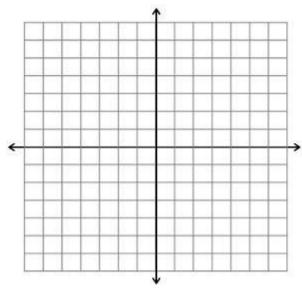
Algebra Review	Algeb	ra	Rev	iew
----------------	-------	----	-----	-----

Name____


Physics 1A
Forces Unit

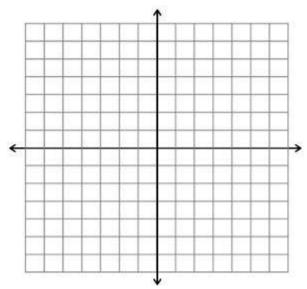
Date_____ Hour___

EXAMPLES:

Using the equation $\mathbf{y} = 6\mathbf{x} - 12$, solve for \mathbf{y} if $\mathbf{x} = 3$.

Graph the equation $\mathbf{y} = 6\mathbf{x} - 12$ on the grid below, after numbering the axes appropriately.

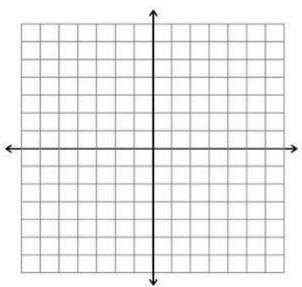
Locate the coordinate that represents $\mathbf{x} = 3$. What is the corresponding value of \mathbf{y} ? How does that relate to your answer to the first question?


Using the equation $\mathbf{d}_f = 4\mathbf{t} + 2$, solve for \mathbf{d}_f if $\mathbf{t} = 10$.

If we were to plot the equation $\mathbf{d}_f = 4\mathbf{t} + 2$ on a coordinate plane, where on the graph would that coordinate be?

DIRECTIONS: Justify all claims by showing all necessary work.

1. Using the equation $\mathbf{y} = -2\mathbf{x} + 5$, solve for \mathbf{x} if $\mathbf{y} = 3$.


2. Graph the equation $\mathbf{y} = -2\mathbf{x} + 5$ on the grid below, after numbering the axes appropriately.

Locate the coordinate that represents $\mathbf{y} = 3$. What is the corresponding value of \mathbf{x} ? How does that relate to your answer to question 1?

3. Using the equation $\mathbf{d}_f = 3\mathbf{t} + 2$, solve for \mathbf{t} if $\mathbf{d}_f = -7$.

4. Graph the equation $\mathbf{d}_f = 3\mathbf{t} + 2$ on the grid below, after numbering the axes appropriately.

5. Locate the coordinate that represents $d_f = -7$. What is the corresponding value of t? How does that relate to your answer to question 3?