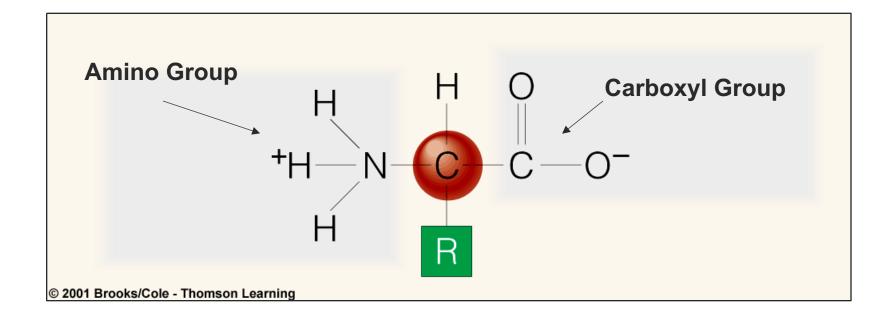
Amino Acids & Proteins

- The Molecules in Cells
 - Ch 3

Overview of Protein Function

- Proteins are involved in
 - cellular structure
 - O movement
 - O defense
 - O transport
 - communication
 - catalysis (enzymes)
 - o regulation

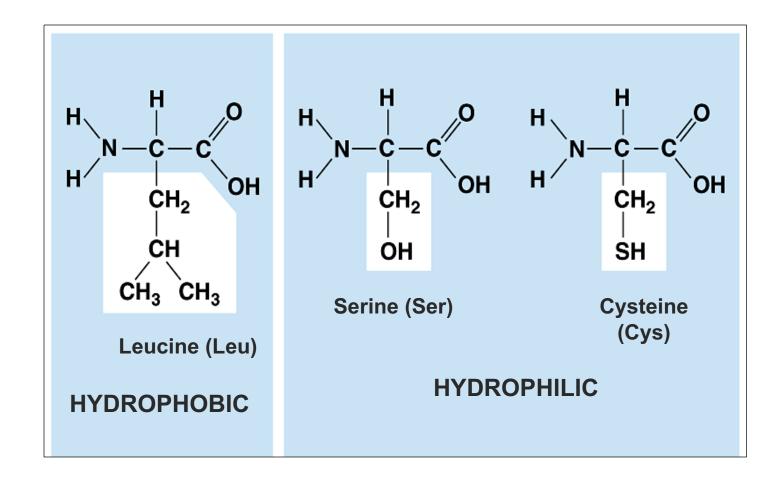

Protein

- Mammalian hair is composed of structural proteins
- Proteins have a broad size range
 - RNA digesting enzyme ribonuclease A (molecular weight of 5733 and 51 amino acids long)
 - Cholesterol transport protein apolipoprotein B (molecular weight of 513,000 and 4636 amino acids long)
- Enzymes regulate chemical reactions

Proteins

- Made from 20 different amino acids
- Proteins are the most structurally and functionally diverse of life's molecules
 - Their diversity is based on different arrangements of amino acids

Amino Acid Structure


Amino Acid Structure

- Each amino acid contains:
 - an amino group
 - a carboxyl group
 - an R group, which distinguishes each of the 20 different amino acids
- Each amino acid has specific chemical properties

Properties of Amino Acids

- Determined by the R group
- Amino acids may be:
 - Non-polar
 - Neutral, polar
 - Positively charged, polar
 - Negatively charged, polar

Properties of Amino Acids

Protein Synthesis: Amino acids can be linked by peptide bonds

- A protein is a chain of amino acids linked by peptide bonds
- Peptide bond
 - Type of covalent bond
 - Links amino group of one amino acid with carboxyl group of next
 - Forms through dehydration synthesis reaction

Peptide Bond Formation

Dehydration Synthesis Reaction

Primary Structure of Proteins

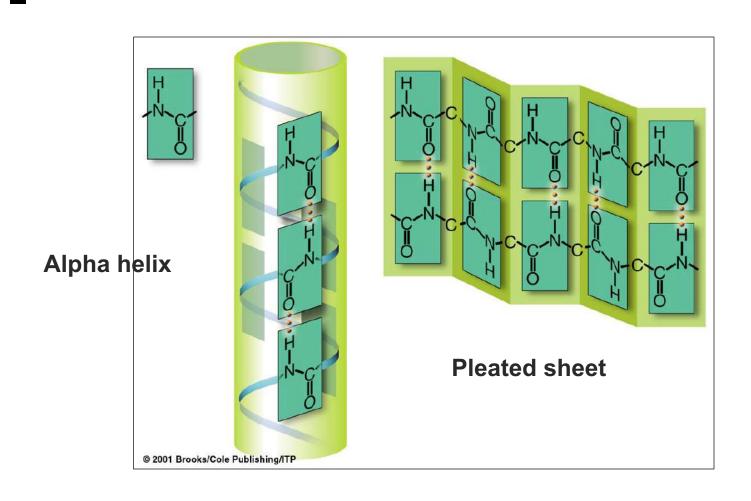
- A protein's primary structure is its amino acid sequence
- Unique for each protein
- Two linked amino acids = dipeptide
- Three or more = polypeptide

Primary Structure & Protein Shape

- Primary structure influences shape in two main ways:
 - Allows hydrogen bonds to form between different amino acids along length of chain
 - Puts R groups in positions that allow them to interact

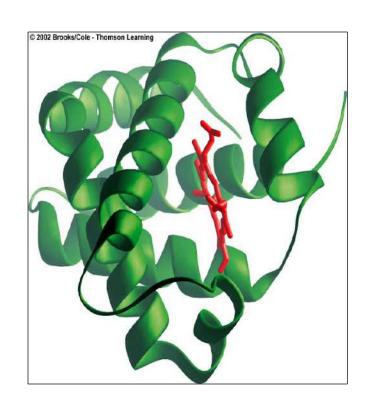
Protein Shapes

- Fibrous proteins
 - Polypeptide chains arranged as strands or sheets
- Globular proteins
 - Polypeptide chains folded into compact, rounded shapes

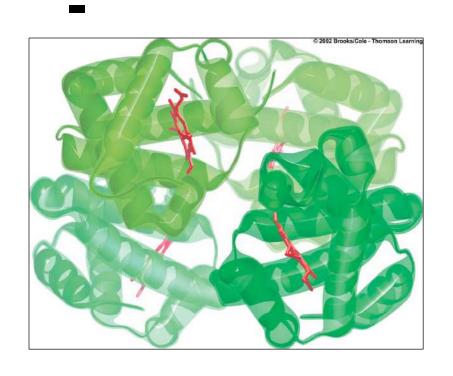

Secondary Structure of Proteins

 Hydrogen bonds form between different parts of polypeptide chain

These bonds give rise to coiling or folding pattern


Helix or pleated sheet

Examples of Secondary Structure


Tertiary Structure of Proteins

Folding as a result of interactions between R groups

coiled and twisted polypeptide chain of one globin molecule

Quaternary Structure of Proteins

Some proteins are made up of more than one polypeptide chain

Hemoglobin

Polypeptides With Attached Organic Compounds

- Lipoproteins
 - Proteins combined with cholesterol,
 triglycerides, phospholipids
- Glycoproteins
 - Proteins combined with oligosaccharides

Denaturation

- Disruption of three-dimensional shape
- Breaking of weak bonds
- Causes of denaturation:
 - O pH
 - Temperature
 - Salinity
- Destroying protein shape disrupts function

In review

What are the similarities & differences between amino acids?

Describe each type of protein structure.

How does shape influence protein function?