Electrochemistry

ELECTROLYSIS WORKSHEET

Standard Reduction Potential	E° (volts)
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$	+1.23
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$l_2(s) + 2e^- \rightarrow 2l(aq)$	+0.535
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.337
$SO_4^{2-}(aq) + 4 H^+(aq) + 2e^- \rightarrow SO_2(g) + 2 H_2O$	+0.20
2 H ⁺ (aq) + 2 e ⁻ → H ₂ (g) (reference electrode)	0.00
$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH(aq)$	-0.828
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.714
$K^+(aq) + e^- \rightarrow K(s)$	-2.93

- 1. All of the equations in the chart above are written as reductions (oxidations/eductions)
- 2. The chemicals at the upper left (Cl₂ and O₂) are the most likely to be <u>reduced</u> (oxidized/reduced) and therefore the best <u>oxidizing agents</u> (oxidizing agents).
- 3. The chemicals at the lower right (Na and K) are the most likely to be OXICIZED (oxidized/reduced) and therefore the best veducing agents (oxidizing agents/reducing agents).
- 4. In an electrolytic cell, the (-) electrode is negative because is has two many (too many/too few) electrons. Chemicals that come into contact with the (-) electrode will gain (gain/lose) electrons and be reduced (oxidized/reduced). The (-) electrode in electrolysis is called the cathode (cathode/anode).
- Write the change that water goes through at the (-) electrode. 2H2O + 2e⁻ → H2 + 2OH⁻
- 6. In an electrolytic cell, the (+) electrode is positive because is has be few (too many/too few) electrons. Chemicals that come into contact with the (+) electrode will lose (gain/lose) electrons and be oxidized/reduced). The (+) electrode in electrolysis is called the onde (cathode/anode).
- 7. Write the change that water goes through at the (-) electrode. $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- 8. Add these two reactions together (make certain the electrons cancel) and write the overall reaction for the electrolysis of water. 2H2O > 02 + 2H2___
- 10. Both the SO42- and H2O will be near the (+) electrode. Which chemical will be oxidized? H2O **

 * SO42- cannot be oxidized so H2O must be oxidized

$$2H_2O \rightarrow 0_2 + 4H^+ + 4e^-$$

 $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$
 $4H_2O + 4e^- \rightarrow 0_2 + 4H^+ + 4e^- + 2H_2 + 4OH^-$
 $4H_2O \rightarrow 0_2 + 2H_2$

11. In the electrolysis of KI(ag) = -0.828V

Both the K- and H₂O will be near the (-) electrode. Which chemical is more likely to be reduced? H₂O Both the Land H2O will be near the (+) electrode. Which chemical is more likely to be oxidized? Write the reactions at each electrode and the overall reaction:

E=+0.535V

Cathode: 2H2O + 2e - -> H2 + 2OH-

2I - -> I2 + 2e-

Overall:

2H2O + 2I- -> I2 + H2 + 20H-

12. In the electrolysis of CuSO (aq)

Both the Cu2+ and H2O will be near the (-) electrode. Which chemical will be reduced? Cu2+ Both the SO₄² and H₂O will be near the (+) electrode. Which chemical will be oxidized? H2O Write the reactions at each electrode and the overall reaction:

Cathode: Cuzt + 2e -> Cu°

Anode: 2H20 -> Oz + 4H+ +4E-

Overall: 2Cu2+ + 2H2O -> 02 + 4H+ + 2Cu

13. Silver plating occurs when electrolysis of a Ag₂SO₄ solution is used because silver metal is formed at the Cathode (cathode/anode).

This is the (-) (+ Celectrode. The reaction at this electrode is: $-Ag^+ + e^- - Ag^-$ (Reduction)

Recall that 1 amp/sec = 1 Coulomb and 96,500 Coulombs = 1 mole e-'s (Faraday's constant). If a cell is run for 200, seconds with a current of 0.250 amps, how many grams of Ag° will be deposited?

14. A current of 10.0 amperes flows for 2.00 hours through an electrolytic cell containing a molten salt of metal X. This results in the decomposition of 0.250 mole of metal X at the cathode. The oxidation state of X in the molten salt is X3** (X+, X2+, X3+, X4+)

10.0 amp · 2.00h ·
$$\frac{60 \text{ min}}{1 \text{ min}}$$
 · $\frac{60 \text{ s}}{1 \text{ min}}$ · $\frac{1 \text{ C}}{1 \text{ amp}}$ · $\frac{1 \text{ mod } e^{-}}{96,500 \text{ c}}$ = 0.746 mod e $\frac{6.746 \text{ mod } e^{-}}{0.250 \text{ mod }}$ = $\frac{3 \text{ mod } e^{-}}{2 \text{ mod }}$ [X3+]

15. Solutions of Ag+, Cu2+, Fe3+ and Ti4+ are electrolyzed with a constant current until 0.10 mol of metal is deposited. Which will require the greatest length of time? Tit+