STON Monte

age 1 of 5

Geometry Test

1. In the diagram shown $m\angle EFG = 12x + 17$, $m\angle FED = 8x$ and $m\angle EDF = 45$. Solve for x:

8x+45=12x+17 28=4x 7=x D 45 12x+17

(3 pts)

- 2. Given a regular 14 sided polygon:
 - a. Find the sum of the interior angles of the polygon. (2 pts)

(12)(180) =

2160

b. Find the measure of one exterior angle of the polygon (2 pts)

25.71°

3. Write the expression in simplest form:

(4 pts)

$$\frac{x^2 - 9x + 18}{9 - x^2} \qquad (x - 6)(x - 2)$$

6-x or - (x-6)

4. If the three angles of a triangle measure 7x - 15, 2x + 30 and 4x + 35, solve for the measure of the largest angle.

70-15=55 20+30=50 40+31 750

$$13x + 65 - 15 = 180$$

 $13x + 50 = 180$
 $13x = 130$

X=10

5. Solve: $x - \frac{9}{x} = -\frac{9}{2}$

$$x^{2}-9 = -9x$$

$$2x^{2}-18 = -9x$$

$$2x^{2}+9x-18 = 0$$

$$(2x-3)(x+6) = 0$$

$$-6+2 = -2$$

(5 pts)

6. Each interior angle of a regular polygon measures 140°. How many sides does the polygon have?

(3 pts)

7. C is the midpoint of AB. If AB = 4x - 12 and CB = x + 2, solve for x. (draw a diagram to help you)

(2 pts)

The supplement of an angle is 24 less than twice the angle. What is the measure of the angle and its supplement? 180-x=2x-24

$$209 = 3x$$
 $68 = x$
 $180-68 = 112$

(3 pts)

9. In the diagram, \overrightarrow{OT} bisects $\angle SOU$, $m\angle UOV = 25$, and $m\angle YOW = 140$. Find the measure of each of the following angles.

25

b. *m∠SOU*

140

c. *m∠UOT*

70

d. *m∠VOW*

(1 pt each)

10. In the diagram shown below, $\overline{AF} \parallel \overline{BC}$ and $\overline{AE} \parallel \overline{CD}$. Solve for x and y.

(4 pts)

104+9=180

x+27=26 x=49

4=76

- 11. a) Write the converse of "If x is odd, then 2x is even." If 2x is even them xis odd
 - b) Is the sentence you wrote in part a true or false? If it is false, give a counter example?

 F_{c} | (4 pts)

name	Date_		Section
Math 422			Mrs. Quinn
Page 4 of 5			
Complete each of the following sentences with A 12. Two lines which never intersect are		or Never: (1	pt each)
13. The measure of an exterior angle of a triang remote interior angle.	gle is	larger than	the measure of each
14. If two lines are cut by a transversal and san parallel.	ne-side interior angle	es are comple	mentary the lines are
15. A trianglehas two obtuse	interior angles.	,	
16. If two lines are parallel to the same line, the	en the two lines are	· A	parallel to each other.
17. If $p \wedge q$ is false and p is true than $(p \wedge q)$	$\Rightarrow q \text{ is} $	_false.	
Multiple Choice: Circle the best answer for each 18. If two angles of a triangle measure 56 and a. Obtuse b. isosceles c. scale	68 degrees, the triar	,	56 124-156
19. The measure of an exterior angle of a triang a. Exactly 90 b. Between 90	•	s than 90 d	greater than 180
20. <1 and <2 are complementary, m<1 = 5x + a. 5 b. 11 c. 40	15 and m<2 = 10x, d. 70		x +15=90
21. Which is not a way to prove two lines cut b	oy a transversal are p	parallel:	12× =75
a. Vertical angles being congruent	b. Corresponding	angles being	congruent
c. Alternate int. angles being congruent	d. Same-side int. a	ngles being st	applementary

a the diagram shown, \overrightarrow{BG} bisects \overrightarrow{AF} and \overrightarrow{CD} bisects $\angle ADE$. State the definition, postulate or theorem that justifies each statement. (1 pt each)

22.
$$AD + DF = AF$$

22. AD+DF=AF Segment add the

23. $m \angle ADC = \frac{1}{2} m \angle ADE$

, angle is sector Th

24. D is the midpoint of \overline{AF} .

def signent bisactor.

26. Fill in the missing reasons for the following proof. (4 pts)

Given: $\angle 1$ is supplementary to $\angle 3$

 $\angle 2$ is supplementary to $\angle 3$

Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
 ∠1 is supplementary to ∠3 ∠2 is supplementary to ∠3 	1.Given
$m \angle 1 + m \angle 3 = 180$	2. del supplementary x's
$m \angle 2 + m \angle 3 = 180$	
$3. m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$	3. transitive prop er substitution
4. m43 = n×3	4.Reflexive Property
5. <i>m</i> ∠1 = <i>m</i> ∠2	5. SUB Aractica

Name the theorem that you just proved (2 pts):

Math 422

Mrs. Quinn

Bonus: Solve for x and y.

$$2x + y = 55$$

$$2x + y + x + 2y = 90$$

$$3x + 3y = 90$$

$$x + y = 30$$

$$x + 55 - 2x = 30$$

$$x + 55 - 2x = 30$$

$$x + 55 - 2x = 30$$

Math 423 HW #37 Key

$$\frac{6}{x^{2}-1} = 2$$

$$\frac{6}{x^{2}-1} = 2$$

$$\frac{7}{(x+1)(x-1)} = 2(x+1)(x-1)$$

$$\frac{6}{(x+1)(x-1)} = 2(x+1)(x-1)$$

$$\frac{6}{(x+1)(x-1)} = 2(x+1)(x-1)$$

$$\frac{6}{(x+1)(x-1)} = 2(x+1)(x-1)$$

$$\frac{3}{(x+1)} = 2(x^{2}-1)$$

$$\frac{3}{(x+1)} = 2(x^{2}-1)$$

$$\frac{3}{(x+1)} = 2(x^{2}-1)$$

$$\frac{3}{(x+1)} = 2(x+1)(x-1)$$

$$\frac{3}{(x+1)} = 2(x+1)$$

4.
$$81 - x^4$$

 $(9 + x^2)(9 - x^2)$
 $(9 + x^2)(3 + x)(3 - x)$

Let 5. X= measure of the X Then (90-x) = complement C(80-x) = supplement1(180-x) + (90-x) = 128° $90 - \frac{1}{2}x + 90 - x = 120$ 180 - 3 x = 120 x = 40⇒ complexent = 90-40 = 50°

૨.

Interior & = 140°

$$\frac{360}{40} = n$$

→ exterior 4= 40°

6. The inverse is:

IF I do remember logic or are not motivated, then I will not look back of my old notes,

A MOD = A A-CB

MO & AC ' => XM=+A OF ECE 40 540 DM = BA

Given: BC 11 10 AB IIIc

Prove: DARCE DODA

5

- 1) BCIIAD, ABIIDC
- 2) 4BACE + ACD SIACEAKS
- 3) RC EAC
- 4) DABC ELODA
- D Given
- 2) IF 2 / lines CBAT) then alternate interior to We # .
- 3) Replexive
- (4) ASA AXMM//

•				