5.
$$\lim_{x \to 1} \frac{\frac{3}{x} - 3}{x - 1}$$
 is

- (A) -3
- **(B)** -1
- **(C)** 1
- **(D)** 3
- (E) nonexistent
- **6.** For polynomial function p, p''(2) = -6, p''(4) = 0, and p''(5) = 3. Then p must:
 - (A) have an inflection point at x = 4 (B) have a minimum at x = 4

- (C) have a root at x = 4 (D) be increasing on [2,5]
- (E) none of these

7.
$$\int_0^6 |x-4| dx =$$

- (A) 6 (B) 8
- (C) 10
- **(D)** 11
- **(E)** 12

8.
$$\lim_{x \to \infty} \frac{3 + x - 2x^2}{4x^2 + 9}$$
 is

- (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) 1 (D) 3

- (E) nonexistent
- 9. The maximum value of the function $f(x) = x^4 4x^3 + 6$ on [1, 4] is
 - (A) 1
- **(B)** 0
- **(C)** 3
- (D) 6 (E) none of these
- 10. Let $f(x) = \frac{\sqrt{x+4}-3}{x-5}$ if $x \ne 5$, and let f be continuous at x = 5. Then c = 1f(5) = c
 - (A) $-\frac{1}{6}$ (B) 0 (C) $\frac{1}{6}$ (D) 1 (E) 6

- 11. $\int_0^{\pi/2} \cos^2 x \sin x \ dx =$

 - (A) -1 (B) $-\frac{1}{3}$ (C) 0 (D) $\frac{1}{3}$ (E) 1

- 12. If $\sin x = \ln y$ and $0 < x < \pi$, then, in terms of x, $\frac{dy}{dx}$ equals
- (A) $e^{\sin x} \cos x$ (B) $e^{-\sin x} \cos x$ (C) $\frac{e^{\sin x}}{\cos x}$
- (D) $e^{\cos x}$ (E) $e^{\sin x}$
- 13. If $f(x) = x \cos x$, then $f'\left(\frac{\pi}{2}\right)$ equals

- (A) $\frac{\pi}{2}$ (B) 0 (C) -1 (D) $-\frac{\pi}{2}$
 - **(E)** 1

(A)
$$y = ex$$

$$\mathbf{(B)} \ \ \mathbf{y} = \mathbf{e}^{\mathbf{x}} + 1$$

(A)
$$y = ex$$
 (B) $y = e^x + 1$ (C) $y = e(x - 1)$

(D)
$$y = ex + 1$$
 (E) $y = x - 1$

(E)
$$y = x -$$

15. If the displacement from the origin of a particle moving along the x-axis is given by $s = 3 + (t - 2)^4$, then the number of times the particle reverses direction is

$$(\mathbf{D})$$
 3

16. $\int_{-\infty}^{0} e^{-x} dx$ equals

(A)
$$1 - e^{-\epsilon}$$

(B)
$$\frac{1-e}{e}$$

(A)
$$1-e$$
 (B) $\frac{1-e}{e}$ (C) $e-1$ (D) $1-\frac{1}{e}$ (E) $e+1$

17. If $f(x) = \begin{cases} x^2 & \text{for } x \le 2 \\ 4x - x^2 & \text{for } x > 2 \end{cases}$, then $\int_{-1}^4 f(x) \, dx$ equals

(B)
$$\frac{23}{3}$$

(C)
$$\frac{25}{3}$$

(A) 7 (B)
$$\frac{23}{3}$$
 (C) $\frac{25}{3}$ (D) 9 (E) $\frac{65}{3}$

18. If the position of a particle on a line at time t is given by $s = t^3 + 3t$, then the speed of the particle is decreasing when

(A)
$$-1 < t <$$

(A)
$$-1 < t < 1$$
 (B) $-1 < t < 0$ (C) $t < 0$ (D) $t > 0$ (E) $|t| > 1$

$$(\mathbb{C})$$
 $t < 0$

(D)
$$t > 0$$

(E)
$$|t| > 1$$

19. A rectangle with one side on the x-axis is inscribed in the triangle formed by the lines y = x, y = 0, and 2x + y = 12. The area of the largest such rectangle is

CHALLENGE

(A) 6 (B) 3 (C)
$$\frac{5}{2}$$
 (D) 5 (E) 7

$$(\mathbb{D})$$

20. The x-value of the first-quadrant point that is on the curve of $x^2 - y^2 = 1$ and closest to the point (3, 0) is

(A) 1 (B)
$$\frac{3}{2}$$
 (C) 2 (D) 3

(E) none of these

21. If $y = \ln(4x + 1)$, then $\frac{d^2y}{dx^2}$ is

$$(\mathbf{A}) \quad \frac{1}{4}$$

(B)
$$\frac{-1}{(4x+1)^2}$$

(A)
$$\frac{1}{4}$$
 (B) $\frac{-1}{(4x+1)^2}$ (C) $\frac{-4}{(4x+1)^2}$

(D)
$$\frac{-16}{(4x+1)^2}$$

(D)
$$\frac{-16}{(4x+1)^2}$$
 (E) $\frac{-1}{16(4x+1)^2}$

22. The region bounded by the parabolas $y = x^2$ and $y = 6x - x^2$ is rotated about the x-axis so that a vertical line segment cut off by the curves generates a ring. The value of x for which the ring of largest area is obtained is

(C)
$$\frac{2}{2}$$

(B) 3 **(C)**
$$\frac{5}{2}$$
 (D) 2 **(E)** $\frac{3}{2}$