x \neq -3 \\ k, x = -3 \end{cases}$ continuous at x = -3?

Differentiation

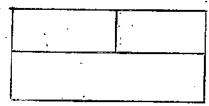
- 1. What does the statement $\lim_{x\to 1} \frac{\ln(x+1)-\ln 2}{x-1}$ represent?
- 2. Find the derivative of the function $y = \frac{4}{x^2}$.
- \(3. \) Find y' if $3xy = 4x + y^2$.
- $\sqrt{4}$, Find y" if $(x) = (2x + 3)^4$.
- 5. For what values of a and c is the piecewise function $f(x) = \begin{cases} ax^2 + sinx, x \le \pi \\ 2x c, x > \pi \end{cases}$ differentiable?
 - 6. Selected function and derivative values for the differentiable functions f(x) and g(x) are given in the table below. If p(x) = xf(x) g(3x-2), then find p'(2).

		, ,,,,,		
×	f(x)	g(x)	f'(x)	g'(x)
1 -	3	1 .	-2	4
2	5	3	1	` -4
3	2	1	-2	1
4	4	-3	2	-1

- 7. When the height of a cylinder is 12cm and the radius is 4cm, the circumference of the cylinder is increasing at a rate of $\frac{\pi}{4}$ cm/m in, and the height of the cylinder is increasing four times faster than the radius. How fast is the volume of the cylinder changing?
- 8. Find the derivative of the function $y = \frac{(3x^2-2x)(x+2)}{x^3-2x+1}$.
- 9. Find the derivative of the function $y = (4x + 2)^3(x^2 3x + 1)^2$.
- 10. Find the derivative of the function $y = \frac{4x+1}{4x^3-3x}$.

Applications of Derivatives

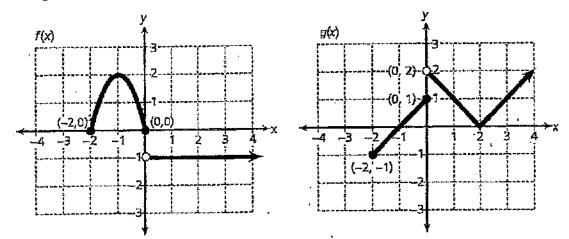
- 1. What value of c in the open interval (0,4) satisfies the Mean Value Theorem f(t) or $f(x)\sqrt{3x+4}$ +2
 - 2. If $f'(x) = \frac{x^2(x+1)}{(x-1)^{1/8}}$, then on which interval(s) is the continuous function f(x) increasing?
- 3. Evaluate: $\lim_{x\to\infty} \frac{\sqrt{x^2-14}}{3-2x}$.
- 4. A farmer has 100 yards of fencing to form two identical rectangular pens and a third pen that is twice as long as the other two pens, as shown in the diagram. All three pens have the same width x. What value of y produces the maximum total fenced area?



- 5. For the function $f(x) = 12x^5 5x^4$, how many of the inflection points of the function are also extrema?
- 6. The position of an object moving along a straight line for $t \ge 0$ is given by $s_1(t) = t^3 + 2$, and the position of a second object moving along the same line is given by $s_2(t) = t^2$. If both objects begin at t = 0, at what time is the distance between the objects a minimum?
- 7. For time $0 \le t \le 10$, a particle moves along the x-axis with the position given $x(t) = t^3 7x^2 + 8t + 5$. During what time intervals is the speed of the particle increasing? What is the position of the particle when it is farthest to the left?

A calculator may not be used for this question.

Use the graphs of f(x) and g(x) given below to answer the following questions:



- a. Is f[g(x)] continuous at x = 0? Explain why or why not.
- b. Is g[f(x)] continuous at x = 0? Explain why or why not.
- c. What is $\lim_{x\to\infty} f[g(x)]$? Explain your reasoning.
- d. If $h(x) = \begin{cases} f(x) + g(x), & -2 \le x \le 0 \\ k + g(x)f(x), & x > 0 \end{cases}$, what is k so that h(x) is continuous at x = 0?

FREE-RESPONSE QUESTION

A calculator may be used for this question.

- An isosceles triangle is inscribed in a semicircle, as shown in the diagram, and it continues to be inscribed as the semicircle changes size. The area of the semicircle is increasing at the rate of 1 cm²/sec when the radius of the semicircle is 3 cm.
 - a. How fast is the radius of the semicircle increasing when the radius is 3 cm? Include units in your answer.
 - b. How fast is the perimeter of the semicircle increasing when the radius is 3 cm? Include units in your answer.
 - c. How fast is the area of the isosceles triangle increasing when the radius is 3 cm? Include units in your answer.
 - d. How fast is the shaded region increasing when the radius is 3 cm? Include units in your answer.

FREE-RESPONSE QUESTION

This question does not require the use of a calculator.

- 1. The function f(x) is defined as $f(x) = -2(x+2)(x-1)^2$ on the open interval (-3, 3) as illustrated in the graph shown.
 - a. Determine the coordinates of the relative extrema of f(x) in the open interval (-3, 3).
 - b. Let g(x) be defined as g(x) = |f(x)| in the open interval (-3, 3). Determine the coordinate(s) of the relative maxima of g(x) in the open interval. Explain your reasoning.
 - c. For what values of x is g'(x) not defined? Explain your reasoning.
 - d. Find all values of x for which g(x) is concave down. Explain your reasoning.

