

Natural Selection and Allelic Frequency

Chapter 15

PREPARATION

Problem

How does natural selection affect allelic frequency?

Objectives

In this BioLab, you will:

- Simulate natural selection by using beans of two different colors.
- Cakulate allelic frequencies over five generations.
- Demonstrate how natural selection can affect allelic frequencies over time.
- Use the Internet to collect and compare data from other students.

Materials

colored pencils (2) paper bag graph paper pinto beans white navy beans

Safety Precautions

CAUTION: Clean up spilled beans immediately to prevent anyone from slipping.

Skill Handbook

Use the **Skill Handbook** if you need additional help with this lab.

PROCEDURE

- Use the data table.
- 2. Place 50 pinto beans and 50 white navy beans into the paper bag.
- 3. Shake the bag. Remove two beans. These represent one rabbit's genotype. Set the pair aside, and continue to remove 49 more pairs.
- **4.** Arrange the beans on a flat surface in two columns representing the two possible rabbit phenotypes, gray (genotypes GG or Gg) and white (genotype gg).
- 5. Examine your columns. Remove 25 percent of the gray rabbits and 100 percent of the white rabbits. These numbers represent a random selection pressure on your rabbit population. If the number you calculate is a fraction, remove a whole rabbit to make whole numbers.
- **6.** Count the number of pinto and navy beans remaining. Record this number in your data table.

- 7. Calculate the allelic frequencies by dividing the number of beans of one type by 100. Record these numbers in your data table.
- 8. Begin the next generation by placing 100 beans into the bag. The proportions of pinto and navy beans should be the same as the percentages you calculated in step 7.
- **9.** Repeat steps 3 through 8, collecting data for five generations.
- **10.** Go to hdol.glencoe.com/internet_lab to post your data.
- 11. Graph the frequencies of each allele over five generations. Plot the frequency of the allele on the vertical axis and the number of the generation on the horizontal axis. Use a different colored pencil for each allele.
- **12. Cleanup and Disposal** Return all materials to their proper places for reuse.

INTERNEY BioLab

Natural Selection and Allelic Frequency, continued

Data Table

Generation	Allele G				<u> </u>	<u> ·_</u>
	Number	Percentage	Theorem		Allele g	
Start	50	50	Frequency	Number	Percentage	Punaman
1		 	0.80	50	80	Prequency
2					00	0.50
-			· · · · · · · · · · · · · · · · · · ·	 	<u> </u>	
3]	
			[
						
			- 	·	·	
			<u></u>	<u>.</u>		

ANALYZE AND CONCLUDE

1. Analyze Data	Did either	allele d	lisannaaut	TTT	Ш
			appear?	Why or why no	t?

2 Thursday		
4. (Blok Critically	TX7L 1	
· · · · · · · · · · · · · · · · · · ·	VVIIII does vour graph -L	
	graph snow about allelie c.	
	and all all all all all all all all all al	d no=1
	What does your graph show about allelic frequencies and	a matural selection?

3,	. Infer	What would happen	to the all 1: a			·	_
		Phon	to the attenc the	equencie	s if the r	number of sector	
		<u></u>	<u></u> _ :			and or eagles (ieclined.

4	data from the Internet. What advantage is there to have a large amount of data W. W.	
	data from the Internet. What advantage is there to have a large amount of data? What problems	the