	~~	(L)	= lactos
OPERON REVIEW			NAME
	To . h .	essor	

Use your pool noodle operon to demonstrate the following then draw a picture below. What happens to transcription at the lac operon when glucose levels are low and lactose levels is present and why? Be sure to include: RNA polymerase, repressors, and any other molecules needed to show the 16 following:

lac OPERON

	<u>'ر</u>	R
RNA		
eoly		
Promoter	Operator	Structural Genes

GENE TURNED ON

What happens to transcription at the lac operon when glucose levels are high and lactose is absent and why? Be sure to include: RNA polymerase, repressors and any other molecules needed to show the following:

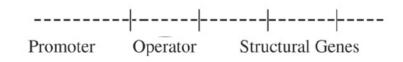
GENE TURNED OFF Promoter Operator Structural Genes
Most of the time this operon is turned ON OFF (Circle one)
The lac operon is a REPRESSIBLE INDUCIBLE OPERON (Circle one)
When this operon is "turned on" the repressor is ACTIVE (INACTIVE (Circle one)
When this operon is "turned off" the repressor is ACTIVE INACTIVE (Circle one)
Draw a picture of the repressor when it is ACTIVE :
C.
The regulation of this operon is an example of control control.
Inducible operons are most commonly associated with enzymes that function in catabolic anabolic anabolic

Show and tell me what happens to transcription at the *lac* operon when lactose is absent and why. 0ff don't need enzymes

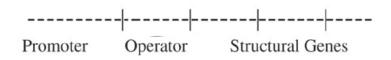
no lactose gene

Use your pool noodle operon to demonstrate the following then draw a picture below. Show & Tell to explain what happens to transcription at the *trp* operon when tryptophan levels are low. Be sure to include: RNA polymerase, repressors, and any other molecules needed to show the following:

trp OPERON		C	7	
GENE TURNED ON	Promoter			
Show & Tell to explain what hap Be sure to include: RNA polym <u>GENE TURNED OFF</u>			ron when tryptoph	show the following:
Most of the time this operon i	s turned ON	OFF (Circle o	ne)	
The trp operon is a REPRES	SIBLE INDUC	IBLE OPER	ON (Circle one)	
When this operon is "turned o	n" the repressor	is ACTIVE		e one)
When this operon is "turned o	ff" the represso	r is ACTIVE	INACTIVE (Circ	le one)
Draw a picture of the repress	or when TT is ACT	TVE:		
The regulation of this operon	is an example of <u>.</u>		control.	
Repressible operons are most pathways.	commonly associc	ated with enzymes		catabolic anabolic


Show and tell me what happens to transcription at the *trp* operon when tryptophan is absent and why.

Gene on to make try, tophan un less it is available then don't need to make it


PICK AN OPERON:
Your assigned operon is a similar to which of the above operons? *lac trp* (Circle one)
Your assigned operon *is inducible repressible* (Circle one)
In a cell the repressor for your assigned operon is usually in the *active inactive* form. (Circle one) and the gene is turned OFF ON (Circle one)

DRAW PICTURES TO SHOW HOW YOUR ASSIGNED OPERON WORKS:

TURNED ON

TURNED OFF

FIND SOMEONE WITH A DIFFERENT ASSIGNED OPERON. Share your pictures and explain how your assigned operon works.