## AP Calculus BC Free Response Questions 1998-2014

| *Polar, Vector, and Parametric                      | 16 |  |  |  |
|-----------------------------------------------------|----|--|--|--|
| *Sequence and Series (Taylor & McLaurin)            |    |  |  |  |
| Area and Volume                                     | 12 |  |  |  |
| *Slope Fields/Differential Equations/Euler's Method | 12 |  |  |  |
| Integral Applications                               | 10 |  |  |  |
| Data Problems                                       | 9  |  |  |  |
| Function Defined as an Integral                     | 6  |  |  |  |
| $g(x) = \int_{c}^{x} f(t)dt$ (Area accumulation)    |    |  |  |  |
| Position, Velocity, and Acceleration                | 5  |  |  |  |
| *Logistic Growth                                    | 1  |  |  |  |
| Misc (implicit differentiation, MVT, IVT,           | 7  |  |  |  |
| continuity, differentiability, etc)                 |    |  |  |  |
| Min, Max, Inflection Points                         | 1  |  |  |  |

### Example of a Polar, Vector, and Parametric Problem (w/calculator)

2008 AP° CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

#### CALCULUS BC SECTION II, Part A

Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

1. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time  $t \ge 0$  with

$$\frac{dx}{dt} = \sqrt{3t}$$
 and  $\frac{dy}{dt} = 3\cos\left(\frac{t^2}{2}\right)$ .

The particle is at position (1, 5) at time t = 4.

- (a) Find the acceleration vector at time t = 4.
- (b) Find the y-coordinate of the position of the particle at time t = 0.
- (c) On the interval  $0 \le t \le 4$ , at what time does the speed of the particle first reach 3.5 ?
- (d) Find the total distance traveled by the particle over the time interval  $0 \le t \le 4$ .

# Example of a Sequence and Series (Taylor & McLaurin) Problem (w/calc) 2008 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

| х | h(x) | h'(x)      | h"(x)           | h'''(x)         | $h^{(4)}(x)$    |
|---|------|------------|-----------------|-----------------|-----------------|
| 1 | 11   | 30         | 42              | 99              | 18              |
| 2 | 80   | 128        | $\frac{488}{3}$ | $\frac{448}{3}$ | <u>584</u><br>9 |
| 3 | 317  | <u>753</u> | 1383<br>4       | 3483<br>16      | 1125<br>16      |

- 3. Let h be a function having derivatives of all orders for x > 0. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval  $1 \le x \le 3$ .
  - (a) Write the first-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.
  - (b) Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).
  - (c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about x = 2 approximates h(1.9) with error less than  $3 \times 10^{-4}$ .

## Example of an Area/Volume Problem (w/calc)

#### 2008 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC SECTION II, Part A Time—45 minutes Number of problems—3

A graphing calculator is required for some problems or parts of problems.



- 1. Let R be the region bounded by the graphs of  $y = \sin(\pi x)$  and  $y = x^3 4x$ , as shown in the figure above.
  - (a) Find the area of R.
  - (b) The horizontal line y = -2 splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.
  - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.
  - (d) The region R models the surface of a small point. At all points in R at a distance x from the y-axis, the depth of the water is given by h(x) = 3 x. Find the volume of water in the pond.

# Example of a Slope Field/Differential Equation/Euler's Method Problem (w/o calculator)

#### 2008 AP° CALCULUS BC FREE-RESPONSE QUESTIONS

- 6. Consider the logistic differential equation  $\frac{dy}{dt} = \frac{y}{8}(6 y)$ . Let y = f(t) be the particular solution to the differential equation with f(0) = 8.
  - (a) A slope field for this differential equation is given below. Sketch possible solution curves through the points (3, 2) and (0, 8).

(Note: Use the axes provided in the exam booklet.)



- (b) Use Euler's method, starting at t = 0 with two steps of equal size, to approximate f(1).
- (c) Write the second-degree Taylor polynomial for f about t = 0, and use it to approximate f(1).
- (d) What is the range of f for t≥ 0?

## Example of a Function Defined as an Integral Problem (w/Calculator)

#### 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS



- 3. The graph of the function f shown above consists of six line segments. Let g be the function given by  $g(x) = \int_0^x f(t) dt$ .
  - (a) Find g(4), g'(4), and g''(4).
  - (b) Does g have a relative minimum, a relative maximum, or neither at x = 1? Justify your answer.
  - (c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5. The graph above shows two periods of f. Given that g(5) = 2, find g(10) and write an equation for the line tangent to the graph of g at x = 108.

## Example of a Data Problem (w/calculator)

#### 2008 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

| t (hours)     | 0   | 1   | 3   | 4   | 7   | 8  | 9 |
|---------------|-----|-----|-----|-----|-----|----|---|
| L(t) (people) | 120 | 156 | 176 | 126 | 150 | 80 | 0 |

- Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting
  in line to purchase tickets at time t is modeled by a twice-differentiable function L for 0 ≤ t ≤ 9. Values
  of L(t) at various times t are shown in the table above.
  - (a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. (t = 5.5). Show the computations that lead to your answer. Indicate units of measure.
  - (b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during the first 4 hours that tickets were on sale.
  - (c) For 0 ≤ t ≤ 9, what is the fewest number of times at which L'(t) must equal 0? Give a reason for your answer.
  - (d) The rate at which tickets were sold for  $0 \le t \le 9$  is modeled by  $r(t) = 550te^{-t/2}$  tickets per hour. Based on the model, how many tickets were sold by 3 P.M. (t = 3), to the nearest whole number?

## Example of a Position, Velocity, Acceleration Problem (w/Calculator)

#### 2007 AP° CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)



- 2. A particle moves along the x-axis so that its velocity v at time  $t \ge 0$  is given by  $v(t) = \sin(t^2)$ . The graph of v is shown above for  $0 \le t \le \sqrt{5\pi}$ . The position of the particle at time t is x(t) and its position at time t = 0 is x(0) = 5.
  - (a) Find the acceleration of the particle at time t = 3.
  - (b) Find the total distance traveled by the particle from time t = 0 to t = 3.
  - (c) Find the position of the particle at time t = 3.
  - (d) For  $0 \le t \le \sqrt{5\pi}$ , find the time t at which the particle is farthest to the right. Explain your answer.

## Example of an Integral Application Problem (w/Calculator)

#### 2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS



- The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval 0 ≤ t ≤ 7, where t is measured in hours. In this model, rates are given as follows:
  - (i) The rate at which water enters the tank is  $f(t) = 100t^2 \sin(\sqrt{t})$  gallons per hour for  $0 \le t \le 7$ .
  - (ii) The rate at which water leaves the tank is

$$g(t) = \begin{cases} 250 & \text{for } 0 \le t < 3\\ 2000 & \text{for } 3 < t \le 7 \end{cases} \text{ gallons per hour.}$$

The graphs of f and g, which intersect at t = 1.617 and t = 5.076, are shown in the figure above. At time t = 0, the amount of water in the tank is 5000 gallons.

- (a) How many gallons of water enter the tank during the time interval 0 ≤ t ≤ 7? Round your answer to the nearest gallon.
- (b) For 0 ≤ t ≤ 7, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.
- (c) For 0 ≤ t ≤ 7, at what time t is the amount of water in the tank greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.

## Example of a Logistic Growth Problem (w/o calculator) 2004 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

5. A population is modeled by a function P that satisfies the logistic differential equation

$$\frac{dP}{dt} = \frac{P}{5} \left( 1 - \frac{P}{12} \right).$$

- (a) If P(0) = 3, what is  $\lim_{t \to \infty} P(t)$ ? If P(0) = 20, what is  $\lim_{t \to \infty} P(t)$ ?
- (b) If P(0) = 3, for what value of P is the population growing the fastest?
- (c) A different population is modeled by a function Y that satisfies the separable differential equation

$$\frac{dY}{dt} = \frac{Y}{5} \left( 1 - \frac{t}{12} \right).$$

Find 
$$Y(t)$$
 if  $Y(0) = 3$ .

(d) For the function Y found in part (c), what is  $\lim_{t\to\infty}Y(t)$ ?

### Example of a Misc. Problem (w/Calculator)

#### 2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

| х | f(x) | f'(x) | g(x) | g'(x) |
|---|------|-------|------|-------|
| 1 | 6    | 4     | 2    | 5     |
| 2 | 9    | 2     | 3    | 1     |
| 3 | 10   | -4    | 4    | 2     |
| 4 | -1   | 3     | 6    | 7     |

- 3. The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) 6.
  - (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
  - (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
  - (c) Let w be the function given by  $w(x) = \int_1^{g(x)} f(t) dt$ . Find the value of w'(3).
  - (d) If  $g^{-1}$  is the inverse function of g, write an equation for the line tangent to the graph of  $y = g^{-1}(x)$  at x = 2.

## Example of a Min/Max/Inflection Point Problem (w/o Calculator)

#### 2013 AP® CALCULUS BC FREE-RESPONSE QUESTIONS



4. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval 0 ≤ x ≤ 8. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

- (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.
- (b) Determine the absolute minimum value of f on the closed interval  $0 \le x \le 8$ . Justify your answer.
- (c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning.
- (d) The function g is defined by  $g(x) = (f(x))^3$ . If  $f(3) = -\frac{5}{2}$ , find the slope of the line tangent to the graph of g at x = 3.